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ABSTRACT 
 

In recent years, many deep learning-based approaches for object detection in autonomous driving systems 
have been proposed and achieved great achievements. These approaches can be divided into two groups: one-
stage methods and two-stage methods. Compared with one-stage methods, two-stage methods achieve better 
detection performance. However, the performance of two-stage methods is still limited with objects at 
different scales and heavy occluded objects because there is little discriminative feature to exploit in the last 
convolution layer of the base network in two-stage architecture. To solve this problem, this paper proposes 
an improved two-stage framework based on Faster R-CNN architecture for object detection in autonomous 
driving systems. In the proposed framework, the base network based on VGG16 architecture is first adopted 
to generate the base convolution layers. To increase the performance of detecting objects at different scales, 
multi-feature concatenation modules are used at different convolution blocks of the base network. The 
proposed multi-feature concatenation modules combine all sub-layers of each convolution block to generate 
enhanced feature maps, which contain more discriminative features. All enhanced feature maps generated by 
multi-feature concatenation modules are then fed to an improved multi-layer region proposal network 
module. Each improved RPN contains a 1×1 convolution layer for compressing the input channel and a 3×3 
dilated convolution layer for increasing the receptive field. To solve the issue of heavy duplicate proposals 
in traffic scene images, soft-NMS algorithm is adopted to keep final proposals. Finally, all good proposals 
are fed to a detection sub-network which includes a RoI pooling layer and fully connected layers for 
classifying objects and regressing the coordinates of each detected object. Experimental results on Pascal 
VOC dataset and KITTI dataset show that the proposed method outperforms Faster R-CNN in detection 
accuracy. 

Keywords: Object Detection, Convolutional Neural Network, Autonomous Driving Systems, Deep Learning, 
Region Proposal Network 

 
1. INTRODUCTION  
 

Vision-based object detection is an important 
research problem for computer vision, with a wide 
range of real-world applications such as robotic 
applications, surveillance, drone technology, 
autonomous driving systems and so on. The main 
task of vision-based object detection is to predict the 
position and category of objects from images or 
videos. Compared to image classification, there are 
many more aspects that object detection needs to 
address. As a result, the computational complexity is 
significantly higher than that of the image 
classification. In addition, most applications need to 
perform object detection in real-time. Thus, the 
inference speed is an important concern in object 

detection aspect. Vision-based object detection 
methods can be divided into two groups: traditional 
methods and deep learning-based methods. In 
traditional methods, hand-crafted features have been 
used to detect multiple classes of objects. Traditional 
methods achieved good performance in limited 
environment conditions. In complicated 
environments such as traffic scenes, the performance 
of traditional methods is greatly reduced. Since 
AlexNet achieved large success in the ImageNet 
challenge [29], deep learning quickly becomes the 
dominant object detection approach. Although deep 
learning-based object detectors achieved great 
achievements in recent years, real-time visual object 
detection in autonomous driving environment is still 
very challenging. It is very harsh for visual object 
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detection with poor illumination and weather 
conditions in autonomous driving environment. In 
addition, there can be many occluded and truncated 
objects with large object scale variations in traffic 
scenes. It is observed that the object detection 
performance of the popular deep learning detectors 
such as Faster-RCNN and SSD without modification 
is not very good. Apart from the detection accuracy, 
the inference speed is also a large concern for 
autonomous driving systems. Vehicles are unlikely 
to be equipped with GPU computers as powerful as 
used in research environments. 

Based on above research problems, this paper 
proposes an improved two-stage framework based 
on Faster R-CNN architecture for object detection in 
autonomous driving systems. In the proposed 
framework, the base network based on VGG16 
architecture is first adopted to generate the base 
convolution layers. To increase the performance of 
detecting objects at different scales, multi-feature 
concatenation modules are used at different 
convolution blocks of the base network. The 
proposed multi-feature concatenation modules 
combine all sub-layers of each convolution block to 
generate enhanced feature maps, which contain more 
discriminative features. All enhanced feature maps 
generated by multi-feature concatenation modules 
are then fed to an improved multi-layer RPN 
module. The improved RPN module is designed 
based on original RPN with modification to increase 
the inference speed. Each improved RPN contains a 
1×1 convolution layer for compressing the input 
channel and a 3×3 dilated convolution layer for 
increasing the receptive field. Since anchors 
generated by the multi-layer RPN module are 
usually overlap, proposals end up also overlapping 
over the same object. To solve the issue of heavy 
duplicate proposals, Soft-NMS algorithm is adopted 
to keep final proposals. Finally, all good proposals 
are fed to a detection sub-network which includes a 
RoI pooling layer and fully connected layers for 
classifying objects and regressing the coordinates of 
each detected object. 

This paper is organized as follows: an overview 
of previous methods is presented in Section 2. 
Section 3 describes detail the proposed method. 
Section 4 demonstrates experimental results. Finally, 
the conclusion is made in Section 5. 
 
2. RELATED WORK 
 
2.1 Object Detection Method 

Object detection methods can be divided into 
two groups: traditional methods and deep learning-

based methods. Traditional methods usually include 
three major stages: finding object proposals, 
extracting features, and classification. For finding 
object proposals stage, traditional approaches used 
selective search [13], edge box [16], multiscale 
combinatorial grouping [17], and so on. For 
extracting features stage, histogram of oriented 
gradient [18], scale-invariant feature transform [19], 
and so on are some of the methods usually used in 
traditional approaches. For classification stage, 
support vector machine [20], adaboost [21], and so 
on are used in traditional approaches. Traditional 
methods achieved good performance in limited 
environment conditions. In complicated 
environments such as traffic scenes, the performance 
of traditional methods is greatly reduced. 

With the fast development of deep learning, 
many deep learning-based studies for object 
detection in autonomous driving systems have been 
proposed and achieved successful results. These 
deep learning-based approaches can be divided into 
two groups: one-stage approaches and two-stage 
approaches. For one-stage architecture, the input 
images are sliced into several grid cells. The 
classifier outputs a vector that encodes the 
information of each grid cell. Compared with two-
stage approaches, one-stage approaches are faster 
and easier to train while yielding inferior 
performance [25]. Popular representatives of one-
stage approaches include YOLOv2 [22], YOLOv3 
[23], SSD [12], DSSD [15]. SSD skips the region 
proposal stage and directly uses multiple feature 
maps with different resolutions to perform object 
localization and classification. YOLO and YOLOv2 
are other one-stage detectors that can achieve even 
faster speed at the expense of accuracy. By 
introducing improvements of batch normalization, 
high resolution classifier, convolutional with anchor 
boxes and dimension clusters to YOLO, YOLOv2 
achieves higher accuracy and higher speed. DSSD 
proposed to augment SSD+Residual-101 with 
deconvolution layers to introduce additional large-
scale context in object detection and improve 
accuracy, especially for small objects. 

The two-stage approaches first find the ROIs 
and then performs detection in every ROI. 
Comparing the two approaches, the one-stage 
approach predicts the classes and locations of objects 
directly, while the two-stage approach finds ROI 
first and then performs the classifications on an ROI. 
Popular representatives of two-stage approaches 
include Fast R-CNN [24], Faster R-CNN [1], FPN 
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Figure 1: The Overall Architecture of The Proposed Framework.

[11], R-FCN [14]. R-FCN proposed region-based 
fully convolution network based on positive-
sensitive cropping to reduce the number of ROIs per 
image. R-FCN achieved comparable accuracy with a 
speed that was slighter higher than that of ResNet-
101. FPN exploited the inherent multi-scale, 
pyramidal hierarchy of deep convolutional networks 
to construct feature pyramids with marginal extra 
cost. A top-down architecture with lateral 
connections is developed for building high-level 
semantic feature maps at all scales. 
 
2.2 Object Detection Based on R-CNN 

In the line of two-stage deep learning-based 
object detectors, R-CNN [26] is a pioneer deep 
learning model, which increases object detection 
accuracy over traditional detectors by a large 
margin. In the first stage, R-CNN applies selective 
search method [13] to generate sufficient proposal 
candidates that contain all the objects. In the second 
stage, R-CNN forwards each proposal through 
convolutional networks, followed by classifying the 
proposals with SVMs [20] and predicting bounding 
boxes offsets with linear regression. However, this 
method is very time-consuming, as every proposal is 
processed by the entire network. Fast R-CNN [24] 
extends R-CNN by using one single convolution 
network to perform shared computation in the 
second stage, which increases the speed 
significantly. The problem with Fast R-CNN is that 

the proposals are generated by a traditional time-
consuming selective search algorithm. Faster R-
CNN [1] was proposed to further improve upon Fast 
R-CNN. Faster-RCNN proposed region proposal 
network (RPN) to replace selective search method in 
R-CNN and makes the whole network trainable in an 
end to end approach.  

Recently, several approaches have been 
proposed to increase the accuracy of Faster R-CNN. 
Instead of using VGG-16 architecture as a base 
network for Faster R-CNN, adoption of different 
backbone networks, such as ResNet and Inception 
ResNet, has been proposed. He et al. [4] proposed 
the use of a deep residual network, such as ResNet-
101, for image recognition. The authors showed that 
ResNet-101 has a lower complexity compared to 
VGG-16 and achieves good accuracy. Lin et al. [11] 
proposed using a feature pyramid network (FPN) for 
Faster-RCNN. With feature sharing, the FPN-based 
Faster R-CNN system achieved better accuracy than 
original Faster R-CNN. Huang et al. [25] used an 
Inception ResNet v2 in the backbone of the Faster R-
CNN to achieve better accuracy than that obtained 
using ResNet 101 with a slightly lower running time 
per frame. Shrivastava et al. [27] proposed a top–
down modulation (TDM) network to incorporate 
fine details in the detection network for detecting 
small objects. They achieved higher accuracy 
compared to [25] with a slightly higher frame rate. 
Yauan et al. [28] proposed two refinement methods, 
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Figure 2: The Architecture of The Multi-Feature Concatenation Module.

iterative and LSTM refinement, for the Faster R-
CNN model and improved the accuracy. 
 
3. PROPOSED APPROACH 
 

Figure 1 shows the overall architecture of the 
proposed approach. As shown in Figure 1, the base 
network based on VGG16 architecture [8] is first 
adopted to generate the base convolution layers. To 
increase the performance of detecting objects at 
different scales, multi-feature concatenation 
modules are used at convolution block 3, block 4 and 
block 5 of the base network. The proposed multi-
feature concatenation modules combine all sub-
layers of each convolution block to generate 
enhanced feature maps, which contain more 
discriminative features. All enhanced feature maps 
generated by multi-feature concatenation modules 
are then fed to an improved multi-layer region 
proposal network (RPN) module. Each improved 
RPN contains a 1×1 convolution layer for 
compressing the input channel and a 3×3 dilated 
convolution layer for increasing the receptive field. 
Since anchors generated by the multi-layer RPN 
module are usually overlap, proposals end up also 
overlapping over the same object. To solve the issue 
of heavy duplicate proposals, Soft-NMS algorithm is 
adopted to keep final proposals. Finally, all good 
proposals are fed to a detection sub-network which 
includes a RoI pooling layer and fully connected 
layers for classifying objects and regressing the 
coordinates of each detected object. Details of each 

proposed module will be explained in the following 
sections. 
 
3.1 Enhanced Feature Map Generation by 
Multi-Feature Concatenation 

In two-stage object detection frameworks such 
as Faster R-CNN [1], the last convolution layer of 
the base network is adopted to generate object-like 
regions by the region proposal network. However, 
single-layer convolutional feature maps often lack 
some information of original image, thus decreasing 
the detection performance of these frameworks. To 
solve this problem, this paper proposes to generate 
enhanced feature layers from original layers of the 
base network by using multi-feature concatenation 
module as proposed in [2]. Figure 2 shows the 
architecture of the multi-feature concatenation 
module. From Figure 1 and Figure 2, it can be 
observed that the multi-feature concatenation 
module is applied on the Conv3, Conv4 and Conv5 
blocks of the VGG16 network. In each multi-feature 
concatenation module, each sub-layer 𝐶𝑖𝑗 (𝑖 = 3, 4, 5 
denotes the block and 𝑗 = 1, 2, 3 denotes the sub-
layers in this block) of the convolution block is used. 
Although the last layer of each convolution block 
has more discriminative features, the combination of 
all feature maps will enhance more dominant 
features, thus increasing the detection performance 
of the network. However, directly concatenate all 
feature maps will lead to a large number of output 
channels of output feature maps, which lead to 
reduce the inference speed and computational issues. 
Thus, a 1×1×16 convolution layer is used after each 
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Figure 3: The Architecture of Improved Region Proposal Network.

sub-layer to decrease the number of output channels 
to 16 channels. Then, all sub-layers in each 
convolution block are concatenated to generate the 
enhanced feature layers. 
 
3.2 Proposal Generation with Improved Region 
Proposal Network 

The Region Proposal Network (RPN) is first 
introduced in Faster R-CNN [1]. The RPN first 
generates a set of anchor boxes at each location of 
the last convolution layer of the base network. Then, 
the RPN classifies these anchor boxes to 
object/background class and regresses the 
coordinates of these anchor boxes. There are 9 
anchor boxes in total at each location of the feature 
map in original Faster R-CNN framework. Each 
anchor box is associated with predefined scales and 
aspect ratios. This paper uses multi-layer RPNs on 
each enhanced feature layers for generating object 
proposals. To increase the inference speed and 
detection accuracy, an improved region proposal 
network is designed as shown in Figure 3. First, to 
improve the inference speed of multi-layer RPNs on 
different enhanced feature map layers, this paper 
reduces the number of channels of the input feature 
layers to decrease the number of parameters in the 
subsequent convolutional layer. Recently, 1×1 
convolution layer is usually used to reduce the 
number of parameters without losing accuracy while 
also gaining efficiency [3] [4]. Thus, this paper uses 
1×1 convolution layer with 64 channels to make the 
architecture simpler. Next, the 3×3 convolution layer 
as in original RPN is replaced by the dilated 
convolution. Dilated convolution is usually used in 
the context of semantic segmentation [5] [6]. Dilated 
convolution can increase the receptive field, thus 
effectively enlarging the field of view of filters to 
incorporate larger context without increasing the 
number of parameters or the amount of computation. 
With larger receptive field, the network can see a 
bigger context information and recognize more 
confined bounding boxes. To further increase the 
accuracy of localization of bounding boxes, the 
continuous dilated convolution as in [5] is adopted 

in this paper. In the continuous dilated convolution, 
dilated kernels are applied in the previous 
convolutional layers. 
 
3.3 Improved Non-Maximum Suppression 
Algorithm 

The multi-layer RPN generates a large number 
of region proposals, and each region proposal has a 
corresponding score, and adjacent region proposals 
have relevant scores, which may cause false 
detection results and may result in some overlapping 
objects are missed. To solve this problem, non-
maximum suppression algorithm (NMS) is adopted 
in most state-of-the-art object detection frameworks, 
including Faster R-CNN.  

 
Non-Maximum Suppression Algorithm 
Let 𝑃௜௡ ൌ ሼ𝑝ଵ, 𝑝ଶ, 𝑝ଷ, … , 𝑝௡ሽ denotes the initial 
proposals generated by the multi-layer RPN, in 
which the proposals are sorted by their objectiveness 
scores. The objectiveness score 𝑆௜ for proposal 𝑝௜ is 
the maximum value in the classification score vector 
of 𝑝௜. For a proposal 𝑝௜, any other proposal that has 
an overlap more than a pre-defined threshold 𝑇 with 
this proposal is called a neighbor proposal of 
proposal 𝑝௜. The traditional NMS algorithm works as 
the flowchart shown in Figure 4. 

Traditional NMS removes any other proposal 
that has an overlap more than a pre-defined threshold 
with a winning proposal. However, due to heavy 
object occlusion in real-life environments, 
traditional NMS algorithm may remove positive 
proposals unexpectedly. To address this issue, this 
paper adopts soft-NMS algorithm [7]. With soft-
NMS, the neighbor proposals of a winning proposal 
are not completely suppressed. Instead they are 
suppressed based on the updated objectiveness 
scores of the neighbor proposals, which are 
computed according to the overlap level of the 
neighbor proposals and the winning proposal.   

 
Soft-NMS Algorithm 
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Figure 4: The Flowchart of The Non-Maximum Suppression Algorithm. 

 

 
Figure 5: The Flowchart of The Soft-Non-Maximum Suppression Algorithm.
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Let 𝑆௝
ᇱ denotes the updated objectiveness scores of 

the neighbor proposal 𝑝௝ of the winning proposal 𝑝௜. 
𝑆௝
ᇱ is computed with the following formula [7]: 

 
𝑆௝
ᇱ ൌ 𝑆௜ሺ1 െ 𝐼௣೔,௣ೕሻ   (1) 

 
where 𝐼௣೔,௣ೕ denotes the intersection of union (IoU) 

between proposal 𝑝௜ and proposal 𝑝௝ and is 
computed by the following formula: 
 

𝐼௣೔,௣ೕ ൌ
௔௥௘௔ሺ௣೔∩௣ೕሻ

௔௥௘௔ሺ௣೔∪௣ೕሻ
    (2) 

 
Soft-NMS algorithm works as the flowchart shown 
in Figure 5. 
 
3.4 Subnetwork of Detection with RoI-Pooling 
Layer and Fully Connected Layer 
 The detection subnetwork includes RoI pooling 
layer and fully connected (FC) layer. The RoI 
pooling layer uses max pooling operation to convert 
the features inside any valid RoI into a small feature 
map with a fixed spatial extent of H × W. RoI max 
pooling works by dividing the h × w RoI proposal 
into an H × W grid of sub-windows of approximate 
size h/H × w/W, and then max-pooling the values in 
each sub-window into the corresponding output grid 
cell. If a proposal is smaller than H×W, it will be 
enlarged to H × W by adding replicated values to fill 
new space. RoI pooling avoids repeatedly computing 
the convolutional layers, so it can significantly speed 
up both train and test time. However, the max 
pooling operation brings about the problem of 
misalignment obviously. For designing a fast and 
efficient detection framework, this paper performs 
the RoI pooling by cropping a feature region 
generated by the multi-layer RPN and resizing the 
region to the fixed spatial extent of 14 × 14 via 
bilinear interpolation. Subsequently, the fixed size 
feature map is fed into two fully connected layers 
sequentially, and subsequently another two sibling 
fully connected layers for classification and 
localization. The first FC layer is fed into the 
softmax layer to compute the confidence 
probabilities of being objects and background. The 
second FC layer with linear activation functions 
regresses the bounding box of detected objects. 
 
4. EXPERIMENTAL RESULTS 
  
4.1 Dataset 

In order to compare the effectiveness of the 
proposed approach with other state-of-the-art 
approaches, this paper conducts experiments on the 

Pascal VOC dataset [9] and KITTI dataset [10]. 
Pascal VOC dataset is a widely used dataset for 
evaluating object detection frameworks. Pascal 
VOC dataset contains 20 categories of indoor and 
outdoor objects class. This paper mainly focuses on 
the average precision (AP) of six classes appearing 
in traffic scenes, including car, person, bus, bike, 
motorbike, train, and the mean average precision 
(mAP) of the whole dataset. Following the 
instructions as in [9], this paper uses the mAP@0.5 
metric to evaluate accuracy. This paper adopts 
VOC07+12 dataset, which contains 16551 images 
for training and 4952 images for testing to evaluate 
the proposed approach. 

KITTI dataset [10] is a large dataset for 
evaluating object detection approaches in driving 
environments. KITTI dataset contains 7481 images 
for training and 7518 for testing. The image size is 
384×1280 pixels. Each image in this dataset includes 
two classes: car and pedestrian. Since no ground 
truth is available for the test set, this paper splits the 
training set into training set and validation set by 8:1. 
 
4.2 Implementation Details 

The proposed approach is implemented in 
Pytorch deep-learning framework with Python 
interface. The CPU used in all experiments is Intel 
Core i7-8700, the main memory is 12GB DDR4 
RAM, and the GPU is NVIDIA GeForce GTX 1080. 
In the training phase, this paper sets the training 
iteration as 50k. A learning rate of 0.001 for the first 
30k iterations and 0.0001 for the remaining 
iterations is adopted. Following the original paper 
[1], the input image is resized, such that the length 
of the shorter side of the image is 600 pixels. 
Horizontal flipping is used for data augmentation. 
 
4.3 Detection Results on Pascal VOC Dataset 

In this section, this paper conducts experiments 
on the Pascal VOC dataset and compares the 
detection results with the results of other state-of-
the-art approaches, including FPN [11], SSD [12], 
R-FCN [14], DSSD [15], and Faster R-CNN [1]. 
DSSD proposed to augment SSD+Residual-101 
with deconvolution layers to introduce additional 
large-scale context in object detection and improve 
accuracy, especially for small objects. R-FCN 
presented region-based, fully convolutional 
networks for accurate and efficient object detection. 
SSD presented a method for detecting objects in 
images using a single deep neural network. FPN 
exploited the inherent multi-scale, pyramidal 
hierarchy of deep convolutional networks to 
construct feature pyramids with marginal extra cost. 
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Table 1: Comparison Detection Results with Other Approaches on Pascal VOC Dataset. 

Method Person 
(%) 

Bike 
(%) 

Car (%) Bus (%) Motorbike 
(%) 

Train 
(%) 

mAP 
(%) 

FPN [11] 84.7 85.5 88.2 86.9 85.5 87.2 81.1 
SSD [12] 83 87.6 88.1 88.2 87.5 87.2 80.6 

R-FCN [14] 81.2 87.2 88.5 86.8 79.9 85.9 80.5 
DSSD [15] 83.7 86.2 88.7 89.0 87.5 85.7 81.5 

Faster R-CNN [1] 75.4 80.7 85.3 85.1 80.9 85.3 76.4 
Proposed Method 84.9 85.8 89.0 87.1 86.0 86.2 80.4 

Table 2: Detection Results on KITTI Dataset. 

Method Car (%) Pedestrian (%) mAP (%) 

SSD 70.0 18.5 44.25 
Faster R-CNN 82.1 68.5 75.3 

Proposed Method 84.6 79.1 81.9 

Table 1 shows the comparison of detection results on 
Pascal VOC dataset. As shown in Table 1, the 
proposed approach achieves the best AP result with 
person and car subsets. More specific, compared 
with the best result among reference methods, the 
AP of the proposed method is improved by 0.2% and 
0.3% with person and car subset respectively. In 
terms of the mAP, the proposed method achieves 
comparable result compared with other state-of-the-
art methods. From Table 1, DSSD achieves the best 
mAP result. DSSD adopts Residual-101 architecture 
as the base network and deconvolution layers to 
improve small object detection. Residual-101 
architecture performs better performance compared 
to VGG16 architecture. However, VGG16 is 
shallower and simpler than Residual-101, thus 
enhancing the inference speed. In addition, 
compared with original Faster R-CNN framework, 
the proposed approach outperforms in both AP and 
mAP results. More specific, the mAP of the 
proposed method is improved by 4% compared with 
Faster R-CNN. Figure 6 shows some examples of 
detection results of the proposed method on Pascal 
VOC dataset. As shown in Figure 6, the proposed 
approach can exactly locate objects at different 
scales in difficult driving environments. 
 
4.4 Detection Results on KITTI Dataset 
 To further evaluate the performance of the 
proposed method, this paper conducts experiments 
on the KITTI dataset and compares the detection 
results with the results of SSD and Faster R-CNN 
framework. Table 2 shows the detection results of all 
methods on the KITTI dataset. Compared with SSD 
and Faster R-CNN, the proposed method achieves 
the best detection results in both AP and mAP. More 

specific, the mAP of the proposed approach is 
improved by 37.65% and 6.6% compared with SSD 
and Faster R-CNN respectively. These results 
demonstrate the effectiveness of the proposed 
approach on detecting objects at different scales in 
difficult driving environments. Figure 7 shows 
examples of detection results on KITTI dataset of the 
proposed method (left column) and original Faster 
R-CNN framework (right column). As shown in 
Figure 7, the proposed method can detect objects in 
difficult conditions while Faster R-CNN misses 
some objects. 
 
5. CONCLUSIONS 
 

Vision-based object detection is one of the most 
critical problems for autonomous driving systems. In 
recent years, deep learning-based approaches 
achieved huge successes on visual object detection 
over traditional approaches. However, due to the 
difficult conditions in driving environments such as 
large object scale variation, object occlusion and so 
on, popular deep learning-based object detectors 
such as Faster-RCNN do not produce good detection 
performance. In this paper, an improved two-stage 
framework based on Faster R-CNN architecture for 
object detection in autonomous driving systems is 
proposed. Firstly, the base network based on VGG16 
architecture is used to generate the base feature 
maps. Secondly, multi-feature concatenation 
modules are used at different convolution blocks of 
the base network to increase the performance of 
detecting objects at different scales. All enhanced 
feature maps generated by multi-feature 
concatenation modules are then fed to an improved 
multi-layer region proposal network module. Each 
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Figure 6: Examples of Detection Results on Pascal VOC Dataset.

improved RPN contains a 1×1 convolution layer for 
compressing the input channel and a 3×3 dilated 
convolution layer for increasing the receptive field. 
Finally, soft-NMS algorithm is adopted to solve the 
issue of heavy duplicate proposals in traffic scene 
images. Experimental results on Pascal VOC dataset 

and KITTI dataset show that the proposed method 
outperforms Faster R-CNN in detection accuracy. In 
our future works this paper will investigate more 
CNN models and enhancements to improve object 
detection in autonomous driving systems. 
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Figure 7: Examples of Detection Results on KITTI Dataset of The Proposed Method (Left Column) and Original Faster 

R-CNN Framework (Right Column).
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