
Journal of Theoretical and Applied Information Technology
31st May 2020. Vol.98. No 10

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

1654

A REVIEW OF DESKTOP GRID COMPUTING
MIDDLEWARES ON NON-DEDICATED RESOURCES

1 MAHATHIR RAHMANY, 2ELANKOVAN A. SUNDARARAJAN, 3ABDULLAH MOHD ZIN
1,2,3Fakulti Teknologi Sains dan Maklumat, Universiti Kebangsaan Malaysia (UKM), Bangi, Selangor,

43600, Malaysia

E-mail: 1mahathir@siswa.ukm.edu.my, 2elan@ukm.edu.my, 3amzftsm@ukm.edu.my

ABSTRACT

Grid Computing is a distributed computing technology that can provide users with powerful computing and
storage capacity. Most of the applications of grid computing are now replaced by the use of cloud
computing. However, there is an area where the grid computing technology can still be utilized, that is in
the area of desktop grid computing (DGC). With the growth of desktop computer belonging to an
organization and the increasing of internet penetration worldwide, desktop grid computing can be a good
alternative to provide the cheapest high-power computing to solve computing intensive applications by
utilizing non-dedicated resources. DGC can also be utilized if an application involved some sensitive and
secured data. Another area where DGC can be useful is to support the concept of volunteer computing
which is expected be more popular in the future since devices that can be volunteered are not only limited
to desktop computers but also other computing devices such as smart phones. The main objective of this
paper is to review some available middlewares for DGC. This paper also discusses the future direction of
DGC.

Keywords: Desktop Grid Computing; Cloud Computing, Middleware, Volunteer Computing.

1. INTRODUCTION

Parallel computing is a type of computation that
allows the execution of processes to be carried out
simultaneously [1]. Figure 1 shows the evolution of
Parallel computing to Cloud computing.

Figure 1: Cloud computing evolution [2], [3]

The concept of Grid Computing (GC) is
explained briefly by [4] as integrated system which
contain servers, storage on the networks in order to
get significant spike of computing power and
storage capacity. Grid computing are used for
computing intensive application such as
Bioinformatics, Cheminfor-matics, Medical
Informatics, Physical Simulations, Compute-

Intensive Analysis of Large Data, and Biology-
Inspired Algorithm [5].

Even though GC offer numbers of computing
resources but it also come up with intricate
problem, such as profoundly difficult on hardware
scaled up or down [6]. In the same time Cloud
Computing (CC) which is a new model on
employing technology [7], [8] comes to complete
GC in terms of previous problem [9]. CC has been
used by researcher to enhance their research
productivity [10]. However, there is an area where
the grid computing technology can still be utilized,
that is in the area of desktop grid computing (DGC).
And now DGC has become prominent options of
CC [11] and well-known tool in solving scientific
computation [12]. CC shares the basic concept as
DGC where to harness the unused of computer
computing resource [11]. Components of DGC
consists of non-dedicated resources such as desktop
or laptop computers [13] connected to a network
[12]. DGC is a cheaper solution to obtain a high
computing power in order to solve computing
intensive applications [14]. The taxonomy of
Desktop Grids in shown in Figure 2 [15].

The main strength of DGC is the steadily
increasing availability of desktop computers [16].

Journal of Theoretical and Applied Information Technology
31st May 2020. Vol.98. No 10

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

1655

DGC runs with two main pillars [17], which are
computational and participative pillars.
Computational pillar refers to managing and setting
up DGC, so it can be utilized as efficiently as
possible. Participative pillar intends to attract as
many volunteers as possible.

Figure 2: A Taxonomy of Desktop Grid [15]

Another advantage of DGC is that its middleware
is easy to be installed [18]. The middleware used by
DGC is different from the one used by grid
computing. DGC requires middleware that can
address the issues in very dynamic environment and
situation, such as unstable connection, varying
bandwidth or machines heterogeneous operating
systems and architecture, and anonymous
volunteers.

The structure of this paper is as follows. Section
2 talks about the motivation and aim of the article.
Some of DGC middlewares are discussed in section
4. Section 5 is the discussion and finally, section 6
concludes this paper.

2. THE MOTIVATION AND AIM

The main concept of CC is to shared computing
resource to maximize the proficiency with
minimum price [19], [20]. In the same time as have
mentioned above, DGC shared the same concept as
CC. So, the motivation of this research is to give
insight the difference between CC and DGC and
finally can demonstrate how in some ways DGC
can outperform CC.

3. MIDDLEWARE

Inherently, middleware is related to message
delivery [21]. It means middleware is a bridge to
manage the various information between client and
server. The concept of middleware appeared
initially in 1980s where for the first time
researchers develop primary component for
midleware such as remote procedure call, file
service, and directory service [22]. Sadjadi [23]

states that middleware is a software associate to
wrap up the various services that are among
network operating system and user application. He
also added that the middleware is very useful to
overcome complicated repetitive work on code
writing for communication process between client
and server across platform.

The main functions of middleware are:

 To synchronize among application programs,
lower-level hardware, and software
infrastructure that make the connection and
interoperation of any application is easy [24].

 To simplify integration process of any
components in order to run application, lower-
level hardware, or software infrastructure [24].

 Middleware avoids the rewriting of programs
that are low-level, tedious, and error-prone;
which eventually can save time and cost on
software lifecycle [24].

There are two types of middleware [25]:
integration middleware and application middleware.
Integration middleware means that the middleware
has its own adapting techniques to a completely
different environment. Unlike integration
middleware, application middleware has only
limited techniques for what the application is made.

Figure 3: DGC Middleware Taxonomy [25]

4. DGC MIDDLEWARE

Many middlewares have been developed for
desktop grid computing, such as BOINC [26],
Strewed [26], OurGrid [26], SZTAKI Desktop
Grid [26], and HTCondor [26]; however not all of
them are active. Some middleware does not have
ongoing research anymore. In this paper, we
concentrate our discussion on the well-known
middlewares. Based on the architecture, the above
middleware can be separated into two parts, Peer-
to-peer and Client & Server.

Some of the terms used in DGC middleware are:

Journal of Theoretical and Applied Information Technology
31st May 2020. Vol.98. No 10

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

1656

Server. Server is a device that has the
responsibility to allocate the work to each worker
[27].

Worker. Worker is a device that runs the job
received from the server voluntarily [27].

Result Error. Result Error is wrong result or
also not in correct range that has been appointed
[27]. The result error is caused by some factors such
as sabotage, intervention by worker owner,
malicious workers, etc.

Error rate. Error rate is proportion of error or
incorrect result between the tolerate result after the
computation is finished [27].

Redundancy. Redundancy is proportion of how
many duplicate work that is given to worker with
verified number N of work units [27].

Error Detection. Error Detection is how the
middleware can verify or ascertain there are any
error on the computation by recompute the already
known result to other workers [27], [28].

Spot Checking. Spot Checking is to test the
disordered workers with the job that has identify as
the correct result. If among of the workers send
dissimilar result as expected by the server, so the
workers will be boycott for the next computation
[27].

Sabotage-Tolerance. The technique to overcome
the inconstancy of computation by applying the
voting [29].

Voting. Voting is a way to overcome the
Sabotage-Tolerance problem by asking some
workers to do the same jobs many times. The most
number of the same result that is generated by the
workers is the correct result [30].

Scheduler. Scheduler has the responsibility to
manage the data traffic between workers and server.
It manages tasks to be executed by workers and
control the result generated by workers to server
[31].

Checkpoint. Checkpoint is saving the
information where the node unsuccessful to work.
So when the job is restarted it is no need to start
from the first, it just can start from the checkpoint
[32].

Tasks. A portion of jobs [33]. These tasks are
distributed from server to clients.

Jobs. A group of task, to be executed in parallel
[33].

Network of Favors. The right to use resources
on network as equal as the resources that have been
donated [34].

Free riders. Selfish user where only want to
consume the resource without willing to provide his
computing resources [35].

Pull model. A concept in DGC where the clients
request job from the server [36].

Push model. A concept in DGC where the server
pushes job to the clients [37].

There are two types of DGC middleware: peer-
to-peer and client server. These middlewares are
distinguished in term of organization, behavior and
network structure [38] as shown in Table 1 below.

Table 1: Client Server vs Peer to Peer [38]

 Client Server Peer to Peer
Organization Centralized Decentralized
Behavior Dependence Autonomy
Network
Topology

Structured Unstructured

3.1 Peer-to-Peer
Peer-to-peer architecture is very suitable to be

implemented on DGC, because its architecture
supports [39]: (i) Platform heterogeneity, (ii)
Symmetric view, the node can be a server or a
client; (iii) Natural scalability, the master will never
overload because the node is a master and a client.
Moreover, this technology also promising low-cost
desktop grid by giving the possibility just
harnessing smaller desktop grid [40].

3.3.1 XtremWeb-CH [41]

One of DGC middleware based on peer-to-peer is
XtremWeb-CH (XWCH). This middleware consists
of four modules: coordinator, worker, warehouse
and broker; and the coordinator as the main
modules [42]. The function of coordinator is to
coordinate between client as users and server as
workers. Every node has its own worker to do the
job and to supply the task among them. To make
the application that is submitted by the user is
understand by XtremWeb-CH, the broker has to
alter the application into the format that can know
by this middleware [39].

Worker will send the calculation result to the one
or more warehouses. The warehouse pretends as
repository or file server to keep data and binary
executables. As policy in Xtremeweb-CH, the
worker must submit the execution result at least to
one warehouse [43]. To communicate to

Journal of Theoretical and Applied Information Technology
31st May 2020. Vol.98. No 10

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

1657

Coordinator, worker send four types of cue (1)
WorkRegister, (2) WorkAlive, (3) WorkRequest,
and (4) WorkResult [43].

3.3.2 OurGrid

Another middleware based on this architecture is
OurGrid. OurGrid promises the slight on Installing,
configuring, and customizing [44]. To overcome the
freeriding problem or someone who uses resources
without re-donate the resource to the network [45],
OurGrid implements the Network of Favors, means
the resource that you can get from the network
based on how many resources that you have
donated. Also next time, if you have donated many
resources; you will get the priority to get the
resource from others [33].

There are three main components on OurGrid
architecture, the OurGrid Community, MyGrid and
SWAN [33]. MyGrid as agent to link between user
and the server by providing tasks, jobs, and grid
machines; OurGrid Community to construct the
grid that will be used by MyGrid; and SWAN as
controlling the grid process running on the secure
way [33]. The application concept that is used by
OurGrid is a bag-of-tasks [46] which it means each
of those parallel applications is independent [44].

3.2 Client-Server
Client-Server has different architecture compare

to Peer to Peer (p2p) architecture. In this model,
there are one or more servers that have control over
client, such as centralized security databases to
control access to shared resources on servers. In this
model also, server may in turn be clients of other
servers [47]. Some of middlewares based on this
architecture are XtremeWeb, BOINC,
HTCONDOR, SZTAKI Local Desktop Grid,
QADPZ and Progress Thru Processor.

3.2.1 XtremWeb [48]

XtremWeb, which is written in Java, Perl and C,
has two main structures architecture: Worker and
Server. Worker has two jobs: (1) To prepare the
available desktop grid resources to do the
XtremWeb computation. The worker decides if the
desktop grid resources is ready to be deployed by
monitoring the user availability (working mouse or
keyboard), recognizing the CPU, I/O and memory
usage; and (2) To do the work which is commanded
by the server. The worker will launch the thread
when the desktop grid computer is ready to
executes the job. This thread has some functions,
such as: controlling, monitoring, computing and
alive [48].

In other side the server architecture has three
main modules: pool of applications, pool of jobs,
accounting modules, and web user interface. Pool
of Applications has the responsibility on application
with multiparameter consecutive and assigning for
pre-compiled binaries to be distributed to varying
platform [48].

Besides those three main modules, server also
has another two modules to support the server.
They are Scheduling & Server Specialization and
Implementation. Scheduling & Server
Specialization has some components, (1)
Dispatcher. The aim of this Dispatcher is
transmitting the task from the task pool to the
scheduler. (2) Scheduler. To ensure every task is
done well. The policy that is used to accomplish the
task is FIFO (first in first out). It means every task
will be done sequentially based on which the first
task is. For the distribution task, scheduler applies
the pull model concept which means the worker
asks scheduler for the task. The worker is
determined by its run time environment and the
existence of a pre-build binary of the application
[48].

3.2.2 BOINC (Berkeley Open Infrastructure for
Network Computing) [49]

BOINC was introduced for the first time in 2002.
Now it becomes ones of prominent middleware
[16]. Not just for DGC middleware, this is also
prepared for social network. It describes sharply
from the features that is provided, for example it
provides rewards such as a new cryptocurrency that
is called Gridcoin [50], [51] for who has donate
resources the most, provide the forum to help each
other of volunteers; this is include also for the
software developer. The last, it also provide for
volunteers and scientist to take a part together to
promote the science [40]. To bring about more
computing resources, BOINC has provided the
client application for Linux, Microsoft Windows,
Apple Mac OS X [52], [53], and Android [53], [54]
users.

BOINC, which adopted the pull model as task
distribution, consists of two side, client and server.
On client side, BOINC has three main components:
(1) Client, (2) Manager, and (3) Screensaver [55].
To run any BOINC project, it must has its own
server and every server consists of three parts:
(1)Web interface; (2) task server; and (3) data
server [56].

For running its task, BOINC has eight elements
as in server side. Those elements are work
generator, scheduler, feeder, transitioner,

Journal of Theoretical and Applied Information Technology
31st May 2020. Vol.98. No 10

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

1658

assimilator, file deleter, and database purger [56].
Work generator publishes the new work unit that
will be executed by the application; The feeder
takes the job from the database and distributes to
the queue; Than the transitioner shall control
between the work unit and the result; Assimilator
will save any valid result to the other database. The
unused files and work unit will be removed from
the database by the deleter and database purger
[57].

The BOINC processes start from Work Unit
Generator, where from this first step, Work Unit
Generator has responsibility to produce new work
unit to be sent to clients by putting them in queue
through feeder. Before the work units are given to
the client, they must obey the scheduler regulation.
The scheduler is middle person on managing
information in and out from clients [58]. To avoid
any malicious action to the system, BOINC just
give approval to the code that has digitally signed
[18].

3.2.3 HTCONDOR [59]

HTCondor is the first middleware which utilize
the idle resource [60]. It is belonging to HTCondor
Research Project at the University of Wisconsin-
Madison (UW-Madison). Basically, HTCondor
consists with three parts: (1) Job Submitters; (2)
Machine Owners; and (3) Pool administrator. Both
could be the same person. The Job Submitters can
request the specification of how the project work.
Usually the specification is made based on the
project. For example, if the project should only
work under Linux machine, must be run on
maximum memory. The request is prepared on the
submission file and submitted when the project
ready to be run.

Machine owner has right to control how the
machine works. As an instance the machine run the
HTCondor machine in the midnight only with the
maximum memory can be used or when the
machine is idle. The owner also has authorization to
choose the type of project. Pool Administrator ties
between Job Submitters and Machine Owners. The
Pool Administrator modulate the priority user and
job, and the allocation of available resource.

Central Manager, Submit Machine and Execution
Machine are there main components in HTCondor
[61]. The jobs are submitted from the submit
machine, then the Central Manager identifies the
feature and usage information of every resource
which pool in system. The execution machine is
decided by the Central Manager by matchmaking to
Job Submitters and Machine Owners.

Unlike other DGC middleware, HTCondor
implements the push model, so the central manager
can send the jobs to the vacant client even without
any request from the client.

3.2.4 SZTAKI Local Desktop Grid (LDG)

SZTAKI (The Computer and Automation
Research Institute of the Hungarian Academy of
Sciences) LDG is start in 2005 where connected
widespread any small and medium desktop grid as
one is the main objective of this middleware. This
idea is result from the common paradigm of desktop
grid computing where many resource providers –
few users [58], [62], means even there are many
volunteers who want to allocate the desktop to be
part of desktop grid but in the same time just a few
users can utilize its. It is also evident from the
reality where sometimes in one institution almost in
each department has its own local desktop grid
infrastructure, but unfortunately, they don’t connect
each other [62].

In consequence SZTAKI LDG tries to overcome
this problem by introducing the hierarchy way. It
means, in the same time each of separate desktop
grid can ask or/and send work (push and pull mode)
[62]. Looking how it works, this model is almost
the same to how the p2p model work where each
desktop grid has its own right to send or/and ask the
job. The policy of ask and/or send the job is
depending the job loading on the desktop grid itself.

SZTAKI LDG uses the derivative of BOINC to
handle the desktop grid. Derivative means SZTAKI
LDG has make up some new components in
BOINC, especially in server side. The feature such
as the ability of BOINC to pull jobs from
somewhere else in the same hierarchy. Also some
modifications in the client side, for instance it has to
report the available processor and platform to top of
the hierarchy [58]. As security reason, HTTPS
protocol is used to communicate and also transfer
data that is carried out between client and SZTAKI
LDG server [18].

3.2.5 QADPZ (Quite Advanced Distributed
Parallel Zystem) [63]

QADPZ which is developed using C++ has three
main frames to executes its work: slaves, masters,
and clients. Slave is the donation resource which is
taking part in any computing. Master has task to
organize everything that act on job process, for
instance start and stop process, queuing the task.

The client is bridging between the user and the
system, where the user can create the job,
monitoring the status. The job that has been created

Journal of Theoretical and Applied Information Technology
31st May 2020. Vol.98. No 10

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

1659

will be sent to master, then master will distribute it
to the slave. QADPZ uses UDP as connection
protocol for each that main frames. This UDP
Protocol has some advantages [64], such as:

 The data rate is determined when the
application is sent.

 The application will receive the data as soon as
possible even though the data sometimes is not
useful.

 The transport layer will never resend the
missing packets.

 The possibility for the Internet checksum to
verify the UDP header and the data payload.

3.2.6 Progress Thru Processors

Progress Thru Processor is initiated by Intel in
2009. The aim of this Progress Thru Processor is to
embed the BOINC into Facebook application [65],
[66]. Intel objectifies this project by collaboration
with GridRepublic desktop grid computing. To
participate to this Progress Thru Processor, you just
need to have Facebook account, and then join the
project. While you post the message, read the wall,
the Progress Thru Processor shall runs.

5. DISCUSSION
The development of desktop grid computing has

evolved over 30 years. Some of middlewares have
been evolved to improve its function while some of
them has already disappeared as shown in Table 2.

Table 2: Evolution of DGC Middlewares

Architecture Middleware
Date

released
Current
status

Peer-to-peer XtremWeb-
CH

Unknown Information
not
available

OurGrid 2010 Latest
release
2013

Client server XtremWeb 2000 Latest
released
2008.

BOINC 2002 Latest
released
2020.

HTCONDOR 1988 Latest
released
2020.

SZTAKI
Local
Desktop Grid

2005 Information
not
available

QADPZ 2001 Latest
released
2003

Progress
Thru

2009 Information
not
available

Processor.

Currently the most popular DGC middleware are
BOINC and HTCONDOR. BOINC is famous in
term of volunteer computing [67] and in other side
HTCONDOR is well known as desktop grid
middleware. As prominent middleware, BOINC
middleware is also available in Google Play Store
as Android app where users can easily be a
volunteer in any projects as study diseases, predict
global warming, or discover pulsars.

The comparison between cloud computing and
desktop grid computing is shown in Table 3.

Table 3: Comparison between Cloud Computing
and DGC

Issues Comparisons
Utilization Cost We have to pay for using the cloud

computing services whereas DGC is
utilizing available resources. So, in
this case the use of DGC is cheaper
compare to the use of cloud
computing.

Management
Cost

Cloud computing is managed by
cloud providers while DGC need to
be managed by the organization. So,
in term of management the use of
cloud computing reduces overhead
of an organization.

Security DGC is managed internally, and
data will be limited within the
organization, and thus will be more
secured.

Available
Resource

The current cloud computing can
provide almost unlimited resource,
while the available resource for
DGC is limited by the number of
available desktop computers.

Reliability Both cloud computing and DGC are
supported by reliable software
technology and thus both of them
can be considered to be reliable.

Resource
Management

DGC is available by the probability
of heterogeneity in terms of
operating system, bandwidth and
availability. But in other side cloud
computing is available by
predictable operating system,
bandwidth and availability.

From Table 3, it seems that there are some

advantages and disadvantages of using DGC as
compared to using cloud computing. Since most
organizations, especially institutions of higher
learning have a lot of desktop computers that are
not fully used at all time, DGC can still be utilized
to solve problems that requires high computational

Journal of Theoretical and Applied Information Technology
31st May 2020. Vol.98. No 10

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

1660

power. Some examples of current projects that
involve the use of DGC are [13].

Another area where DGC can be a good option if
the application involves high security data. Since
cloud computing is managed by people outside the
organization, data security cannot be fully
guaranteed. There are many examples of data
leakage due to security flaws of cloud computing
providers. A 2017 study by CGI and Oxford
Economics measured the costs resulting from data
breaches in the last five years at more than $50
billion [68]. DGC is managed internally, and data
will be limited within the organization, and thus
will be more secured.

The third area where DGC can be fully utilized is
to support the concept of volunteer computing [16].
Volunteer computing (VC) is a kind of distributed
computing that make use of the aggregated spare
computing resources from smartphone and laptop
[69]. Those spare or idle resources are usually
donated by common people for scientific project
[70]. The first well-known [12] and most popular
VC project is SETI@Home that was launched in
1999 and managed by a group of researchers at the
Space Sciences Laboratory of the University of
California, Berkeley. The purpose of this project is
to use large-scale distributed computing to perform
a sensitive search for radio signals from
extraterrestrial civilizations [71]. The other projects
are GIMPS that was started in 1996. The aim of this
project is to find the largest prime number. The
project has engaged 182,795 volunteers who
provided 1,614,096 CPUs and the largest prime
number found so far has 24,862,048 digits.
ATLAS@Home is a research project that uses
volunteer computing to run simulation of particle
physics experiments at CERN. The others latest
project is theSkyNet Pan-STARRS1 Optical Galaxy
Survey (POGS) project [72].

Another development of DGC is in the use of
DGC middlewares on other devices such as
smartphone to provide the required computing
power. DreamLab [73], for example, is a project
utilizing BOINC middleware and runs on iPhone
and iPad. Currently DreamLab has more than
100,000 users [74]. The aim of this project is to
uses the processing power of idle phones to help
solve cancer problem. Another project which utilize
volunteered spare resource of smartphone is ALICE
Connex [75]. Similar to DreamLab, ALICE Connex
also stand behind BOINC middleware.

6. DIFFERENT FROM PRIOR WORK
The purpose of this work is to give insight

regarding how DGC can be an option other than
CC. The option here does not mean that DGC can
replace for CC, but in some aspect and
circumstance DGC is better option compare to CC,
for example in data security. This work tries to give
insights to make user of DGC or CC can make a
choice whether to use DGC or CC that depend on
their circumstance or issue.

7. CONCLUSION
DGC as a part of Grid Computing is worth to be

consider as an option beside CC. Even it is unequal
head to head comparison, but in some terms, DGC
is outperforming the CC. In term of security issue
DGC can be surely better than CC. This alone can
show how the future direction of DGC where
nowadays security is a big challenge and a reason in
considering to adopting CC. There was a lot of
DGC middleware but just a few is still alive and in
service.

The use of desktop grid computing technology
can still be utilized for solving computing intensive
application. With the growth of desktop computer
belonging to an organization and the increasing of
internet penetration worldwide, desktop grid
computing can be a good alternative to provide the
cheapest high-power computing. DGC, which is a
simple yet effective computing system can also be a
good option to be utilized if an application involved
some sensitive and secured data.

Another major use of DGC is to support
volunteer computing projects. Some of volunteer
computing projects currently available are
SETI@Home, GIMPS and Atlas@Home. The use
of volunteer computing is expected to be more
popular in the future since devices that can be
volunteered is not only limited to desktop
computers but also other computing devices such as
smart phones. The idea of volunteering computing
devices while we are asleep in order to solve
problems that can give benefit to humanity, such as
DreamLab, is interesting and will certainly get
support from a lot of volunteers.

REFERENCES:
[1] A. Kaminsky, Big CPU, Big Data: Solving the

World’s Toughest Computational Problems with
Parallel Computing, 1st ed. USA: CreateSpace
Independent Publishing Platform, 2016.

[2] M. U. Bokhari, Q. Makki, and Y. K. Tamandani,
“A Survey on Cloud Computing,” in Big Data
Analytics, 2018, pp. 149–164.

Journal of Theoretical and Applied Information Technology
31st May 2020. Vol.98. No 10

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

1661

[3] A. L. S. Saabith, E. A. Sundararajan, and A. A.
Bakar, “Parallel implementation of Apriori
algorithms on the Hadoop-MapReduce platform
- An evaluation of literature,” J. Theor. Appl.
Inf. Technol., vol. 85, pp. 321–351, 2016.

[4] W. Tian and Y. Zhao, “1 - An Introduction to
Cloud Computing,” in Optimized Cloud
Resource Management and Scheduling, W. Tian
and Y. Zhao, Eds. Boston: Morgan Kaufmann,
2015, pp. 1–15.

[5] D. P. Anderson, “Volunteer computing: The
ultimate cloud.,” ACM Crossroads, vol. 16, no.
3, pp. 7–10, 2010.

[6] B. Krašovec and A. Filipčič, “Enhancing the
Grid with Cloud Computing,” J. Grid Comput.,
vol. 17, no. 1, pp. 119–135, Jan. 2019.

[7] M. Kayali, N. Mohd Satar, and M. Mukhtar,
“Adoption of Cloud Based E-learning in
Lebanon: Examining the Mediating Role of
Attitude,” 2020.

[8] M. H. Kayali, N. Safie, and M. Mukhtar,
“Adoption of cloud based E-learning: a
systematic literature review of adoption factors
and theories,” J. Eng. Appl. Sci., vol. 11, no. 8,
pp. 1839–1845, 2016.

[9] L. Bölöni and D. Turgut, “Value of information
based scheduling of cloud computing
resources,” Futur. Gener. Comput. Syst., vol. 71,
pp. 212–220, Jun. 2017.

[10] A. Shakeabubakor, E. Sundararajan, and A.
Razak Hamdan, “Cloud Computing Services and
Applications to Improve Productivity of
University Researchers,” Int. J. Inf. Electron.
Eng., vol. 5, no. 2, 2015.

[11] S. R. Chakravarthy and A. Rumyantsev,
“Efficient Redundancy Techniques in Cloud and
Desktop Grid Systems using {MAP}/G/c-type
Queues,” Open Eng., vol. 8, no. 1, pp. 17–31,
Mar. 2018.

[12] I. Chernov, N. Nikitina, and E. Ivashko, “Task
Scheduling in Desktop Grids: Open Problems,”
Open Eng., vol. 7, no. 1, pp. 343–351, 2017.

[13] E. Morozov, O. Lukashenko, A. Rumyantsev,
and E. Ivashko, “A Gaussian approximation of
runtime estimation in a desktop grid project,” in
2017 9th International Congress on Ultra
Modern Telecommunications and Control
Systems and Workshops (ICUMT), 2017, pp.
107–111.

[14] P. K. D. Pramanik, P. Choudhury, and A. Saha,
“Economical supercomputing thru smartphone
crowd computing: An assessment of
opportunities, benefits, deterrents, and
applications from India’s perspective,” in 2017
4th International Conference on Advanced
Computing and Communication Systems
(ICACCS), 2017, pp. 1–7.

[15] S. Choi et al., “Characterizing and Classifying
Desktop Grid,” in Seventh IEEE International
Symposium on Cluster Computing and the Grid
(CCGrid ’07), 2007, pp. 743–748.

[16] Y. Kolokoltsev, E. Ivashko, and C. Gershenson,
“Improving ‘tail’ computations in a boinc-based
desktop grid,” Open Eng., vol. 7, no. 1, pp. 371–
378, 2017.

[17] O. Nov, D. Anderson, and O. Arazy, “Volunteer
Computing: A Model of the Factors
Determining Contribution to Community-based
Scientific Research,” in Proceedings of the 19th
International Conference on World Wide Web,
2010, pp. 741–750.

[18] A. C. Marosi, Z. Balaton, P. Kacsuk, and D.
Drótos, “SZTAKI Desktop Grid: Adapting
Clusters for Desktop Grids,” in Remote
Instrumentation and Virtual Laboratories, 2010,
pp. 133–144.

[19] C. Yang, Q. Huang, Z. Li, K. Liu, and F. Hu,
“Big Data and cloud computing: innovation
opportunities and challenges,” Int. J. Digit.
Earth, vol. 10, no. 1, pp. 13–53, 2017.

[20] J. W. Rittinghouse and J. F. Ransome, Cloud
Computing: Implementation, Management, and
Security. CRC Press, 2016.

[21] N. H. binti Azizul, A. bin Mohd Zin, and E.
Sundararajan, “The design and implementation
of middleware for application development
within honeybee computing environment,” Int.
J. Adv. Sci. Eng. Inf. Technol., vol. 6, no. 6, pp.
9137–9945, 2016.

[22] K. Geihs, “Middleware challenges ahead,”
Computer (Long. Beach. Calif)., vol. 34, no. 6,
pp. 24–31, Jun. 2001.

[23] S. M. Sadjadi and P. K. McKinley, “A survey of
adaptive middleware,” Michigan State Univ.
Rep. MSU-CSE-03-35, p. 11, 2003.

[24] R. E. Schantz and D. C. Schmidt, “Research
Advances in Middleware for Distributed
Systems: State of the Art,” in Communication
Systems: The State of the Art IFIP 17th World
Computer Congress --- TC6 Stream on
Communication Systems: The State of the Art
August 25--30, 2002, Montréal, Québec,
Canada, L. Chapin, Ed. Boston, MA: Springer
US, 2002, pp. 1–36.

[25] T. A. Bishop and R. K. Karne, “A Survey of
Middleware.,” in Computers and Their
Applications, 2003, pp. 254–258.

[26] M. Khan, T. Mahmood, and S. Hyder,
“Scheduling in desktop grid systems:
Theoretical evaluation of policies and
frameworks,” Int. J. Adv. Comput. Sci. Appl.,
vol. 8, no. 1, pp. 119–127, 2017.

[27] G. C. Silaghi, F. Araujo, L. M. Silva, P.
Domingues, and A. E. Arenas, “Defeating
Colluding Nodes in Desktop Grid Computing

Journal of Theoretical and Applied Information Technology
31st May 2020. Vol.98. No 10

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

1662

Platforms,” J. Grid Comput., vol. 7, no. 4, p.
555, Aug. 2009.

[28] F. Araujo, P. Domingues, D. Kondo, and L. M.
Silva, “Validating Desktop Grid Results By
Comparing Intermediate Checkpoints,” in
Achievements in European Research on Grid
Systems: CoreGRID Integration Workshop 2006
(Selected Papers), S. Gorlatch, M. Bubak, and
T. Priol, Eds. Boston, MA: Springer US, 2008,
pp. 13–24.

[29] K. Watanabe, M. Fukushi, N. Funabiki, and T.
Nakanishi, “Performance Evaluation of Check-
By-Voting for Colluding Attack in Volunteer
Computing Systems,” in IAENG Transactions
on Engineering Technologies: Special Issue of
the International MultiConference of Engineers
and Computer Scientists 2012, G.-C. Yang, S.-I.
Ao, X. Huang, and O. Castillo, Eds. Dordrecht:
Springer Netherlands, 2013, pp. 33–48.

[30] K. Watanabe, M. Fukushi, and S. Horiguchi,
“Optimal Spot-checking for Computation Time
Minimization in Volunteer Computing,” J. Grid
Comput., vol. 7, no. 4, p. 575, Aug. 2009.

[31] M. P. M. D. Sharma and M. P. Mittal, “Job
scheduling algorithm for computational grid in
grid computing environment,” Int. J. Adv. Res.
Comput. Sci. Softw. Eng., vol. 3, no. 5, 2013.

[32] L. Ni and A. Harwood, “An Adaptive
Checkpointing Scheme for Peer-to-Peer Based
Volunteer Computing Work Flows,” in 2008
Ninth International Conference on Parallel and
Distributed Computing, Applications and
Technologies, 2008, pp. 227–234.

[33] N. Andrade, L. Costa, G. Germóglio, and W.
Cirne, “Peer-to-peer grid computing with the
ourgrid community,” in Proceedings of the
SBRC, 2005, pp. 1–8.

[34] C. Briquet and P.-A. de Marneffe, “Learning
Reliability Models of Grid Resource
Supplying,” CGW’05 Proc., 2005.

[35] E. de Lucena Falcão, F. Brasileiro, A. Brito, and
J. L. Vivas, “Enhancing fairness in P2P cloud
federations,” Comput. Electr. Eng., vol. 56, pp.
884–897, 2016.

[36] I. Wu et al., “A Volunteer-Computing-Based
Grid Environment for Connect6 Applications,”
in 2009 International Conference on
Computational Science and Engineering, 2009,
vol. 1, pp. 110–117.

[37] G. Fedak et al., “EDGeS: A Bridge between
Desktop Grids and Service Grids,” in The Third
ChinaGrid Annual Conference (chinagrid
2008), 2008, pp. 3–9.

[38] Y.-K. R. Kwok, Peer-to-peer computing:
applications, architecture, protocols, and
challenges. Crc Press, 2011.

[39] N. Jacq, From Genes to Personalized
Healthcare: Grid Solutions for the Life
Sciences : Proceedings of HealthGrid 2007. IOS
Press, 2007.

[40] C. Cérin and G. Fedak, Desktop grid computing.

Chapman and Hall/CRC, 2012.
[41] B. B. Mohamed, N. Marko, and A. Nabil,

“Programming distributed medical applications
with XWCH2,” Stud. Health Technol. Inform.,
vol. 159, no. Healthgrid Applications and Core
Technologies, pp. 100–111, 2010.

[42] N. Abdennadher and R. Boesch, “Towards a
Peer-To-Peer Platform for High Performance
Computing,” in Advances in Grid and Pervasive
Computing, 2007, pp. 412–423.

[43] N. Abdennadher, M. Niinimaki, and M.
BenBelgacem, “The XtremWebCH Volunteer
Computing Platform,” in Desktop Grid
Computing, Chapman and Hall/CRC, 2012, pp.
79–104.

[44] W. Cirne et al., “Running Bag-of-Tasks
applications on computational grids: the MyGrid
approach,” in 2003 International Conference on
Parallel Processing, 2003. Proceedings., 2003,
pp. 407–416.

[45] W. Cirne et al., “Labs of the World, Unite!!!,” J.
Grid Comput., vol. 4, no. 3, pp. 225–246, Sep.
2006.

[46] F. Brasileiro, E. Araujo, W. Voorsluys, M.
Oliveira, and F. Figueiredo, “Bridging the High
Performance Computing Gap: the OurGrid
Experience,” in Seventh IEEE International
Symposium on Cluster Computing and the Grid
(CCGrid ’07), 2007, pp. 817–822.

[47] G. F. Coulouris, J. Dollimore, and T. Kindberg,
Distributed systems: concepts and design.
pearson education, 2005.

[48] G. Fedak, C. Germain, V. Neri, and F. Cappello,
“XtremWeb: a generic global computing
system,” in Proceedings First IEEE/ACM
International Symposium on Cluster Computing
and the Grid, 2001, pp. 582–587.

[49] A. Luntovskyy and J. Spillner, “Architectural
Transformations in Distributed Systems,” in
Architectural Transformations in Network
Services and Distributed Systems, Wiesbaden:
Springer Fachmedien Wiesbaden, 2017, pp. 13–
44.

[50] N. Scientist, The End of Money: The story of
bitcoin, cryptocurrencies and the blockchain
revolution. John Murray Press, 2017.

[51] M. Swan, Blockchain: Blueprint for a New
Economy. O’Reilly Media, 2015.

[52] A. Holohan, Community, Competition and
Citizen Science: Voluntary Distributed
Computing in a Globalized World. Taylor &
Francis, 2016.

Journal of Theoretical and Applied Information Technology
31st May 2020. Vol.98. No 10

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

1663

[53] Cameron, David, Field, Laurence, Giannakis,
Nikolas, and H\oimyr, Nils, “Extending CERN
computing to volunteers - LHC@home
consolidation and outlook,” EPJ Web Conf., vol.
214, p. 3016, 2019.

[54] T. M. Mengistu and D. Che, “Survey and
taxonomy of volunteer computing,” ACM J.
Comput. Surv, pp. 1–35, 2019.

[55] J. Rantala and R. Piché, “Software Systems for
Distributed Scientific Computing,” 2009.

[56] D. P. Anderson, E. Korpela, and R. Walton,
“High-performance task distribution for
volunteer computing,” in First International
Conference on e-Science and Grid Computing
(e-Science’05), 2005, p. 8 pp.-pp.203.

[57] J. D. Baldassari, “Design and evaluation of a
public resource computing framework,” 2006.

[58] Z. Balaton et al., “SZTAKI Desktop Grid: a
Modular and Scalable Way of Building Large
Computing Grids,” in 2007 IEEE International
Parallel and Distributed Processing Symposium,
2007, pp. 1–8.

[59] E. Imamagic, B. Radic, and D. Dobrenic, “An
approach to grid scheduling by using condor-G
matchmaking mechanism,” J. Comput. Inf.
Technol., vol. 14, no. 4, pp. 329–336, 2006.

[60] M. J. Litzkow, M. Livny, and M. W. Mutka,
“Condor-a hunter of idle workstations,” 1987.

[61] C. Chapman et al., “Condor services for the
Global Grid: Interoperability between Condor
and OGSA,” UK Engineering and Physical
Science Research Council, 2004.

[62] P. Kacsuk et al., “Sztaki desktop grid: A
hierarchical desktop grid system,” in Cracow’06
Grid Workshop, 2006.

[63] M. Vl\uadoiu and Z. Constantinescu,
“Development journey of QADPZ-A desktop
grid computing platform,” Int. J. Comput.
Commun. Control, vol. 4, no. 1, pp. 82–91,
2009.

[64] L.-A. Larzon, M. Degermark, and S. Pink, UDP
lite for real time multimedia applications.
Hewlett-Packard Laboratories, 1999.

[65] V. Chang, “A cybernetics Social Cloud,” J. Syst.
Softw., vol. 124, pp. 195–211, 2017.

[66] A. McMahon and V. Milenkovic, “Social
volunteer computing,” J. Syst. Cybern.
Informatics, vol. 9, no. 4, pp. 34–38, 2011.

[67] M. Posypkin and N. Khrapov, “Branch and
bound method on desktop grid systems,” in 2017
IEEE Conference of Russian Young Researchers
in Electrical and Electronic Engineering
(EIConRus), 2017, pp. 526–528.

[68] Reuters, “Cyber Breaches Cause Permanent
Damage to Stock Market Value,” Fortune.
Fortune, Apr-2017.

[69] E. Lavoie and L. Hendren, “Personal Volunteer
Computing,” in Proceedings of the 16th ACM
International Conference on Computing
Frontiers, 2019, pp. 240–246.

[70] S. Alonso-Monsalve, F. García-Carballeira, and
A. Calderón, “ComBos: A complete simulator of
Volunteer Computing and Desktop Grids,”
Simul. Model. Pract. Theory, vol. 77, pp. 197–
211, 2017.

[71] E. Korpela, V. Gajjar, J. Cobb, D. Anderson,
and D. Werthimer, “SETI@ home analysis of
observations of 220 nearby stars,” in 42nd
COSPAR Scientific Assembly, 2018, vol. 42.

[72] K. Vinsen and D. Thilker, “A
BOINC11Berkeley Open Infrastructure for
Network Computing. based, citizen-science
project for pixel spectral energy distribution
fitting of resolved galaxies in multi-wavelength
surveys,” Astron. Comput., vol. 3–4, pp. 1–12,
2013.

[73] “DreamLab: App creates ‘smartphone
supercomputer’ to help find cure for cancer -
ABC News.” Nov-2015.

[74] “Corona-AI Project Asks DreamLab App Users
to Help Create ‘Virtual Supercomputer’ to
Assist in COVID-19 Research Efforts.” Apr-
2020.

[75] P. Jenviriyakul, G. Chalumporn, T. Achalakul,
F. Costa, and K. Akkarajitsakul, “ALICE
Connex: A volunteer computing platform for
ALICE experiments,” in 2016 International
Conference on Big Data and Smart Computing
(BigComp), 2016, pp. 300–303.

