
Journal of Theoretical and Applied Information Technology
30th April 2019. Vol.97. No 8

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

2393

A NEW LIGHTWEIGHT FILE FORMAT BASED ON FBX FOR
EFFICIENT 3D GRAPHICS RESOURCE PROCESSING

1TAEK-SOO JEONG, 2YOUNGSIK KIM
12Dept. of Game and Multimedia Engineering, Korea Polytechnic University, Republic of Korea

E-mail: 1xortn3745@kpu.ac.kr, 2kys@kpu.ac.kr (corresponding author)

ABSTRACT

The FBX format is one of the most popular graphics formats for 3D graphics games. However, the FBX
format contains a lot of information for general use. Thus, when producing real 3D graphics games, it is
inefficient in terms of file size and 3D graphics rendering, because the FBX file contents are not used at all.
This paper proposed a new lightweight FBX file format based on the conventional FBX format. Using the
new FBX format created by extracting only the necessary information, the 3D graphics resource file
capacity and loading time are reduced. Using the new FBX file format, this paper reduced the size of
resource files by an average of 81% and reduced resource loading time by an average of 51%. This
experiment proved its efficiency by comparing it with the pure FBX format under the same conditions.

Keywords: 3D Game, DirectX, FBX Format, 3D Graphics Resource, Loading Time

1. INTRODUCTION

The global games market will reach
$108.9 billion in 2017 with mobile taking 42% [1].
A variety of methods can be used for game
development, and a performance game engine has
recently been developed due to the growth of the
game market [2]. The quality of the game released
by the game engine has risen [3]. This means that
the game engine has become the force of game
development [4]. It is also possible to distribute the
developed engine code as open source, and engine
that can modify artificially by the programmer is on
the increase, and quality contents can be developed
through level editor [5].

As the quality of the game rises, several
methods have been applied to reduce the amount of
computation through game scene management and
optimization. For example, it is possible to shorten
the rendering time by dividing a scene using BSP
tree [6] or to output it effectively by dividing the
space by using an octree or quadtree [7] and
processing the same phase polygons as one [8]. In
addition, if an invisible scene to distinguish and to
enter the pipeline, even if the object is an object that
overlaps were also introduced algorithms that
determine whether in front of the camera [9]. But
these are optimization methods after loading of the
3D graphics resources.

The geometry (or shape) of a model is
often stored as a set of 3D points (or vertices). The
surface of the model is then stored as a series of

polygons (or faces) that are constructed by indexing
these vertices. The number of vertices the face may
index can vary, though triangular faces with three
vertices are common. Some formats allow for edges
(or lines) containing two vertices [10].

FBX (Filmbox) is a proprietary file format
(.fbx) developed by Kaydara and owned by
Autodesk since 2006. It is used to provide
interoperability between digital content creation
applications. FBX is also part of Autodesk
Gameware, a series of video game middleware [10].

Autodesk provides a C++ FBX SDK that
can read, write, and convert to/from FBX files. The
FBX file format is proprietary, however, the format
description is exposed in the FBX Extensions SDK
which provides header files for the FBX readers and
writers [11].

There are two FBX SDK bindings for C++
and Python supplied by Autodesk. Blender includes
a Python import and export script for FBX, written
without using the FBX SDK and The OpenEnded
Group's Field includes a Java-based library for
loading and extracting parts from an FBX file [11].

This paper proposed a new lightweight
format itself is based on the FBX file format to
reduce the time and capacity to load a 3D graphics
resource. The proposed method extracts the
information needed for object rendering and creates
a new format to speed up data processing, improve
rendering speed, and reduce disk usage. We
assumed that the information in the self-format was

Journal of Theoretical and Applied Information Technology
30th April 2019. Vol.97. No 8

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

2394

Table 1. A Few 3D File Formats [10].

Extension Name Description

3ds 3D Studio

The 3ds file format is the primary format of AutoDesk’s 3ds Max software. It is a
binary format consisting of chunks that hold various pieces of information. Chunks
contain an identification indicating what information is stored there and the offset to
the next chunk [13]. In this way software that doesn’t support certain rendering
properties can simply ignore them. The 3ds file format supports geometry in the form
of vertices/faces and parametric surfaces, textures, physical material properties,
transformations, camera information, and lights.

obj Wavefront

The obj file format is a text-based, open file format developed by Wavefront
Technologies (now Alias|Wavefront) [13]. The format has been adopted by other 3D
graphics applications vendors and can be imported/ exported by a number of them.
The obj file format consists of a number of lines each containing a key and various
values. The key on each line indicates the type information to follow. Because of this
obj file format doesn’t require a header. Below is a list of some of the keys that can be
used:

igs

Initial
2D/3D
Graphics
Exchange
Specification

The Initial Graphics Exchange Specification (or IGES) format, published by the
National Bureau of Standards in 1980 (NBSIR 80-1978), is a popular neutral format
for digital the exchange of CAD information. The iges format is designed to store both
2D and 3D data.

ply
Standford
PLY

The polygon file format (or Stanford triangle format), was designed for the purpose of
being both a flexible and portable 3D file format [13]. The ply format has both an
ASCII and a binary version. The binary version includes information to make it
machine independent, specifying the types used for each value, number of bytes per
type, and whether it’s big or little endian. In addition, the format allows for user-
defined types allowing it to be extensible to the needs of future 3D data. Because of its
simplicity and flexibility the ply format is very popular in the academic and research
world.

stp

Standard for
the
Exchange
for Product
Data

The Standard for the Exchange for Product Data, ISO 10303, was developed as a
successor to the iges format. The step format is a plain text format that deals with
named objects rather than just raw geometric information [13].

u3d
Universal
3D

The Universal 3D format [14] was developed by the 3D Industry Forum which
consisted of companies such as Intel, Boeing, Adobe and HP. Their goal was a
universal standard for 3D data of all kinds that would facilitate exchange with a focus
on promoting 3D graphics development in manufacturing, construction and various
other industries. The format was approved in 2005 by the European Computer
Manufacturer Association (Ecma-363). The format is largely backed by Intel who
began work on it after leave the Web3D Consortium after disagreements over x3d
[15]. Like x3d this format is intended to be the 3D standard. It has since been adopted
by Adobe to embed 3D graphics within PDF documents.

fbx
AutoDesk
Kaydara
FBX

FBX (Filmbox) is a proprietary file format (.fbx) developed by Kaydara and owned by
Autodesk since 2006. It is used to provide interoperability between digital content
creation applications. FBX is also part of Autodesk Gameware, a series of video game
middleware [10].

Autodesk provides a C++ FBX SDK that can read, write, and convert to/from FBX
files. The FBX file format is proprietary, however, the format description is exposed in
the FBX Extensions SDK which provides header files for the FBX readers and writers
[11].

Journal of Theoretical and Applied Information Technology
30th April 2019. Vol.97. No 8

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

2395

saved as much as possible and saved only the basic
information that can be seen in the scene except for
the animation. And the efficiency of each situation
is proved through an experiment.

This paper analyzes and tests based on
DirectX11, and assumes that Draw and
DrawIndexed functions using vertex and index are
already implemented.

Figure 1. The Inheritance Diagram for FbxObject.

2. FBX FILE FORMAT

 Table 1 shows a few 3D file formats. An
FBX object is an instance of another class derived
from FbxObject or FbxObject [12]. FbxObject has
33 classes that can be used to construct a 3D model
as shown in Figure 1. This paper adopts the method
of reading Node by using FbxScene object.
FbxScene also inherits the FbxObject as the top-
level parent, so it can fetch the information needed
to configure the FBX as shown in Figure 2 (a).
FbxScene is again composed of a node hierarchy.
They can get the root note value through
FbxScene::GetRootNode (), and they can navigate
the child root of the tree structure through the root
node and search the necessary information in Figure
2 (b).

The top node has FbxMesh information
and can read the number of polygons and the
number of vertices of current mesh data using
GetPolygonCount function and GetControlPoints
function of FbxMesh. They can read the material of
the current polygon as many times as the number of
polygons. They can read information of vertex
position, Normal, UV, Tangent, and Binormal of
polygons constituting polygon by using
GetPolygonSize function.

As in Figure 4, to get normal information,
first use GetElementNormalCount function of
FbxMesh. This function reads the number of normal
elements. The normal element information is stored
while repeating the loop as many times as the
number of normal elements.

As shown in Figure 5, To get the UV value,
use the GetElementUVCount function to get the UV
number. As in the case of obtaining the above
normal information, UV element information is read
while repeating the number of UVs. UV can be
saved as FbxVector2 type. Tangent information and
BiNormal information Also, the
GetElementTangentCount function and
GetElementBinormalCount function are used to find
out the number and then read the information
through the loop. Finally, read the material
information and read the necessary information such
as material type, diffuse, ambient, specular,
emissive, power and texture.

3. A NEW LIGHTWEIGHT FORMAT
BASED ON FBX

 As shown in Figure 1, FBX contains
information that is not used, which is inefficient in
terms of capacity usage. If they extract only the
information they need and reformat it based on that
information, they will see greater efficiency in
terms of capacity usage.

Table 2 shows that the size of the FBX
format is about 7.40 MB. However, the proposed
format, which extracts only the necessary
information and reformats it, is about 1.88MB in
size. If the number of objects in one scene in the
game is more than 100 and 200, then the difference
will be bigger.

Journal of Theoretical and Applied Information Technology
30th April 2019. Vol.97. No 8

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

2396

Part of Source Code for Extracting Information that Makes Up Polygons

// Find out the number of polygons in the mesh data.
1. int iPolygonCount = pMesh->GetPolygonCount();
2. for (int i = 0; i < iPolygonCount; ++i)
3. {
4. int iPolygonSize = pMesh->GetPolygonSize(i);
5. int iMaterialID = -1;

// Retrieves the material ID of the current polygon.
6. FbxGeometryElementMaterial* pMaterial = pMesh->GetElementMaterial(0);
7. iMaterialID = pMaterial->GetIndexArray().GetAt(i);
8. for (int j = 0; j < iPolygonSize; ++j)
9. {

// Read vertex location information.
10. int iControlIndex = pMesh->GetPolygonVertex(i, j);

// Read other information such as Normal, UV, etc..
11. LoadNormal(...);
12. LoadUV(...);
13. LoadTangent(...);

 ...
14. }
15. }

Figure 3. Part of Source Code for Extracting Information that Makes Up Polygons.

(a) FbxScene Parent Classes (b) FbxScene Organization

Figure 2. FBX Scene.

Journal of Theoretical and Applied Information Technology
30th April 2019. Vol.97. No 8

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

2397

Part of Source Code for Extracting UV Information

// Find out the number of polygons in the mesh data.
1. int iPolygonCount = pMesh->GetPolygonCount();
2. for (int i = 0; i < iPolygonCount; ++i)
3. {
4. int iPolygonSize = pMesh->GetPolygonSize(i);
5. int iMaterialID = -1;

// Retrieves the material ID of the current polygon.
6. FbxGeometryElementMaterial* pMaterial = pMesh->GetElementMaterial(0);
7. iMaterialID = pMaterial->GetIndexArray().GetAt(i);
8. for (int j = 0; j < iPolygonSize; ++j)
9. {

// Read vertex location information.
10. int iControlIndex = pMesh->GetPolygonVertex(i, j);

// Read other information such as Normal, UV, etc..
11. LoadNormal(...);
12. LoadUV(...);
13. LoadTangent(...);

 ...
14. }
15. }

Figure 5. Part of Source Code for Extracting UV Information.

Part of Source Code for Extracting Normal Information

// Obtain the number of normal elements.
1. int iNormalCount = pMesh->GetElementNormalCount();
2. for (int i = 0; i < iNormalCount; ++i)
3. {
4. if (pNormal->GetMappingMode() == FbxGeometryElement::Mapping_Mode)
5. {
6. FbxVector4 vFbxNormal;
7. FbxVector4 vNormal;
8. int iNormalIndex = 0;
9. switch(pNormal->GetReferenceMode())
10. {
11. case Reference_Mode:
12. vFbxNormal = pNormal->GetDirectArray().GetAt(iVertexID);

 // FbxVector4 is stored in array format
// 0 is for x or r
// 1 is for y or g
// 2 is for z or b

13. vNormal.mData[0] = vFbxNormal.mData[0];
 ...

14. }
15. }
16. }

Figure 4. Part of Source Code for Extracting Normal Information.

Journal of Theoretical and Applied Information Technology
30th April 2019. Vol.97. No 8

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

2398

To create the new format, this paper must
have the information you want to store in the FBX
file in its own format. The information is traversed
by iterators and the format is saved by file I / O.
The proposed format was created with the
information they saved in the previous section.
First, the number of polygons and the location of
mesh data are stored. The location information is
circulated and stored as much as the location
information contained in the vector as in Figure 8.
The reason for fwrite size of position information
first is to read the information of the mesh exactly
as it is stored when loading the format as shown in
Figure 6. Next, the normal information and UV
information of the mesh data are stored. As with
location information, fwrite the size of the
information to prevent it from reading the range of
other data when reading as shown in Figure 7.

Next, save the Tangent and Binormal
information using the above code. Finally, save the
material information.

Since there is no guarantee that a single
mesh will have only one material, the size of the
material must be found and the size value must first
be written. Similarly, the loop is looped to store the
read information. Once you have saved your own
format, you should also write code to read your
own format. Since the file was created by input /
output, the order of reading should be the same as
the order of saving. This is why this paper first
stores each size before this paper saves it. Normal,
UV information is read. Since the normal
information is stored first when storing, the normal
information is read first as shown in Figure 7. The
remaining Tangent and Binormal values are read as
above, and then the material values are read in the
order in which they are stored.

Figure 9 (a) is the image when the original
FBX format is read and rendered and Figure 9 (b) is
the image when the proposed format is read and
rendered. The information needed is the same, so it
can not fall behind in quality.

Part of Source Code for Storing the Mesh Data and Location Information

//m_vecMesh is stored mesh information
//m_vecMesh.size() is the number of stored informations

17. for (iterData = m_vecMeshData.begin(); iterData != m_vecMeshData.end(); ++iterD
ata)

18. {
19. //the number of polygons
20. fwrite(&(*iterData)->iPolygonCount, sizeof(UINT), 1, pFile);
21. // Store location information of mesh data
22. fwrite(&(*iterData)->vecPos.size(), 4, 1, pFile);
23. A::iterator DataPos = (*iterData)->vecPos.begin();
24. A::iterator DataPosEnd = (*iterData)->vecPos.end();
25. for (DataPos; DataPos != DataPosEnd; ++DataPos)
26. {
27. fwrite(&(*DataPos), sizeof(FbxVector4), 1, pFile);
28. }
29. }

Figure 6. Part of Source Code for Storing the Mesh Data and Location Information.

(A : vector<FbxVector4>).

Table 2. File Size Comparison between the conventional FBX and the Proposed Format.

Items The Conventional FBX The Proposed Format

Name Baraka.FBX Baraka.xxx

Category FBX file XXX file

Size 7.40MB 1.88MB

Journal of Theoretical and Applied Information Technology
30th April 2019. Vol.97. No 8

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

2399

Part of Source Code for Reading the Number of Polygons and Mesh Data to be Stored in the Proposed
Format

// Reads the number of stored meshes. Makes iterative statements of this size.

1. size_t iSize;
2. fread(iSize, 4, 1, pFile);

// PFBXMESHDATA is a structure containing information to be stored.
3. PFBXMESHDATA temp = new PFBXMESHDATA;
4. for(size_t i = 0; i < iSize; ++i)
5. {

 // Read the number of polygons.
6. fread(&temp->iPolygonCount, sizeof(UINT), 1, pFile);

 // the size of location information of mesh data
7. size_t vecPosSize;
8. fread(&vecPosSize, 4, 1, pFile);
9. // It reads the location information using the loop as much as the size.
10. for (size_t j = 0; j < vecPosSize; ++j)
11. {
12. FbxVector4 pos;
13. fread(&pos, sizeof(FbxVector4), 1, pFile);
14. temp->vecPos.push_back(pos);
15. }
16. }

Figure 8. Part of Source Code for Reading the Number of Polygons and Mesh Data to be Stored in the Proposed

Format.

Part of Source Code for Storing the Mesh Normal and UV Information

// Let the iterator of m_vecMeshData write the size of the data first.

1. fwrite(&(*iterData)->vecNormal.size(), 4, 1, pFile);
2. A::iterator DataNormal = (*iterData)->vecNormal.begin();
3. A::iterator DataNormalEnd = (*iterData)->vecNormal.end();
4. for (DataNormal; DataNormal != DataNormalEnd; ++DataNormal)
5. {
6. fwrite(&(*DataNormal), sizeof(FbxVector4), 1, pFile);
7. }

// UV information also stores size first.
8. fwrite(&(*iterData)->vecUV.size(), 4, 1, pFile);
9. B::iterator DataUV = (*iterData)->vecUV.begin();
10. B::iterator DataUV = (*iterData)->vecUV.end();
11. for (DataUV; DataUV != DataUVEnd; ++DataUV)
12. {
13. fwrite(&(*DataUV), sizeof(FbxVector2), 1, pFile);
14. }

Figure 7. Part of Source Code for Storing the Mesh Normal and UV Information.

(A : vector<FbxVector4>, B : vector<FbxVector2>)

Journal of Theoretical and Applied Information Technology
30th April 2019. Vol.97. No 8

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

2400

4. PERFORMANCE EVALUATION

All experiments for comparison were
made under the same conditions. The information
on the PC used in the comparison experiment is the
processor: Intel Core i7-6700HQ, CPU @
2.60GHz, memory 16.00GB, 64bit operating
system, graphics card: NVIDIA Geforce GTX
950M. Experimental classification compares the
capacity of the FBX with its own format and the
loading time. Loading time comparisons were
broken down according to the number of output
objects.

4.1 File Format
In order to derive the average value of the

comparison results, six FBX files were converted

into their own formats and the increase and
decrease of capacity were compared. In addition,
since the animation information is not stored in the
self-format, the FBX file which does not have
animation information is used in order to calculate
the correct numerical value, and the experiment is
carried out that all the information has Diffuse,
Specular and Normal Texture information. The size
shown in the experiment Table 2 is based on the
information displayed in the size of the file
attribute. It is a file that confirms that there is no
abnormality in the rendering test after format
conversion. In Table 3, experimental results show
that the average capacity reduction effect is
81.66%. Considering that the number of objects in
a game scene is several hundreds or more, a
tremendous capacity reduction effect can be
expected.

Table 3. File Size Reduction of the Proposed Format compared to the conventional FBX.

Files The Conventional FBX The Proposed Format
The Reduction Ratio of

File Size

File 1 4.50MB 1.01MB -77.50%

File 2 1.63MB 390KB -76.07%

File 3 1.34MB 28.4KB -78.80%

File 4 23.4MB 1.54MB -93.41%

File 5 9.45MB 2.57MB -72.80%

File 6 12.8MB 1.10MB -91.40%

(a) The Rendering Image by the FBX Format (b) The Rendering Image by the Proposed Format

Figure 9. The Rendering Images.

Journal of Theoretical and Applied Information Technology
30th April 2019. Vol.97. No 8

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

2401

Figure 11. Loading Time Comparison According To Various Resource Files.

Figure 10. 3D Model used in Loading Experiment.

Journal of Theoretical and Applied Information Technology
30th April 2019. Vol.97. No 8

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

2402

4.2 File Format

 The FBX SDK scene graph is abstracted
by the FbxScene class. The scene is organized as a
hierarchy of nodes (FbxNode). The root node of the
scene is accessed via FbxScene::GetRootNode(). A
scene element, for example, a mesh, a light, or a
camera is defined by combining a FbxNode with a
subclass of FbxNodeAttribute. For more
information, see FBX Nodes and FBX Node
Attributes [12].

 Nodes are primarily used to specify the
position, rotation and scale of scene elements
within a scene. Nodes are abstracted by the
FbxNode class. A FbxScene contains a parent-child
hierarchy of nodes. The root node of this tree is
accessed via FbxScene::GetRootNode(). As
detailed in FBX Scenes, additional nodes can be
created and added to this root node [12].

 The node hierarchy is traversed using
methods such as FbxNode::GetChild() and
FbxNode::GetParent(). FbxNode::GetChildCount()
returns the number of children of that node [12].

 Nodes are organized in a hierarchy such
that the position, rotation and scale of a node is
described in relation to its parent's coordinate
system. For example, in the diagram below, if the
cubeNode is translated by 4 units along the
rootNode's x-axis, the lightNode will also be
affected by this translation. However, cameraNode
will not be affected by this translation because
cameraNode is not a child of cubeNode [12].

 The order in which the rotation and scaling
transforms are applied to a parent and its children is
specified by the node's inherit type
(ETransformInheritType). This transformation
inheritance can be set using
FbxNode::SetTransformationInheritType(). Consult
the FbxNode class documentation for more details
[12].

 A FbxNodeAttribute is paired with a
FbxNode to define a scene element with a specific
position, rotation and scale. Calling
FbxNode::GetNodeAttribute() will return NULL if
no node attribute was set for that node [12].

 Preservation of 3D data involves basic
understanding of 3D data characteristics, 3D file
formats and viewing software [10]. One of our
objectives is to understand the information loss
introduced by 3D file format conversions with
many of the software packages designed for
viewing and converting 3D data files [10]. In order

to quantify the information loss, a possible
approach is to rank the characteristics of 3D data
sets and design metrics for scoring 3D file
conversions. This approach would depend on the
application defining why 3D models would be
preserved [10]. For example, if the 3D model
contained a 3D simulation of a crime, then the
scene information would be ranked higher than the
appearance and geometry of the individual objects.
On the other side, if the 3D model was being
preserved for the future users of the model in order
to replace a part of the object being modeled, then
the ranking of 3D data characteristics would follow
the order of geometry, appearance and scene [10]. It
is also conceivable to build 3D models of wild fire
where the appearance of flames would have higher
preservation priority than the geometry and scene
since the appearance conveys the information about
what burned [10].

 In this experiment, the load times are
compared. Experimental results show that 10, 50,
100, and 300 objects are loaded and compared.
Objects are individual objects that do not use
instancing and are single-threaded. Each
experiment was performed three times to calculate
the correct value and the average time was
calculated and compared. The compilation mode
used in the experiment is Release. Figure 10, the
number of vertices in the 3D model used is 128,
and the number of polygons is 106.

 As shown in Figure 11, the larger the
number of objects used, the greater the time
difference. When comparing the time of loading 10
objects, the difference was about 0.29 seconds, but
when loading time of 300 objects was compared,
there was a difference of about 7.38 seconds. The
larger the number of objects to be loaded, the
bigger the difference was. Unlike the FBX file,
which requires a lot of information to find the
required value, it only has the necessary
information, and if you just read the information in
order, it is a result of the structure of the own
format. Reduced resource loading time is an
average of 51%.

5. CONCLUSION

FBX files have a lot of information.
However, it also has information that is not used in
games, which is inefficient in terms of file size and
load time. If they analyze the information they need
in their own game, extract the necessary
information based on it, and create their own file,
then it is efficient in terms of file size and load

Journal of Theoretical and Applied Information Technology
30th April 2019. Vol.97. No 8

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

2403

time. This was demonstrated by the above
experiment. If you have an FBX file with
animation, they will need more information such as
this information, animation time, etc., so the file
size and load time will be bigger. In addition, if
instancing, multi-threading techniques that can be
implemented in DirectX are used, the proposed file
format can expect a dramatic speedup.

ACKNOWLEDGEMENT
This work was supported by Institute for
Information & communications Technology
Promotion(IITP) grant funded by the Korea
government(MSIP) (No. 2016-0-00204,
Development of mobile GPU hardware for photo-
realistic real time virtual reality).

REFERENCES:
[1] Newzoo’s global game markets report,

https://newzoo.com/insights/articles/the-global-
games-market-will-reach-108-9-billion-in-2017-
with-mobile-taking-42/

[2] David H. Eberly, “3D game engine design: a
practical approach to real-time computer
graphics”, CRC Press, 2006.

[3] Seung Seok Noh, Sung Dea Hong, and Jin Wan
Park, “Using a game engine technique to
produce 3D Entertainment contents”, Artificial
Reality and Telexistence--Workshops, 2006.
ICAT'06. 16th International Conference on.
IEEE, 2006.

[4] Hsu, Chia-chun Alex, et al., “The design of
multiplayer online video game systems”,
Multimedia Systems and Applications VI. Vol.
5241. International Society for Optics and
Photonics, 2003.

[5] R.Darken, P.McDowell, E.Johnson, “Projects in
VR: the Delta3D open source game engine”,
IEEE Computer Graphics and Applications, Vol
25, pp.10-12, 2005.

[6] Mingshao Zhang, et al., “Recent Developments
in Game-Based Virtual Reality Educational
Laboratories Using the Microsoft Kinect”,
International Journal of Emerging Technologies
in Learning (iJET), Vol. 13, No.1, pp.138-159,
2018.

[7] Sukkyung You, Euikyung Kim, and Donguk
Lee, “Virtually real: exploring avatar
identification in game addiction among
massively multiplayer online role-playing
games (MMORPG) players”, Games and
Culture, Vol.12, No.1, pp.56-71, 2017.

[8] Jason Zink, Practical Rendering & Computation
with Direct3D 11, WOW Books, pp. 595 – 599,
2013.

[9] Dongryul Lee, Youngsik Kim, “A Shadow
Mapping Technique Separating Static and
Dynamic Objects in Games using Multiple
Render Targets”, Journal of The Korean Society
for Computer Game, Vol.28, No.4, pp. 1-10,
2015.

[10] Kenton McHenry and Peter Bajcsy, "An
overview of 3d data content, file formats and
viewers", Technical Report: isda08-002,
National Center for Supercomputing
Applications, 1205:22, 2008.

[11] FBX file format,
https://en.wikipedia.org/wiki/FBX

[12] AutoDesk FBX Document FBXObject,
http://docs.autodesk.com/FBX/2014/ENU/FBX-
SDK-
Documentation/index.html?url=files/GUID-
5D8BFE45-723E-4BD9-846B-
E2B2540157C9.htm,topicNumber=d30e6836

[13] P. Bourke. Data Formats, URL:
http://local.wasp.uwa.edu.au/~pbourke/dataform
ats

[14] Universal 3D File Format, ECMA 363, 2006.
[15] Extensible 3D (X3D) Specification, ISO/IEC

19776-1, 2006.

