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ABSTRACT 
 

Agriculture is one of the most important sources for human food throughout the history of humankind. In 
many countries, agriculture is the foundation of its economy, and more than 90% of its population deriving 
their livelihoods from it. Insect pests are one of the main factors affecting agricultural crop production. With 
the advances of computer algorithms and artificial intelligence, accurate and speedy recognition of insect 
pests in early stages may help in avoiding economic losses in short and long term. In this paper, an insect 
pest recognition based on deep transfer learning models will be presented. The IP102 insect pest dataset was 
selected in this research. The IP102 dataset consists of 27500 images and contains 102 classes of insect pests, 
it is considered one the biggest dataset for insect pest and was launched in 2019. Through the paper, AlexNet, 
GoogleNet, and SqueezNet were the selected deep transfer learning models. Those models were selected 
based on their small number of layers on their architectures, which will reflect in reducing the complexity of 
the models and the consumed memory and time. Data augmentation techniques were used to render the 
models more robust and to overcome the overfitting problem by increasing the dataset images up to 4 times 
than original images. The testing accuracy and performance metrics, such as the precision, recall, and F1 
score, were calculated to prove the robustness of the selected models. The AlexNet model achieved the 
highest testing accuracy at 89.33%. In addition, it has a minimum number of layers, which decreases the 
training time and computational complexity. Moreover, the choice of data augmentation techniques played 
an important role in achieving better results. Finally, A comparison results were carried out at the end of the 
research with related work which used the same dataset IP102. The presented work achieved a superior result 
than the related work in terms of testing accuracy, precision, recall, and F1 score. 

Keywords: Agriculture, Insect Pest, Transfer Learning, Convolutional Neural Network, Image Processing, 
Machine Learning 

 
1. INTRODUCTION  
 

Agriculture drives any economic system for 
any given country [1] [2]. Agriculture is the first 
people activity that helped humanity to advance and 
develop. Today, the most critical activities 
worldwide are farming and food industry, due to the 
increasing population and the increasing growth of 
their needs for food in order for their life to continue 
[3][4]. Agriculture not only providing food and raw 
material but also provides employment opportunities 
to very large percentage of the population  [5][6].  

 

Insect pests have always been considered a 
serious challenge that affects crop production. The 
major impact of insect pests is reducing the food 
available to peoples by ultimately decreasing crop 
production. This can result an unsuitable and 
inappropriate food to peoples or lead to starvation in 
some regions [7]. Detecting of insect pests plays a 
critical role in agricultural pest forecasting. 
Agricultural experts usually detect insect pests 
manually. For farmers this manual technique needs 
a high cost [8][9]. Therefore, it is necessary to find 
an efficient and rapid technique for automatic insect 
pests’ classification and detection. 
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1.1 Deep learning 
 

Traditional image processing techniques 
provided reasonable outcomes and performance 
regarding insect pest detection using insect images. 
As deep learning has revolutionized the area of 
computer vision specifically image classification 
and object detection and recognition. Deep learning 
(DL) is the latest technology that brought a big 
improvement in the area of artificial intelligent and 
machine learning in general [10] [11] [12]. Today, 
DL is now used at large scale in the agriculture 
domain. Providing a good large dataset to a deep 
learning system yielded promising outcomes in 
various applications that comprise the base for 
automating agricultural aspects and using agro 
robots [13] [14] [15]. Besides their use in insect pest 
recognition, deep convolutional neural networks are 
also used in other areas in the application of image 
processing and computer vision in agriculture 
[16][17].  

 
1.2 Convolution Neural Networks 

 
Convolution Neural Network (CNN) is a 

kind of deep artificial neural network that is 
commonly used in analyzing images. It learns 
features that are related spatially by treating an 
image as a volume. CNN has some specialized layers 
that transform the volume of image in different 
ways. A convolutional layer does much of the 
computation for classifying an image. There is a 
sequence of kernels that slide or convolve, over an 
image volume within a convolutional layer. One of 
important benefits of CNNs is that when CNN’s 
training increases, these kernels can identify 
textures, shapes, colors, and other features in the 
image [18] [19][20].  

 

In the following years, various advances in 
deep convolutional neural networks further 
increased the accuracy rate on the image 
detection/classification competition tasks. CNN pre-
trained models introduced significant improvements 
in succeeding in the annual challenges of ImageNet 
Large Scale Visual Recognition Competition 
(ILSVRC). Many pre-trained models were 
introduced like AlexNet [19], VGG-16, VGG-19 
[21], GoogleNet [22], ResNet [23], Xception [24], 
Inception-V3 [25] and DenseNet [26].  
 
1.3 Transfer Learning Models 
 

In 2012 [19], Alex Krizhevsky designed a 
new CNN model called AlexNet. The AlexNet 

network achieved a top-5 error of 15.3 in the 
ILSVRC Competition. AlexNet contained 8 layers; 
the first 5 were convolutional layers, some of them 
followed by max-pooling layers, and the last 3 layers 
were fully connected layers. In 2016 [27], 
researchers at DeepScale designed a new CNN 
model called SqueezeNet. In implementing 
SqueezeNet, the authors' goal was to create a smaller 
CNN with fewer parameters that can more easily fit 
into computer memory. With SqueezeNet, the 
authors achieve a 50× reduction in model size (5MB) 
compared to AlexNet (240MB) of parameters, while 
meeting or exceeding the top-1 accuracy of AlexNet.  

 

In 2015, Christian Szegedy et al. [22] 
design a new CNN model called GoogleNet that 
achieves the new state of the art for classification and 
detection in ILSVRC14. GoogLeNet or Inception v1 
is a transfer learning CNN that is 22 layers deep. The 
main idea behind the GoogLeNet is the inception 
layer. The inception layer is a combination 1×1 
Convolutional (Conv) layer, 3×3 Conv layer and 5×5 
Conv layer concatenated into a single output vector.  

 

 This paper presents a deep learning system 
to recognize and detect insect pests. It is divided into 
five sections. Section 2 presents related work and 
determines the scope of this works. Section 3 
discusses dataset used in our model. Section 4 
introduces our outcomes and discussion of the paper. 
Finally, section 5 provides conclusions and 
directions for further research. 

 
2. RELATED WORKS 
 

This section conducts the related works on 
the latest academic researches for applying machine 
learning and deep learning in the field of insect pest 
recognition. Most of the related works on insect pest 
detection can be described by traditional machine 
learning techniques. For example, In paper [28], 
Larios et al. proposed automated rapid-throughput 
taxonomic detection of stonefly larvae. The 
automated detection based on the SIFT feature 
learning method. The outcomes show that the 
combination of all classifiers gives 82% accuracy for 
4 classes. Zhu and Zhang [29] introduced an insect 
detection system by analyzing color image 
histogram and Gray-Level Co-occurrence Matrices 
of wing insect images. The outcome accuracy of 
proposed model is 71.1%. Faithpraise et al. [30] 
introduced insect pest recognition systems based on 
combination of k-means cluster and correspondence 
filters. The experimental outcomes show that the 
proposed method is useful, which can exact various 
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shapes, sizes, positions, and orientations in insect 
pest images. 

 

Cheng et al. [31] introduced a pest 
identification system via deep residual learning in 
complex farmland background. The accuracy of the 
proposed system ResNet-101 has much higher than 
that of support vector machine and backpropagation 
neural network. For 10 classes of insect pest images 
with complex farmland background a 98.67% of 
classification accuracy was achieved. Alfarisy et al. 
[32] design a new method for paddy pests detection 
based on deep learning. They collect 4,511 images 
from search engines fed to CaffeNet and AlexNet 
model and then processed with Caffe framework. 
The transfer method classified 3 classes, 9 classes 
paddy insect pests, and 4 classes paddy diseases with 
accuracy 87%. Xia et al. [33] proposed a transfer 
learning model based on VGG19 model to detect and 
classify insect pests. The dataset expanded to 4800 
images that contain 24 insect pest species collected 
from Xie’s [34] data set. Experimental outcomes 
show that their method achieves a heightened 
accuracy of 89.22%.  

 

In 2019, He et al. [35] proposed a real-time 
model for detection of Oilseed Rape pests. The 
authors created an oilseed rape pest dataset that 
contains 12 typical insect pests. They used five 
deferent architectures of deep learning. The 
experimental result on mobile shows that mean 
average precision (mAP) was 77.14% using data 
augmentation and added a dropout layer. In 2019, 
Dawei et al. [36] introduced a deep learning system 
based on transfer learning for pest insect detection. 
The system based on AlexNet pre-train model to 
classify ten types of insect pests. The proposed 
system achieves an accuracy of 93.84%. 

 
In 2019, Wu et al. [37] proposed a new 

dataset benchmark for insect pest called IP102. The 
dataset contains more than 75, 000 images belonging 
to 102 categories of insect pest. In addition, they 
introduced a baseline experiment using handcrafted 
feature methods and deep feature methods that 
handle the pest insect images. The best accuracy 
achieved by authors is 49.5% via ResNet. 
Experimental results show that IP102 dataset has the 
challenges of classification and imbalance of dataset.  

 

After surveying different related work 
papers that have used deep learning especially in 
classifying insect pests, it has been found that deep 

learning has brought tremendous development. It 
was also shown that using existing state of the art 
deep learning models along with pre-train models 
lead to better outcomes and higher detections 
accuracy. In this paper, we tried to develop an 
effective pre-train learning model to deal with insect 
pest images. Through the pre-train learning model, 
end-to-end training of insect pest images can be 
achieved, thus greatly simplifying the training 
process. The proposed transfer model with 
augmentation techniques was evaluated on IP102 
[37] dataset introduced by Wu et al in 2019. 

 
3. DATASET 
 

This research used a large scale dataset 
IP102 [37] for insect pest recognition. Specifically, 
it contains more than 75,000 images belonging to 
102 categories, which exhibit a natural long-tailed 
distribution. The dataset was annotated by 
agricultural experts there are 8 kinds of crops 
damaged by insect pests. The crops rice, corn, wheat, 
beet, alfalfa, Vitis, citrus, and mango. Table 1 
presents the number of insect pest categories under 
every crop type, and the number of images inside 
every crop type. Figure 1 illustrates samples of 
images from IP102 dataset. 

 
4. PROPOSED MODELS 
 

The proposed models used in this research 
relied on the deep transfer learning CNN 
architectures to transfer the learning weights to 
reduce the training time, mathematical calculations 
and the consumption of the available hardware 
resources. There are a number of studies in 
[38][39][40][41] that have attempted to build their 
own architecture, but those architectures are 
problem-specific and do not fit the data presented in 
this paper. The deep transfer learning CNN models 
investigated in this research are AlexNet [19], 
SqueezeNet [42], and GoogleNet [22] The 
mentioned CNN models have only a few layers 
when compared to large CNN models, such as 
Xception, DenseNet, and InceptionResNet, which 
consist of 71, 201 and 164 layers, respectively. The 
choice of these models reduces the training time and 
the complexity of the calculations especially with a 
large number of images in the IP102 dataset. Table 
2 presents the number of layers of the CNN models 
used in this work. 
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Table 1: The number of inset pest categories and images for every crop type in the IP102 dataset. 

 

 

 

 

 

Figure 1: Images samples from the IP102 dataset [32]. 

 

Table 2. Number of layers for the different CNN models 

 
The previous CNN models were customized in the 
last fully connected layer to match the number of 
classes of the IP102 dataset, which contains 102 
classes, as illustrated in Figure 2. 

 

Fig. 2. Proposed model’s customization for insect pest 
recognition. 

 
4.1 Data Augmentation Techniques 

The most well-known technique to 
overcome overfitting is to increase the number of 
images used for training by applying label-
preserving transformations [43]. In addition, data 
augmentation schemes are applied to the training set 
to render the resulting model more invariant for any 

kind of transformation and noise. The augmentation 
techniques used in this research are 

 Reflection around the X-axis. 
 Reflection around the Y-axis. 
 Reflection around the X-Y axis. 

The adopted augmentation techniques have 
increased the number of images by a factor of 4 times 
compared with the original dataset. The dataset 
increased to 300844 images used in the training and 
testing phases. This increase will lead to a significant 
improvement in the CNN testing accuracy, as will be 
discussed in the following section. Additionally, this 
approach will render the proposed methods immune 
to memorizing the data and more robust and 
accountable for the testing phase. 

 
5. EXPERIMENTAL RESULTS 

 
The proposed architecture was developed 

using a software package (MATLAB). The 
implementation was a central processing unit (CPU) 
specific. All experiments were performed on a 
computer server with an Intel Xeon E5-2620 
processor (2 GHz), 96 GB of RAM. 

 
5.1 Testing accuracy and performance 

evaluation 
Evaluate the testing accuracy and the 

performance of the proposed models is an important 

Crop Type Rice Corn Wheat Beet Alfalfa Vitis Citrus Mango 

Number of   
Categories 

14 13 9 8 13 16 19 10 

Number of 
Images 

8417 14004 3418 4420 10390 17551 7273 9738 

Model AlexNet SqueezeNet GoogleNet 

Number 
of 
Layers 

8 18 22 
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step in this research to validate the presented work. 
The testing accuracy is calculated according to 
equation (1). The most common performance 
measures in the field of DL are precision, recall, and 
F1 score  [44], which are presented from equation (2) 
to equation (4), respectively. 

 
Testing Accuracy ൌ  

ሺ୘୒ା୘୔ሻ

ሺ୘୒ା୘୔ା୊୒ା୊୔ሻ
     (1) 

Precision ൌ
୘୔

ሺ୘୔ା୊୔ሻ
                               (2) 

Recall ൌ  
୘୔

ሺ୘୔ା୊୒ሻ
                                  (3) 

F1 Score ൌ 2.
୔୰ୣୡ୧ୱ୧୭୬.ୖୣୡୟ୪୪

ሺ୔୰ୣୡ୧ୱ୧୭୬ାୖୣୡୟ୪୪ሻ
             (4) 

 

where TP is the count of true positive 
samples, TN is the count of true negative samples, 
FP is the count of false-positive samples, and FN is 
the count of false-negative samples from a confusion 
matrix. 

To calculate the pervious performance 
metrics and testing accuracy, the confusion matrix is 
required to be calculated first. Due to large number 
of classes in this research which reached 102 class, 
it will be very difficult to illustrate all confusion 
matrix elements which may reach 10404 cells. An 
alternative method is presented using visualization 
toolbox of Matlab. Figure 3 presents the confusion 
matrix visualization for Alextnet. 

 

 
 
Figure 3: Visualization of a confusion matrix for Alexnet. 

 

Table 3 presents the performance metrics 
for the different proposed CNN models. The table 
illustrates that the AlexNet model achieved the 
highest percentage for the testing accuracy, recall, 
and F1 score metrics, while GoogleNet achieved the 
highest percentage for the precision metric. 

 
According to the achieved results for both 

testing accuracy and the performance metrics, 

AlexNet is the most appropriate CNN model for the 
IP102 dataset for insect pest recognition with a 
testing accuracy of 89.33%. Moreover, GoogleNet 
also achieved a competitive result, as illustrated in 
Tables 3. 
 

Table 3. Testing accuracy and performance metrics for 
the different CNN models 

 

Another measure of performance is the 
progress of validation accuracy through the training 
phase. The progress of validation accuracy shows 
the improvement of the leaning process. Figure 4 
presents the progress of the validation accuracy 
through the training process present in the black 
circles, while Figure 5 illustrates samples of testing 
accuracy using the Alexnet where the insect pest 
class is presented by a number between 1 to 102. 
 

5.2 Comparison with related work 
Table 5 presents a comparative result with 

the related work in [37], it is clearly shown that the 
adopted augmentation techniques in this research led 
to a significant improvement in testing accuracy and 
F1 score. The augmentation techniques helped to 
increase the number of images from 75211 to 
300844 images which reflect on the achieved results. 
The Alexnet with augmentation presented in this 
research achieved the highest accuracy and F1 score 
with 89.33% and 86.58% respectively.  

Table 4. The comparative result with related work. 

Related 
Work 

Model 
Augmentati
on  

Accurac
y 

F1 
Score 

[37] 

AlexNet No 41.8% 34.1% 

GoogleN
et 

No 43.5% 32.7% 

Vgg No 48.2% 38.7% 

Resnet No 49.2% 40.1% 

Presente
d Work 

SqueezN
et 

Yes 67.51% 
62.94

% 

AlexNet Yes 89.33% 
86.58

% 

GoogleN
et 

Yes 88.80% 
86.00

% 

Metric/Model 
Squeeze

Net 
GoogleNet AlexNet 

Testing 
Accuracy 

67.51% 88.80% 89.33% 

Precision 66.22% 86.75% 86.38% 

Recall 59.97% 85.26% 86.79% 

F1 Score 62.94% 86.00% 86.58% 
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Fig. 4. The progress of validation accuracy through the training phase 

 

Fig. 5. Samples of testing classification accuracy using AlexNet. 

6. CONCLUSION AND FUTURE WORKS 
 

Agriculture energies any economic system 
for any country. Agriculture is the first people 
activity that helped humanity to advance and 
develop. It is not only providing food and raw 
material but also provides employment opportunities 
to very large percentage of the population, Insect 
pests have always been considered a serious 
challenge that affects crop production negatively. 
With the advances of computer algorithms and 
artificial intelligence, accurate and speedy 
recognition of insect pests in early stages may help 
in avoiding economic losses in short and long term. 
In this paper, an insect pest recognition based on 
deep transfer learning models was presented. The 
IP102 insect pest dataset was selected in this 
research. The IP102 dataset consists of 27500 
images and contains 102 classes of insect pests. 
Through the paper, AlexNet, GoogleNet, and 
SqueezNet were the selected deep transfer learning 
models. Data augmentation techniques were used to 
render the models more robust and to overcome the 

overfitting problem by increasing the dataset images 
up to 4 times than original images. The AlexNet 
model achieved the highest testing accuracy at 
89.33%. In addition, it has a minimum number of 
layers, which decreased the training time and 
computational complexity. Moreover, the choice of 
data augmentation techniques played an important 
rule in achieving better results. Finally, A 
comparison results were carried out at the end of the 
research with related work which used the same 
dataset IP102. The presented work achieved a 
superior result than the related work in terms of 
testing accuracy, precision, recall, and F1 score. One 
of the potential future works is applying new 
architectures of deep neural networks such as 
Generative Adversarial Neural Networks. GAN will 
be used before the proposed models. It will help in 
generating new images from the trained images, 
which will reflect on the accuracy of the proposed 
models. Additionally, to expand the current work is 
to use large deep learning architecture such as 
Xception, DenseNet, and InceptionResNet 
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