
Journal of Theoretical and Applied Information Technology
30th June 2020. Vol.98. No 12

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

2174

TOWARDS A DYNAMIC ANALYSIS OF LEGACY SYSTEMS
FOR REVERSE-ENGINEERING INTERACTION DIAGRAMS

1EL MAHI BOUZIANE, 2CHAFIK BAIDADA, 3ABDESLAM JAKIMI

1 GLISI Team, Department of Computer Science, Faculty of Sciences and Technics, Errachidia, Morocco
2Department of Computer Sciences, ENSA El Jadida,, Morocco

2 GLISI Team, Department of Computer Science, Faculty of Sciences and Technics, Errachidia, Morocco

1bouzianeelmahi@gmail.com , 2chafik29@gmail.com@abc.com, 3ajakimi@yahoo.fr

ABSTRACT

Recently, reverse engineering has become widely recognized as a valuable process for extracting system
abstractions and design information from existing software. Reverse engineering for legacy systems is used
to retrieve missing design documentation from existing source code in an abstract model UML format for
studying both the static structure and dynamic behavior of the system and for expanding the new features to
the product. To help engineers to understand the behavior of these systems, a dynamic analysis technic is
used to recover the UML sequence diagram of an object-oriented program. In this context, most existing
approaches in addition to not filter execution traces, don’t allow to extract properties of control structure
corresponding to combined fragments operators such as loop, alt and opt. They can’t also detect the
operator par which is important in the case of multi-threading systems. In this paper, we propose a novel
approach based on Colored Petri Nets (CPNs). This approach allows to generate UML2 sequence diagram
with main combined fragment operators: seq, loop, alt, opt and par. It consists of four steps: trace
collection, trace filtering, trace merging, and high level sequence diagram (HLSD) extraction. CPNs are
used to abstract execution traces in order to facilitate their analysis.

Keywords: Reverse Engineering, Legacy Systems, Sequence Diagram, Colored Petri Nets, Dynamic
Analysis, Execution Traces

1. INTRODUCTION

Reverse Engineering is the important
building block in understanding and maintaining
the code. Maintainability increases when the
dynamic behavior of the object is translated into
design from the source code. Recently, new
software engineering methods aim to increase the
productivity and quality of systems under
development. However, in the reality of the
software industry, these methods are not always
respected. Indeed, several existing systems suffer
from problems such as missing or incomplete
documentation and non-compliance with the design
when coding the software.

Software engineering activities like

maintenance, testing, and integration deal with
legacy systems. A legacy system, is a system where
is not possible to understand all the fundamental
concepts that shaped it as they could be neither
available nor existent for understanding.

The most important aspect of all these
processes is the comprehension of the components

of existing systems and the relationships existing
between them. According to [1] up to 60% of
maintenance time is spent on understanding
software. Especially since most of these systems
generally suffer from several problems, such as
unavailability of developers, obsolete development
methods used to code the software and missing
documentation. Therefore, it is important to
develop techniques to obtain an abstract
representation to facilitate the understanding of
these systems.

A proven and effective technique to
address this problem is reverse engineering of UML
models. It can be defined as a means of analyzing
the source code of these systems and representing it
in a form with a higher level of abstraction to make
it easier to understand. Reverse engineering can
help to understand existing systems by retrieving
models from their available artifacts. The IEEE-
1219 [3] standard recommends reverse engineering
as a technological solution to deal with legacy
systems without updated documentation. In the
object-oriented world, the target modeling language

Journal of Theoretical and Applied Information Technology
30th June 2020. Vol.98. No 12

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

2175

most used for reverse engineering is UML (Unified
Modeling Language) [4] due to its significant
presence in the industry. To better understand the
behavior of these systems, dynamic models are
needed, such as Sequence Diagrams (SDs). UML
SDs take an important place in software
engineering. They help software engineers to
understand the source code of existing object-
oriented software systems through the visualization
of interactions between their objects [5]. To extract
SDs describing the behavior of a system, we
concentrate on reverse engineering relying on
dynamic analysis. As mentioned in [6], dynamic
analysis is more adapted to the reverse engineering
of SDs due to inheritance, polymorphism and
dynamic binding.

Section 2 of this paper giveses related

works. Section 3 introduces a background in
reverse engineering of UML SDs using CPNs.
Section 4 outlines the proposed methology and
approach. Finally, section 5 provides some
concluding remarks and points out some future
works.

2. RELATED WORK

Reverse engineering as opposite of

forward engineering is the process of identifying
and analysis of software’s system components, their
interrelationships, and the representation of their
entities at a higher level of abstraction [7].

In reverse engineering, program analysis

usually takes place either through two kinds of
analyses: static analysis and dynamic analysis.
Static analysis concerns analyzing the source code
of a system by building an abstracted model of it.
Various approaches have been developed to capture
a system’s behavior through static analysis [8, 9,
10, 11]. One of the main objectives of these works
is that of Rountev et al. [11]. They proposed an
approach for the extraction of SDs from the source
code of a system through building control flow
graphs. In this study, the nodes represent the basic
blocks of a program, and the links represent all
kinds of interactions between these blocks.

The dynamic analysis, on the other hand,

is to analyze a software system under execution.
These traces represent the values of the program
variables, the state of the execution stack, the
occurrences of objects created, the signatures of the
methods called, the information about threads or
any other execution information considered useful.

As a result, objects under execution can be
observed. This dynamic analysis supports
polymorphism and late binding, unlike static
analysis. Several works try to generate SDs by
analyzing the execution traces. Taniguchi et al. [12]
propose an automatic approach for the reverse
engineering of SDs from the execution traces of an
object-oriented program. They use four additional
rules to optimize the size of the execution traces by
detecting similarity between sub-trees and replace
merging them. In [13], they try to build a High-
Level Sequence Diagram (HLSD) from combined
fragments using the different states of the system.
This approach consists of two phases. During the
first phase, a simple SD is generated containing just
the method calls. The second phase enables to draw
HLSD by combining the diagrams generated in the
first step. The combination process is done by
analyzing the different states of the system. In [14],
it is proposed an approach based on dynamic
analysis. They use LTS (Labeled Transition
System) for modeling execution traces. Then an
HLSD is generated from this LTS.

These approaches have succeeded in
generating representative SD. However, they
recognize some limitations. These limitations
include information filtering problems. For this
reason, in [15] Cornelissen et al. defined a catalog
of abstractions and filtering in the context of
reverse engineering of sequence diagrams. The
approaches mentioned above do not use these
filtering technics.

3. UML SEQUENCE DIAGRAM AND CPN

3.1. UML Sequence Diagrams (SD)

In this work, we chose to use excrat

sequence diagrams (SD) because of their wide use
in different domains. A SD shows interactions
among a set of objects in temporal order, which is
good for understanding timing and interaction
issues. An SD is the most used diagram for
capturing inter-object behavior. Graphically, an SD
has two dimensions: a horizontal dimension
representing the instances participating in the
scenario, and a vertical dimension representing
time. SD is typically associated with use case
realizations in the logical view of the system under
development. It has been significantly changed in
UML 2.0 [4].

Notable improvements include the ability
to define HLSDs. An HLSD is an SD that refers to

Journal of Theoretical and Applied Information Technology
30th June 2020. Vol.98. No 12

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

2176

a set of Basic SD (BSD) and composes them using
a set of interaction operators. The main operators
are seq for sequence, alt for alternatives, loop for
iterative actions, and par for parallelism. Figure 1
shows an example of an HLSD composed of two
BSDs using the operators loop and alt. For
example, the basic SD BSD1 describes the
interactions between two instances a1 (instance of
the class A) and b1 (instance of the B class). The
behavior specified in the HLSD is then equivalent
to the expression while (C1) (if (C2) then BSD1
else BSD2).

Figure 1. Example of an HLSD

3.2 Execution Traces

Mining specifications from logs
of execution traces has attracted much research
effort in recent years since the mined specifications,
such as program invariants, temporal rules,
association patterns, or various behavioral models,
may be used to improve program documentation,
comprehension, and verification.

To build an HLSD using dynamic
analysis, we have to generate traces of program
executions. Each trace corresponds to a scenario of
a given use case. In what follows, we introduce a
set of definitions that are necessary to understand
the approach.

Definition 1: A trace line is a method invocation,
control structure or parallelism operator.

Definition 2: A method invocation is a triplet
T1=<Sender, Message, Receiver> where:

 Sender is the caller object, expressed in the form
threadNumber:package:class:object.

 Message is the invoked method of the receiver
object, expressed in the form methodName
(par1, par2, …).

 Receiver is the called object, expressed in the
form package:class:object.

Definition 3: A control structure is a triplet
T2=<controlType, status, condition> where:

 controlType has one of the following values:
IF, ELSE, SWITCH, CASE, DEFAULT, FOR,
or WHILE.

 status expresses the start or the end of the
control structure.

 condition (optional) is the condition expression
associated with IF, CASE, FOR, or WHILE.

Definition 4: A parallelism operator is a tuple
T3=<parallelismOperator, status> where:

 parallelismOperator is the operator: PAR.

 status expresses the start or the end of the
parallel invocations.

Definition 5: (Equivalence between method
invocations): The method invocations l1 = <s1, m1,
r1> and l2 = <s2, m2, r2> are equivalent if and only
if:

 the objects s1 and s2 (respectively, r1 and r2)
are equivalent if they are instances of the same
class and are created in the same thread.

Journal of Theoretical and Applied Information Technology
30th June 2020. Vol.98. No 12

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

2177

 the messages m1 and m2 concern the same
method and have the same arguments.

Definition 6: An execution trace is a set of trace
lines.

Table 1 shows an example of generated
execution traces where each trace corresponds to a
given scenario of a use case. Trace1 describes
Scenario1 and Trace2 describes Scenario2.

Table 1. An example of traces

Scenario1 : Trace 1

L7. 0:Pack1:B:b|m4()|Pack1:A:a

L8. WHILE |BEGIN |condition1

L9. 0:Pack1:B:b|m5()|Pack1:A:a

L10. 0:Pack1:B:b|m6()|Pack1:A:a

L11. WHILE|END

L12. PAR | BEGIN

L7. 1:Pack1:B:b|m4()|Pack1:A:a

L13. PAR |END

Scenario2: Trace 2

L0. IF | BEGIN | condition2

L1. 0:Pack1:A:a |m1()|Pack1:B:b

L2. ELSE | BEGIN

L3. 0:Pack2:C:c |m2()|Pack2:D:d

L4. ELSE| END

L5. IF | END

L6. 0:Pack2:D:d |m3()|Pack2:D:c

L1. 0:Pack1:A:a |m1()|Pack1:B:b

3.3. Colored Petri Nets (CPN)

Petri nets [16] are well-known and

developed formalism with a rich theory, practical
applications ranging from communication networks
to healthcare systems and are supported by a wide
range of commercial and non-commercial tools.
CPN is a backward-compatible extension of Petri
nets. CPN preserves useful properties of Petri nets
and at the same time extends the initial formalism
to allow the distinction between tokens by attaching
a data value to them. This distinction is expressed
graphically by having tokens with different colors.

A Petri Net block is a subnet of the Petri
Net that with one initial place and one final place.
Those places refer respectively to the precondition
and the post-condition of the subnet. From the
many existing variants of Petri nets, CPN is used in
composing and integrating scenarios that are
represented in the form of SDs [17].

Four operators for composing scenarios
have been implemented: sequential, conditional,
iterative and concurrent. CPNs suit our approach as
they can map an HLSD efficiently (figure 2, 3).
Transitions can represent BSD or operators such as
“alt”, “loop” (figure 2), and par (figure 3). Colors
are used to distinguish between traces. All places
from the same trace have the same color.

From what precedes, we can conclude that,
for an HLSD, we can generate a CPN that can
represent all major UML SD operators such as alt,
par, and loop. We can also do the reverse
transformation by mapping a CPN into an HLSD.

The problem that arises is how we can
reverse this process, i.e., how, from execution
traces, can we generate a CPN that can be mapped
onto an HLSD? In the next section, we propose an
approach that deals with this problem.

These traces are composed of several
lines. L0 to L13 refers to the number of each line.
Pack1 and Pack2 represent the packages to which
classes A, B, C, and D belong. m1() to m6()
correspond to the methods calls of objects a, b, c,
and d. The numbers 0 and 1 correspond to the IDs
of the threads.

Journal of Theoretical and Applied Information Technology
30th June 2020. Vol.98. No 12

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

2178

Figure 2. HLSD mapped onto CPN with operators
« loop » and « alt »

Figure 3. HLSD mapped onto CPN with operator “par”

Journal of Theoretical and Applied Information Technology
30th June 2020. Vol.98. No 12

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

2179

4. DESCRIPTION OF THE APPROACH

In this section, we give an overview of the
reverse engineering of UML High-Level sequence
diagram for the system.

The approach is defined in four main steps

(figure 4) : trace collection, trace filtering, trace
merging, and HLSD extraction.

Figure 4. Overview of our approach.

4.1 Trace collection

To extract an HLSD from an object-

oriented program, we concentrate on reverse
engineering relying on dynamic analysis. As
mentioned in [5], dynamic analysis is more suited
to the reverse engineering of SDs of object-oriented
systems. This dynamic analysis is usually
performed using execution traces. There are
multiple ways to generate execution traces [1].
These ways can include instrumentation of the
source code, bytes code, virtual machines (for java
programs for instance) or the use of a customized
debugger. From these technics, we choose to use
code instrumentation. Java software systems, we
chose AspectJ [18]. This one can be used as a

Java intermediate code
instrumentation tool. It allows the retrieval of the
following information created during the execution of
the program: occurrence of objects, messages
that circulate between them, loops, conditions and
threads.

The system behavior is related to the
environment entry data, in particular, values
introduced by the user to initialize specific system
variables. Thus, one execution session is not
enough to identify all system behaviors. Therefore,
we chose to run the system several times to
generate different executions traces. Each execution
trace corresponds to a particular scenario of a given
use case of the system. The form of collected traces
can differ from one tool to another, which has
forced us to develop an adapter that reorganizes the
traces into a new adapted form as described in the
definitions 1, 2, and 3. The role of the adapter is to
restructure the trace into a form appropriate to the
processing of merging traces.

4.2. Trace filtering

The generated execution traces contain a
lot of information about all classes composing the
system. These classes can be divided into three
types: data access classes, business classes and
presentation classes. The business classes are the
classes that describe the behavior of the business logic
of the system. Our objective in this step is to
concentrate on traces lines that describe this
behavior and ignore other traces lines. This is the
objective of the trace filtering step . We have
developed an algorithm that allows us to delete
execution traces which belong to data access or
presentation classes.

4.3. Trace merging

Trace merging is the main step of our

approach. It deals with the known problem of
analyzing traces. Indeed, one of the major
challenges to reverse engineering an HLSD is
analyzing the multiple execution traces to identify
operators and method invocations throughout the
input traces. Independently from the reverse
engineering of SDs, the challenge of merging traces is
well identified in the grammar inference domain
where several well-defined techniques were
proposed [19].

In this subsection, we chose to use CPNs to merge
these execution traces. The process is done in
two sub-steps: CPN initialization and

Journal of Theoretical and Applied Information Technology
30th June 2020. Vol.98. No 12

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

2180

Merging.

a) CPN initialization

In this sub-step, one CPN for each
execution trace is generated. All the trace lines are
transformed into transitions in CPNs except those
which express the start or the end of iterative
control structure like LOOP | START and LOOP |
END. These line traces are transformed into places.

The objective of this sub-step is also to

extract the operator par. The generated child threads
events are delimited by the trace lines PAR |
BEGIN and PAR | END. The algorithm creates the
transition labeled PAR | BEGIN with two or more
outgoing edges corresponding to the number of the
created threads to indicate the beginning of a
concurrent behavior. It also creates the transition
PAR | END to indicate its end. As shown in
subsection 3.2, every trace line has a thread
number. The algorithm that compares between
threads numbers to create for each trace line the
correspondent CPN. It focuses on the threads
number creates a CPN path for all trace lines that
have the same thread number. These paths are
attached to the transition “par”. All places that
represent trace lines have the same color. These
colors allow us to distinguish between the scenarios
and give the possibility of subdividing an HLSD
into several HLSDs to facilitate the task of
understanding the system.

b) CPN Merging

In the previous sub-step, every trace has a

correspondent CPN and includes as transitions only
method invocations or the operator par. In the
second sub-step, the CPNs of the different traces
are synthesized to obtain a single CPN that merges
the initial traces. This is done by using the
algorithm kBehavior [20]. This algorithm is
inspired by the kTail algorithm [21,22]. Both are
used to build an automaton from execution traces.
These techniques allow learning a regular target
grammar from a set of sequences. For this, a
generalization procedure of the automaton is
applied iteratively by successive fusion of
equivalent states. kTail has a major limitation: it is
not able to reuse already learned knowledge to
adapt to newly generated traces, which is not the
case for kBehavior. In our case, we took the main

CPNs. When a new trace is given to the algorithm,
adapted kBehavior first identifies sub-traces of the
input trace that are accepted by a sub-CPN in the
current CPN (the sub-traces must have a minimum
length of k; otherwise they are considered too short
to be relevant). Then our adapted kBehavior
algorithm extends the CPN with the addition of
new branches that suitably connect the identified
sub-CPN, producing a new version of the CPN that
accepts the entire input trace. An example of traces
merging is illustrated in Figure 5.

Figure 5. Example of merging traces using our adapted
kBehavior algorithm with k=2

To make the CPN more coherent, a final

transformation is carried out. This transformation
concerns the processing of an iterative behavior.
This processing includes adding two test transitions
after the place LOOP | BEGIN | condition. The first

Journal of Theoretical and Applied Information Technology
30th June 2020. Vol.98. No 12

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

2181

transition labeled IF | BEGIN | condition is
executed when the condition of Loop is satisfied.
The second transition labeled LOOP | END is
executed in the other case. This transition leads to
the place labeled LOOP | END and consequently
indicating the end of Loop. The output place of the
last transition inside Loop does not refer any more
its end but to its beginning. The labeling of this
place is changed by removing the indication of its
condition in order to avoid redundancy as
illustrated in Figure 6.

Figure 6. CPN corresponding to scenario1

4.4. HLSD extraction

In this step, we can easily build an HLSD
(Figure 7) by mapping the resulting CPN using the
following transformation rules:

 Rule 1: all names of objects in the CPN are

transformed into lifelines in SD.

 Rule 2: a transition T1 with the method

invocation 0:a:B | m1 ()| b:B is transformed
into a BSD where object a:A sends message
m1() to object b:B

 Rule 3: A Place P1 that contains the operator

ALT | BEGIN or OPT |BEGIN or LOOP |
BEGIN refers respectively to BSD with the
operators alt, opt and loop.

 Rule 4: the CPN paths coming after the place

"ALT | BEGIN" and ending on the transition
"ALT | END" are transformed into combined
fragments with the operators ALT.

 Rule 5: the CPN paths coming after the place

"OPT | BEGIN" and ending on the transition
"OPT | END" are transformed into combined
fragments with the operators OPT.

 Rule 6: The cyclic CPN paths coming after the

transition "IF | BEGIN | CONDITION" which
comes after the place "LOOP | BEGIN" is
transformed into combined fragments with the
operator loop.

 Rule 7: The CPN paths coming after the

transition ELSE | BEGIN | CONDITION"
which comes after the place "LOOP | BEGIN"
is transformed into BSD after the fragment
corresponding to the operator loop.

 Rule 8: A Transition T1 that contains the

operator "PAR | BEGIN" or refers to BSD with
the operators par.

 Rule 9: The CPN paths coming after the

transition "PAR | BEGIN" and ending on the
transition "PAR | END" are transformed into
combined fragments with the operators par.

Journal of Theoretical and Applied Information Technology
30th June 2020. Vol.98. No 12

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

2182

Figure 7. HDLS with operators (Loop, Par, Alt)

A HDLS shows a dynamic collaboration

between a number of objects. It is widely used by
businessmen and software developers to document
and understand requirements for new and existing
systems.

Combined fragment is an interaction
fragment which defines a combination (expression)
of interaction fragments. A combined fragment is
defined by an interaction operator and
corresponding interaction operands. A combined
fragment consists of one or more interaction
operands, and each of these encloses one or more
messages, interaction uses, or combined fragments.

Through the use of combined fragments

the user will be able to describe a number of traces
in a compact and concise manner. In this HDLS,
combined fragments let you show loops, branches,
and other alternatives.

5. CONCLUSION

Organizations are highly dependent on
their software in carrying out their daily activities.
Unfortunately, the repeated changes that are applied
to these systems make their evolution difficult. It is
difficult for developers to modify or change the
source code when they do not understand the
original system. In software engineering,
developers generally base code development on
design documents to build software that matches
the design requirements. UML sequence diagrams
are commonly used to represent object interactions
in software systems. This work considers the
problem of extracting UML sequence diagrams
from existing code for the purposes of software
understanding and testing.

Reverse Engineering is focused on the
challenging task of understanding legacy program
code without having suitable documentation. In this
paper, we presented an overview of our approach
for the reverse engineering of sequence diagrams of
an object-oriented software system. The approach is
based on dynamic analysis of legacy systems. We use
CPNs to model execution traces. Then these CPNs
are merged into a single CPN using the adaptive
Kbehavior. Finally, the result CPN is translated into
a HLSD by applying transformation rules. The
colors of CPN are used to distinguish between
scenarios and therefore enables subdividing an
HLSD into several HLSDs to facilitate the task of
understanding the system. Our approach has also
been successful in detecting the operator par and
conditions in alt and loop operators.

This study presented a transformation
method that converts the source code (execution
traces) a UML sequence diagram as an aid in
analyzing and understanding legacy systems. The
future works of this research include the following
areas:

- Evaluate and validate our approach to more
simple and complex systems and try to
handle the problem of extracting other types
of UML diagrams and modernization of
legacy systems [23,24,25].

- Merging our study and many works

[26,27,28] will enable the visualization of
object-oriented software behavior and
algorithmic structure and thereby enhance
the development, maintenance practices and
communications in scientific and
engineering software [26,27, 28].

Journal of Theoretical and Applied Information Technology
30th June 2020. Vol.98. No 12

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

2183

REFERENCES

[1] B. Cornelissen, A. Zaidman, et A. Deursen.: A
Controlled Experiment for Program
Comprehension Through Trace Visualization,
pp 2. IEEE Trans. on Software Engineering,
2011.

[2] K.-K. Lau and R. Arshad, A Concise
Classification of Reverse Engineering
Approaches for Software Product Lines. 4
2016

[3] IEEE. std 1219: Standard for Software
Maintenance. IEEE Computer Society Press,
Los Alamitos, CA, USA, 1998.

[4] OMG. Unified Modeling Language (OMG
UML), Superstructure. 2018.

[5] L. C. Briand, Y. Labiche, J. Leduc, Towards
the Reverse Engineering of UML Sequence
Diagrams for Distributed Java Software, IEEE
Transactions on Software Engineering, vol.
32, no. 9, pp. 642-663, 2006.

[6] C. Bennett, D. Myers, M.-A. Storey, D. M.
German, D. Ouellet, M. Salois, and P.
Charland, A survey and evaluation of tool
features for understanding reverse-engineered
sequence diagrams, J. Softw. Maint. E vol.,
vol. 20, no. 4, pp. 291–315, 2008.

[7] E. J. Chikofsky and J. H. Cross, II, Reverse
Engineering and Design Recovery: A
Taxonomy, IEEE Software, vol. 7, no. 1, pp.
13-17, 1990.

[8] R. Kollmann and M. Gogolla. Capturing
Dynamic Program Behaviour with UML
Collaboration Diagrams. In Proceedings of the
5th Conference on Software Maintenance and
Reengineering (CSMR’01), pp 58-67. IEEE
Computer Society, 2001.

[9] R. Kollmann, P. Selonen, E. Stroulia, T.
Syst¨a, and A. Z¨undorf. A Study on the
Current State of the Art in Tool-Supported
UML-based Static Reverse Engineering. In
Proceedings of the 9th Working Conference
on Reverse Engineering (WCRE’02), pp 22-
32. IEEE Computer Society, 2002.

[10] A.Rountev, O. Volgin, and M. Reddoch.
Static Control-Flow Analysis for Reverse
Engineering of UML Sequence Diagrams. In
ACM SIGSOFT Software Engineering Notes,
ACM, vol.31, no.1, pp. 96-102, 2005.

[11] A. Rountev and B.H. Connell. Object Naming
Analysis for Reverse-Engineered Sequence
Diagrams. In Proceedings of the 27th
International Conference on Software
Engineering (ICSE’05), pp 254-263. ACM,
2005.

[12] Taniguchi, T. Ishio, T. Kamiya, S. Kusumoto,
and K. Inoue Extracting Sequence Diagram
from Execution Trace of Java Program,
International Workshop on Principles of
Software Evolution (IWPSE’2005), pp. 148-
151, 2005.

[13] Romain Delamare, Benoit Baudry, Yves Le
Traon Reverse-engineering of UML 2.0
Sequence Diagrams from Execution Traces.In
Proceedings of the workshop on Object-
Oriented Reengineering at ECOOP 06, 2006.

[14] Tewfik Ziadi, Marcos Aur’elio Almeida da
Silva, Lom Messan Hillah, Mikal Ziane. A
Fully Dynamic Approach to the Reverse
Engineering of UML Sequence Diagrams.
16th IEEE International Conference on
Engineering of Complex Computer Systems,
ICECCS, Las Vegas, United States, 2011.

[15] B. Cornelissen, A. van Deursen, L. Moonen,
and A. Zaidman. Visualizing Test suites to
Aid in Software Understanding. In
Proceedings of the 11th European Conference
on Software Maintenance and Reengineering
(CSMR’07), pages 213-222. IEEE Computer
Society, 2007.

[16] K. Jensen, A brief introduction to coloured
Petri nets, in Proceeding of the Tools and
Algorithms for the Construction and Analysis
of Systems (TACAS’97) Workshop, LNCS,
Springer-Verlag, vol. 1217. pp. 203–208,
1997

[17] A. Jakimi, A. Sabraoui, E. Badidi, A. Salah,
and M. El Koutbi, “Using UML Scenario in
B2B Systems,” IIUM Engineering Journal,
2010.

[18] AspectJ: The AspectJ project at Eclipse.org,
http://www.eclipse.org/aspectj/.

[19] J. A. Brzozowski, Derivatives of regular
expressions, J.ACM, vol. 11, no. 4, pp. 481–
494, 1964.

[20] L. Mariani, F. Pastore and M. Pezze. Dynamic
Analysis for Diagnosing Integration Faults. in
IEEE Transactions on Software Engineering,
vol. 37, no 4, pp. 486-508, 2011.

[21] A. Biermann and J. Feldmann. On the
synthesis of finite state machines from
samples of their behavior, IEEE Transactions
on Computer, vol. 21, pp. 592–597, 1972.

[22] Chafik B., El Mahi B., Abdeslam J. A New
Approach for Recovering High-Level
Sequence Diagrams from Object-Oriented
Applications. Elsevier Procedia Computer
Science Journal (ISSN: 1877-0509), 2019.

[23] G. Chénard, I. Khriss and A. Salah, "Towards
the Discovery of Implementation Platform

Journal of Theoretical and Applied Information Technology
30th June 2020. Vol.98. No 12

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

2184

Description Models of Legacy Object-
Oriented Systems," in Workshop on Processes
for Software Evolution and Maintenance
(WoPSEM 2010) IEEE, 2010.

[24] G. Chénard, I. Khriss and A. Salah, "Chénard,
G., Khriss, I. and Salah, A. Towards the
Automatic Discovery of Platform
Transformation Templates of Legacy Object-
Oriented Systems," in Models and Evolution
(ME) 2012 workshop a satellite event at
MoDELS 2012, Insbrusck, Austria, 2012.

[25] H. Abdelmalek, G. Chénard, I. Khriss and A.
Jakimi, A Bimodal Approach for the
Discovery of a View of the Implementation
Platform of Legacy Object-Oriented Systems
under Modernization Process, In Proceedings
of 35th International Conference on
Computers and Their Applications CATA’20,
vol 69, pages 98—111. 2020.

[26] Aziz Nanthaamornphong and Anawat
Leatongkam, Extended ForUML for
Automatic Generation of UML Sequence
Diagrams from Object-Oriented Fortran,
Hindawi Scientific Programming Volume
2019, ID 2542686, 22 pages. 2019.

[27] Sabine Wolny , Alexandra Mazak , Manuel
Wimmer, Automatic Reverse Engineering of
Interaction Models from System Logs, 2019
24th IEEE International Conference on
Emerging Technologies and Factory
Automation (ETFA), Zaragoza, Spain, 2019

[28] Lina Čeponienė, Vaidotas Drungilas, Mantas
Jurgelaitis, Jonas Čeponis, A Method for
Reverse Engineering UML Use Case Model
for Websites, Journal of Information
Technology and Control Vol. 47 / No. 4 /
2018 pp. 623-638, 2018.

