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ABSTRACT 
 

Clustering graph dataset representing users’ interactions can be used to detect groups or communities. Many 
existing graph clustering algorithms require an initial cluster number. The closer the initial cluster numbers 
to the real or final ones, the faster the algorithm will converge. Hence, finding the right initial cluster number 
is important for increasing the efficiency of the algorithms. This research proposes a novel technique for 
computing the initial cluster number using the nullity of the Laplacian Matrix of Adjacency Matrix. The fact 
that nullity relates to the properties of the eigenvalues in the Laplacian matrix of a connected component is 
used to predict the best cluster numbers. By using this technique, trial and error experiments for finding the 
right clusters is no longer needed. The experiment results using artificial and real dataset and modularity 
values (for measuring the clusters quality) showed that our proposed technique is efficient in finding initial 
cluster numbers, which is also the real best cluster numbers.  
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1. INTRODUCTION  
 

The study of graph clustering has been 
impressive for about two decades because various 
fields or businesses can utilize the results of graph 
clustering. The existence of graph clustering 
algorithm has driven some studies to improve its 
performance, such as how to increase the running 
time of the algorithm [1] and how to deal with big 
data using spectral graph clustering [2].  
Furthermore, one of the important problems related 
to running time is to predict the amount of the 
clusters consisting of a graph.  Predicting the number 
of the clusters is an essential step in running a graph 
clustering algorithm because the prediction of 
clusters number not only will influence the time to 
do graph clustering, but also the quality clustering 
result. It is understood, the closer initial value 
prediction to the best solution will lead to faster time 
processing and good cluster quality. So, it will be 
beneficial when determining the number of clusters 

in a graph can be done in one step without the need 
to compare or try various possibilities for the number 
of clusters. 

 
The survey result shows, in general, we can 

classify two approaches in determining the number 
of clusters in a graph, that is repeatedly approach and 
“trial and error” approach.  The well-known one 
from repeatedly approach is Fiedler Vector. Fiedler 
Vector method shows that each time a graph can be 
divided into two clusters.  So, to use this method, the 
algorithm has to repeatedly be run until considered 
sufficient cluster quality [3]–[5]. Other conventional 
methods to estimate the number of clusters in a graph 
is using “trial and error” method or consult the 
expert. The problem with trial and error is, some 
conjecture number should be tried then compared 
with the clustering result until a user satisfied 
enough with the result. In other words, there is no 
solid foundation to use the chosen number.  The 
challenge gets heavier when dealing with the big 
graph phenomenon. A big graph consists of a large 
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number of vertices and edges, so predicting the 
number of clusters contained in a graph needs a 
thorough analysis. Graph visualization or simple 
statistic inadequate to give an early overview to help 
the user to predict the number of subgraphs or 
clusters in a graph. Graph Clustering Using Dirichlet 
Process Mixture Model (DPMM) shows DPMM 
failed to estimate the number of the clusters for a 
large graph because there are too many possibilities 
that can be tried as the number of clusters.[6], [7]. 

 

In data clustering task, there are also several 
methods have been proposed to determine the 
number of clusters. For instance, Salvador and Chan 
proposed Knee Method [8], Hu and Xu proposed an 
iterative method using Expectation Maximization to 
determine the number of groups [9], Tibhsirani 
proposed the gap statistic [10] and Fujita introduced 
the slope statistic [11] to determine the number of 
clusters. Because of the similarities between graph 
clustering and data clustering task, there is an idea to 
adapt the methods to determine the number of 
clusters in the graph clustering task. However, it is 
required some studies to adjust the technique in 
graph clustering, and to the best of our knowledge, 
no research has been carried out regarding this 
matter.  Besides, there is a similarity of those 
methods, that the algorithms should be tried in 
various values of the number of the clusters, 
comparing the quality cluster value and finally 
choose the best number of clusters related to the 
maximum quality cluster value. That technique is 
indeed less efficient.  

 

This study proposed utilizing the nullity of 
the Laplacian Matrix of the graph showing a simple 
method and solid foundation, to estimate the number 
of clusters. Nullity is an algebra term states how 
many times a zero value appears as an eigenvalue of 
a matrix. So far nullity is only known as one of the 
properties of the matrix. It is not found out how this 
nullity was exploited before. However, the intended 
nullity in this study is the nullity value of the 
Laplacian matrix formed from the adjacency matrix 
of a graph. This research showed the concept and 
illustration of how nullity can be used to predict the 
number of the cluster in a graph. Also, it exhibited 
elaboration result utilizing the nullity of the 
Laplacian Matrix of the graph, thus the user gets an 
idea how to use the nullity value in predicting the 
number of clusters and how to use it appropriately to 
obtain optimum cluster results. An additional finding 
from the research showed that the best cluster 

number by comparing all possible number of clusters 
is an improper method.   

 

The rest of the paper will consist of the 
property of the graph and the rationale of the 
proposed method in section 2, the proposed 
algorithm in section 3, the experiment and the result 
in section 4, some discussion and insight related to 
the experiment result in section 5, and section 6 is the 
conclusion and future work. 

2. THE PROPERTY OF A GRAPH 

 
A Graph is a diagram consisting of vertices 

and/or edge. The layout can be used to represent the 
relation between two or more objects by attaching an 
edge between relational objects. For example, 
communication relationships that occur between 
phone account numbers, friendship relationships or 
interactions between accounts in social media, flight 
schedules, items purchased together in a store, and 
so on. A Graph is a simple representation.  
Nonetheless, a graph can contain a variety of useful 
information. One of the vital information in a graph 
is the existence of groups or communities [12].  

Knowledge of a community is valuable 
information in a business. For instance, based on 
data on social media interaction it can be found the 
group of people who love golf, and then it will be 
useful when the businessman who sells various golf 

 
Figure 1 Graph Clustering Result Illustration 
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equipment is offering the goods to the community. 
Therefore, acquiring knowledge or information in 
the form of a community is essential. This 
information can be obtained by doing graph 
clustering. 

 
2.1 Graph Clustering 

Graph clustering is one of the techniques to 
process the graph dataset to detect groups or 
communities contained in a graph [13]. The purpose 
of graph clustering is to group nodes that have strong 
relationships and similarities between vertices. 
Strong relationships can be seen from the edge 
weights or the number of equal neighbors, whereas 
the similarity between vertices in graph clustering is 
seen from the same number of friends. Figure 1 is an 
illustration of graph clustering result. The illustration 
depicts the result of graph clustering implementation 
of a graph that consists of ten nodes, so that the 
vertices in the graph can be grouped into three 
clusters. The first cluster consists of vertex 1,3 and 
4, second cluster consists of vertex 2,7,9 and 10, and 
the last cluster consists of vertex 5,6, and 8.  
 

One of the most popular and often used 
algorithms for graph clustering is the Graph Spectral 
Clustering Algorithm because the algorithm is easy 
to implement and robust [1], [2]. Graph Spectral 
Clustering algorithm is developed based on the 
knowledge that a graph can be represented in the 
form of an adjacency matrix. Therefore, the 
algebraic properties of a matrix can be used to 
understand the characteristics of the graph. The 
theory discussing how to interpret the characteristics 
of a graph through its adjacency matrix is known as 
Graph Spectral Theory [14] . Based on the theory, 
the user works merely with the adjacency matrix of 
the graph. Thus, information or knowledge related to 
the graph can be inferred based on the result of 
processing an adjacent matrix.  

 

The essential steps in the Graph Spectral 
Clustering algorithm are defining the adjacent 
matrix of a graph, then mapping the adjacent matrix 
into a Laplacian matrix, and inputting the rows of the 
Laplacian matrix into the K-Means algorithm. K-
Means algorithm is the commonly used data 
clustering algorithm. The Graph Spectral Algorithm 
can be written as follows: 
Input : A ( adjacency Matrix of graph G), k (number 
of clusters) 
Output : 𝐶௝; 𝑗 = 1,2,3, … , 𝑘 ; 𝐶௝= Cluster – j 
Steps : 

1. Create Laplacian Matrix of G 𝐿஺ಸ
 

2. Solve det൫𝜆𝐼 − 𝐿஺ಸ
൯ 

3. Compute k eigenvector of 𝐿஺ಸ
 that related 

to the k largest eigenvalue 
4. Create matrix 𝑌௡×௞ , where each column of 

y is a vector from the result of step 4 
5. Cluster the row of matrix  𝑌 using the k-

means algorithm, with determined k 
 
Mapping the adjacency matrix into a Laplacian 
matrix causes as if the relationship between vertices 
to be disappearing, and the Laplacian matrix rows 
are like ordinary data (not graph), where each row 
represents an object in the Laplacian matrix with 
features corresponding to the columns of the 
Laplacian matrix. Therefore the K-Means algorithm 
can be directly used for clustering the rows of the 
Laplacian matrix [4].  
 
2.2 The Nullity of Laplacian Matrix 

In addition to the Laplacian matrix properties of 
the adjacency matrix of a graph, one of the important 
theorems of the Spectral Graph Theory is the 
theorem relating to the nature of connectivity of a 
graph. The theorem states, the nullity value of a 
Laplacian matrix of an adjacency matrix of a graph 
is equal to the number of connected components in a 
graph [5], [14]. The nullity is a digit that denotes the 
number of zero appears as an eigenvalue of a matrix. 
The eigenvalue itself can be obtained by finding the 
solution of the following equation  

𝒅𝒆𝒕(𝝀𝑰 − 𝑴) = 𝟎 (1) 

where λ = eigenvalues, 𝐼 = identity matrix, and M = 
matrix. It should be noted that the nullity value used 
to predict the number of clusters contained in graph 
𝐺 is the nullity of the Laplacian matrix of the 
adjacent matrix of a graph. So, the steps to calculate 
the nullity as a conjecture of the number of clusters 
in a graph is, as follows: 

1. Create 𝐴ீ  the adjacency matrix of a graph 
G. 

2. Calculate 𝐿஺ಸ
 the Laplacian Matrix of the 

adjacency matrix of a graph G, using 
𝐿஺ಸ

= 𝐷 −  𝐴ீ     (2) 

where 𝐷 is a diagonal matrix with the 

element 𝑑௜ is a sum of weight of node-i or 

𝑑௜ = ∑ 𝑎௜௝௝  ;  𝑎௜௝ ∈  𝐴ீ . 
3. Find the eigenvalues by solving the 

equation 

det൫𝜆𝐼 − 𝐿஺ಸ
൯ = 0   (3) 

4. Calculate the number of times zero is the 
solution of step 3. 
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The nullity of the Laplacian matrix of the graph 

can be used as a prediction tools because it relates to 
the properties of the eigenvalues of the Laplacian 
matrix of a connected component always zero and 
symmetric. So, if a graph contains several connected 
components, then the Laplacian matrix of the 
adjacency matrix of the graph will consist of several 
blocks of diagonal matrices, where each matrix 
block is symmetric and the eigenvalues of the block 
is zero. For example, suppose that there is a graph G 
consisting of 10 vertices and containing three 
connected components as described in Figure 2, and 
its adjacency matrix as in Figure 3, and the Laplacian 
matrix of the adjacency matrix of G is obtained as 
shown in Figure 4. 
 

 
Figure 2 Graph G consists of three Connected Components 

 
Notice the Laplacian matrix can be arranged in the 
form of a block diagonal matrix, such as described 
in Fig. 5, in which the eigenvalues of each diagonal 
block are zero. In addition, each diagonal block is 
related to the connected components contained in the 
graph.  
 

This study focused on elaborating the theorem 
as a tool to predict the number of clusters contained 
in a graph. The research is also done by considering 
the clustering method proposed by Newman and 
Girvan. 
 
 

 
Figure 3 The Adjacency Matrix of the Graph G 

 
 
Whereas, Newman and Girvan proposed the graph 
clustering method, by removing the edges with high 
betweenness values in the graph [15], [16]. Edge 
betweenness is a connector that connects two 
subgraphs. So, when the edge betweenness is 
removed, then the graph will only consist of 
connected components or clusters. It can be 
concluded counting the number of connected 
components is equal to count the number of clusters 
in the graph.  So, according to the graph theorem of 
connectivity, it can be used the nullity as estimation 
or prediction of the number of clusters. 
 
 

 
Figure 4 The Laplacian Matrix of Adjacency Matrix of 

the Graph G 
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Figure 5 Block Diagonal Form of the Laplacian Matrix of 

Graph G 

 

3. GRAPH CLUSTERING ALGORITHM 

USING NULLITY OF LAPLACIAN MATRIX 

AS THE PREDICTOR NUMBER OF CLUSTER  

 

The proposed algorithm is a combination of 
nullity value calculation algorithm with graph 
spectral clustering algorithm. This study 
recommended to use counting the nullity of the 
Laplacian Matrix of the graph as the estimation of 
the number of the cluster as stated in Table 1. 

 

Table 1 Modified Graph Spectral Clustering Algorithm 
Input : A (adjacency matrix of G) 
Output: Cj, j =1, 2,…,k ; Cj = Cluster-j 
Steps: 

1. Create 𝐿஺ಸ
 

2. Solve det൫𝜆𝐼 − 𝐿஺ಸ
൯ 

3. Count the nullity (k) 
4. Compute k eigenvector of 𝐿஺ಸ

 that related to 
the k largest eigenvalue 

5. Create matrix 𝑌௡×௞  , where each column of y 
is a vector from the result of step 4 

6. Cluster the row of matrix  𝑌 using the k-
means algorithm, with determined k 

 
The original Graph Spectral Clustering 

algorithm excludes the step counting the nullity as 
mention in step 2 and step 3 in Table 1. Thus, the 
input is given to the Modified Spectral Graph 
Clustering Algorithm only the adjacency matrix. A 
user does not need to input the conjectured value of 
the cluster number. So far, graph spectral clustering 
algorithm is started by giving a “trial and error” 
number of the cluster until the user assume the 

modularity value obtained is satisfactory or 
manually comparing one by one the possible number 
of cluster values on a graph resulting in the greatest 
modularity values. Implementing both methods will, 
of course, lead to a longer time processing compared 
to calculating the nullity value, notably when the 
number of vertices is large. Also, mainly comparing 
the quality of clusters resulted from different clusters 
number is not an appropriate method for determining 
the number of clusters that produce the highest 
quality clusters, if a user does not compare all 
possible initial value combinations. This condition 
will be explained further in the discussion section. 
 
 
4. EXPERIMENTS 

 

Experiments were conducted to elaborate 
on the performance of nullity in determining the best 
clusters number. Therefore, testing was conducted 
on two data groups, namely artificial data, and real-
world data. The performance was measured using 
modularity and time in seconds. Modularity is a 
parameter to measure the quality of the graph 
clustering result, whereas the range of modularity is 
between -1 and 1.  A small value of modularity 
shows the structure of the cluster is weak, while the 
higher modularity shows, the stronger structure of 
the group. To calculate the modularity value, we use 
equation (4).    

𝑄 =  ∑ (𝑒௜௜ − 𝑎௜
ଶ)௜    (4) 

Where 𝑄 = modularity value, 𝑒௜௝ = weight ratio of 
the edges connecting vertices in cluster-i and cluster-
j to all edge in the original graph and 𝑎௜ = ∑ 𝑒௜௝௝ . 

 

4.1 Dataset 

The artificial data consists of some small 
graphs. Each graph has several numbers of clusters 
defined. Performance in question includes several 
aspects. First, it was examined to find out whether 
the nullity can indeed guess the number of clusters 
according to the actual situation. Second, it was 
checked to find out whether the nullity can be used 
to predict the number of clusters on different types 
of graphs. Third, it was aimed to find out whether the 
nullity can also be used to determine the number of 
clusters on different graph sizes.  Table 2 lists the 
description of the artificial graphs, and the 
illustration of graph conditions, such as the number 
of vertices, number of edges, number of clusters, 
members of each cluster can be seen in Figure 6. 
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The real-world data consists of several graphs, 
that is formed based on the actual transactions. These 
graphs have various characteristics, and the 
descriptions can be seen in Table 3.  We choose 
different size and types such as directed vs. 
undirected and weighted vs. unweighted graph, to 
investigate the performance of estimating the 
number of clusters using nullity of Laplacian Matrix 
of the graph.  Most of the data are taken from 
http://konect.uni-koblenz.de(*), and from 
www.snap.com. 
 

Table 2  List of Artificial Dataset 
 

Name #Node #Edge # Clusters 
1 

Graph32  3 1 2 
2 

Graph421 4 3 2 
3 

Graph421_weight 4 3 2 
4 

Graph422 4 2 2 
5 

Graph102 10 13 2 
6 

Graph103 10 11 3 
7 

Graph103_weight 10 11 3 
8 

Graph104 10 8 4 

 

4.2 Experiment Scenario  

As explained on previous sections, the goal 
of the experiment is to understand the performance 
of the nullity value in predicting the number of 

clusters in a graph. Thus, it was designed into some 
scenarios to meet the goal. First, it was examined to 
find out whether the nullity values match the defined 
number of groups. This scenario was applied only to 
the artificial graph because there was the ground 

Table 3 The Real World Graph 

No Name #Node #Edge Type 

1 Zebra* 27 111 
Undirected, 
Unweighted 

2 Zachary* 34 78 
Undirected, 
Unweighted 

3 
Contiguous 
USA* 

49 107 
Undirected, 
Unweighted 

4 
David 
Copperfield* 

112 425 
Undirected, 
Unweighted 

5 
Hamster 
friendship* 

1858 12534 
Undirected, 
Unweighted 

6 
Facebook 
Ego* 

2888 2981 
Undirected, 
Unweighted 

7 Windsurfers* 43 336 
Undirected, 
Weighted 

8 Bible* 1773 16401 
Undirected, 
Weighted 

9 Innovation 241 1098 
Directed, 
Unweighted 

10 Email  1005 25571 
Directed, 
Unweighted 

11 Highschool* 70 366 
Directed, 
Weighted 

12 Food web 128 2137 
Directed, 
Weighted 

 

Figure 6 Artificial Graph Illustration 
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truth, that is the number of clusters contained in the 
synthetic graph.  

 

The first scenario was conducted by calculating 
the nullity value of each graph in the list of artificial 
graphs and viewing the Laplacian matrix form of 
each graph. Table 4 shows the experiment results, 
that are the computed nullity value on the Nullity 
column, the cluster formed in Member of Cluster 
column along with the detail cluster members from 
each graph, and the modularity value. We compare 
the result on Table 4 to the block diagonal matrix 
form represented on Figure 7.  

 

The second scenario was designed to investigate 
whether nullity values can lead to normal cluster 
quality, by looking at the modularity value. The 
second scenario experiment was applied to each real-
world graph, and each graph was tested ten times. In 
each test, it was recorded the modularity value to 
know the range of modularity values obtained in the 
tests. This procedure was conducted as considering 
the randomly initial center at the time of running the 
K-Means algorithm. By experimenting several 
times, it was expected that the data obtained can 
provide a complete picture. While the process time 
listed was the average processing time of ten 
experiments. Table 5 summarizes the experimental 
results data. 

 
The third scenario was to find out the additional 

time required by adding the process of calculating 
the value of nullity; those are step 2 and step 3 on the 
algorithm listed in Modified Graph Spectral 
Algorithm. To conceive the condition, it was run 
original spectral graph clustering and modified 

 spectral graph clustering algorithm for each graph 
using the same cluster number values and compared 
the required processing time. The time processing 
data is presented in Table 6. 

 

5. DISCUSSION 

5.1 The Artificial Graphs 

The experiment result using the artificial graph 
as appearing on the data in Table 4 shows that the 
calculated nullity value is indeed equal to the number 
of clusters in a graph. Likewise, with the value of 
modularity obtained for Graf32, Graf421, 
Graf421_weight and Graf422. The value of the 
modularity of the cluster results of the four graphs is 
zero, indicating the number of clusters and members 
of each cluster accordingly. Meanwhile, though the 
calculated nullity value for Graf102, Graf103, 
Graf103_weight, and Graf104 is equal to the real 
number cluster in the graph, the modularity value is 
negative since the members of the individual do not 
match the specified conditions.  This phenomenon 
can occur because of the nature of the K-Means 
algorithm that has a weakness called trapped at the 
local optimum, where the algorithm is already 
convergent but has not provided an appropriate result. 
Nevertheless, this result not cancelling the proof of 
the ability of nullity to predict the number of clusters 
in the graph. So, it can be sure that the nullity value 
can be used as a tool to predict the best amounts of 
clusters contained in a graph. 

 
This conclusion was also supported by the 

matrix shown in Figure 7, that shows the block 
diagonal matrix form of the Laplacian matrix of the 
adjacency matrix of the graphs. 

 

Table 4 The Nullity Value, Modularity Value and Graph Clustering Result of Artificial Graphs 

Name # Node # Edges Nullity  Modularity 
Member of Cluster 

1 2 3 4 

Graf32  3 1 2 0 1, 2 3 - - 

Graf421 4 3 2 0 1, 2, 3 4     

Graf421_weight 4 3 2 0 1, 2, 3 4     

Graf422 4 2 2 0 1,2 3,4     

Graf102 10 13 2 -0.288  1, 4, 5, 7, 8 2, 3, 6, 9, 10 - - 

Graf103 10 11 3 -0.103  4 ,5 2,7 ,9 1, 3, 6, 8, 10 - 

Graf103_weight 10 11 3 -0.217  3, 4, 5, 7, 8 1, 6, 9, 10 2 - 

Graf104 10 8 4 -0.242 2 ,5, 10 3, 4 ,6, 8, 9 7 1 
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Notice the size of each Laplacian Matrix of 
the adjacency matrix of each artificial graph is equal 
to the number of vertices in the graph. The row index 
in the matrix is related to the index of the vertices, 
and the block diagonal matrix is connected to the 
clusters in each graph.  For example, consider the 
Laplacian matrix for Graph103 in Figure 7. 

 
Table 5 The Experiment Result of Real-World Graph 

No
. 

Name Nullity Modularity  
Time 
 (in 
second) 

1 Zebra 2 [0.412,0.776] 0.027 

2 Zachary 9 [0.328,0.502] 0.048 

3 
ContiguousU
SA 

4 [0.563,0.676] 0.069 

4 
David 
Cooperfield 

2 [0.626,0.749] 0.173 

5 
Hamsterfrien
dship 

58 [0.347,0.661] 210.983 

6 
Facebook 
Ego 

3 
[-

0.015,0.493] 
151.377 

7 Windsurfers 2 [0.524,0.746] 0.039 

8 Bible 36 [0.686,0.730] 83.92 

9 Innovation 8 [0.512,0.773] 2.09 

10 Email  25 [0.298,0.620] 25.494 

11 Highschool 2 [0.351,0.745] 0.098 

12 Foodweb 1 1 4.732 

 

There are three block matrices arranged diagonally, 
where the first block relates to the first cluster in 
Graph103 in Figure 6, where first cluster members 
are nodes 1,2 and 3, the second cluster consisting of 
nodes 4,5,6 and 7, and the third cluster consists of 
nodes 8,9 and 10. This result also assure us that the 
nullity of the Laplacian matrix of the adjacency 
matrix can be used as a tool to predict the number of 
the  clusters in the graph.  
 

Experiment result of the artificial graph also 
shows that the nullity value can be used to predict the 
number of clusters for unweighted and weighted 
graphs. This can be seen from the nullity value of 
Laplacian Matrix of Graph421_weight and 
Graph103_weight is equal to the number of clusters 
defined, also we find the block diagonal matrix form 
for both graphs is symmetric, and the eigenvalue for 
each block is zero.  

 
So, by testing the proposed algorithm on the 

artificial graph, there are two proven things. First, the 
nullity value can be used to calculate the number of 
clusters contained in a graph and the second this 
technique can be implemented in both weighted and 
unweighted graphs. Thus, the first question and a part 
of the second question of the performance test from 
the proposed technique have been answered. 

 

 
Figure 7 Block Diagonal Matrix Form of the Laplacian Matrix of each Artificial Graph 
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Table 6 Time Processing Comparison using Each 
Method 
No Name Time 

Processing 
Without 
Nulity  

(second)   

Time 
Processing 

Using 
Nullity  

(second) 

Time 
Processing 

Using 
Various 
Possible 
Number    

of Clusters  
(second) 

1 Zebra* 0.019 0.079 1.468 

2 Zachary* 0.045 0.218 2.819 

3 
Contiguous 
USA* 

0.059 
0.219 10.15 

4 
David 
Copperfield* 

0.169 
0.37 196.822 

5 
Hamster 
friendship* 

160.55 
660.215 > 1 day 

6 
Facebook 
Ego* 

154.656 
207.115 >1 day 

7 Windsurfers* 0.037 0.104 7.45 

8 Bible* 81.711 276.377 >1 day 

9 Innovation 1.803 9.582 > 1 day 

10 Email  37.778 873.133 > 1 day 

11 Highschool* 0.129 0.388 486.211 

12 Foodweb 0.207 0.387 > 1 day 

 

5.2 The Real-World Graphs 

 Furthermore, to examine the performance 
of proposed technique in predict the number of 
clusters in various types and graph size we conduct 
the experiment using the Real-World graph. 
Measurements were made adopting indirect method 
by looking at the modularity value of clustering 
result. This is done because there is no the ground 
truth number of clusters of each cluster. It is 
expected that by using calculating the nullity value 
technique will be obtained a modularity value 
greater than zero.  
 
 The modularity value shown in the Table 5 for 
almost graph is in the range 0.3-0.8 point except for 
Foodweb graph. According to Girvan Newman this 
is the normal range modularity value for the real-
world graph, where actually the best modularity 
value for real world graph is between 0.3-0.7[15]. 
The nullity value of Foodweb graph is 1, means the 
graph has a sturdy structure or each node has a 
strong relation with the other node so we cannot find 
smaller subgraph in the original graph. So that, in 
general the experiment shows for various sizes 
graph, starting from the graph consisting of dozens 
of vertices and edges up to that have thousands of 
vertices and edges can reach the normal range of 

modularity when it is processed by the proposed 
algorithm. It is concluded that using the nullity as a 
means of predicting the number of clusters can 
support the achievement of the best possible number 
of clusters and resulting in the qualified cluster.  
 

The experimental results using real-world 
data also showed that predicting the number of 
clusters contained in a graph using the nullity value 
of the Laplacian matrix of the adjacent matrix of a 
graph can also be applied to an undirected or directed 
graph. The Innovation, Email, Highschool, and 
Foodweb graphs are examples of the directed graphs.  
The modularity values of those graphs also in the 
range of accepted value for the real-world graph. The 
condition happens because it is possible to change a 
directed graph into an undirected graph, considering 
there is no critical information is reduced. As for the 
directed graph, in this experiment, it was performed 
the preprocesses by forming directed graphs into 
non-directional graphs, because after we analyze the 
data we found no essential information is ignored by 
turning directed graphs into undirected one. For the 
case of unweighted directed graphs, it was defined 
the edge weight is one, while for directed-weighted 
graphs are transformed into undirect-weighted 
graphs by summing the weights of each directed 
edge. Based on these facts it can be deduced for 
various sizes and types of graphs, we can predict the 
number of the cluster in a graph using the nullity of 
Laplacian Matrix of the adjacency matrix of the 
graph. 
 

From a process time standpoint, the 
performance of the modified spectral clustering 
algorithm can be seen in Table 6. Early it was 
possible to compare the values in the third and fourth 
columns. The third column shows the time required 
for the clustering process using the original spectral 
clustering algorithm, while the fourth column shows 
the processing time using a modified algorithm. The 
required time when uses the new algorithm will not 
increase significantly for graphs whose nodes or 
edges are below the thousand marks, as shown for 
graph number 1,2,3,4,7,9,11, and 12. Unfortunately, 
for the graph that consists of thousands or more of 
vertices the processing time is increased 
significantly, although still within the acceptable 
time interval, because it only takes a few minutes. 
So, the first conclusion from the comparison even 
though the process time increases because of the 
calculation of the nullity value of the Laplacian 
matrix process, but it is still in the acceptable range.  
On the other side, although the processing time 
increase, there is an added benefit that the results 
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obtained have a firm basis compared with trial and 
error.  

 
Later, it was compared the values in the 

fourth column and fifth column.  The fifth column 
in Table 6 showed the time processing when the 
method of trying all possible number of clusters was 
used to determine the number of clusters that result 
in the highest modularity value. By comparing the 
values in the fourth column and the fifth column, it 
is clear the performance of modified algorithms is 
much better. The method of comparing the various 
number of clusters may be the same as repeating the 
clustering process using the original algorithm as 
much as the number of vertices in the graph. Of 
course, it takes a very long time. Thus, by comparing 
the additional time required to compute the nullity 
and the time process examining all possible cluster 
numbers, evidently, the computation of nullity 
values is more efficient. Based on these 
comparisons, it can be concluded that the time 
performance of the modified graph clustering is 
more efficient. 
 

Also, to note, the method of comparing the 
number of clusters aiming to obtain the best number 
of clusters is not appropriate. Especially for graph 
spectral clustering algorithm that involving the k-
means algorithm in it. It is noticed, the weakness of 
k-means algorithm is the trapped on the local 
optimum. The condition means the iteration will be 
breaking because the process considered 
convergent, though the solution obtained has not 
been the most optimal solution. Thus, there is a 
condition at the same number of clusters, the value 
of modularity obtained varies. The phenomenon is 
influenced by the initial center point chosen at the 
beginning of the iteration. If the initial center 
selected at the beginning of the iteration is close to 
the optimum global solution, then cluster process 
may result in an optimal solution. Conversely, if the 
chosen initial center point is far from the optimum 
global solution, and even closer to the point that 
resulted in the trapped on local optimum condition, 
then the solution obtained is not the best solution. 
The modularity value in Table 4 also shows this 
phenomenon.  It is noticed, the modularity value 
data was obtained from ten times experiment using 
the same number of clusters but a set of different 
initial center points, that is chosen randomly. 
Different initial center points resulting various 
modularity value.  Therefore, to obtain a legitimate 
optimal value, for every possible number of clusters, 
then the ideal way to run the method is to try all 
possible combinations of the initial center point. For 

example, if on a graph there are ten nodes, namely 
1, 2, 3, ..., 10 then the number of possible clusters is 
2,3, 4, ..., 10. When the number of groups is 2, it 
should be tested all combinations of 2 nodes as the 
initial center point from the existing 10 nodes, which 
is about 45 combinations, to conclude the best 
maximum modularity value at the number of 
clusters is two. When the number of clusters is three, 
it should be examined all the combinations of 3 
nodes from 10 nodes, which is about 120 
combinations, then taken the maximum modularity 
value. The procedure should be repeated for all 
possible number of the clusters.  After that, the 
maximum modularity value of each number of 
clusters is compared once more to find the greatest 
modularity value. This condition is inefficient, 
especially if the number of vertices and sides is very 
much. Thus, in the future it is necessary to find a 
method to choose the best initial center point to 
complete the nullity method as a tool to predict the 
best cluster number in graph clustering.  

 
 

To sum up, by conducting experiments using 
artificial data or real data it is proven using the 
nullity value as a tool to predict the number of 
clusters contained in a graph can be done more 
efficiently than by doing repeatedly approach or by 
experimenting with various possible number of 
clusters. By using the nullity value technique, the 
calculation is done only once because the calculation 
of the nullity value of the Laplacian matrix is a 
structured method and clear stages.  Also, the 
technique can be used to process any type and size 
of data that is showed from the performance 
measurement. 

 
6. CONCLUSION 

 
The nullity of the Laplacian Matrix of the 

adjacency matrix of the Graph is a simple and more 
efficient method to predict the number of clusters in 
Graph Clustering than trial and error method. The 
approach can be implemented for various size of 
graphs that have a dozen vertices up to thousands of 
nodes and edges, also can be applied to different 
types of graph, such as an undirected-unweighted 
graph, undirected-weighted graph, directed-
weighted graph and directed-weighted graph.  

In the future, predicting the best cluster 
number in graph clustering using nullity of 
Laplacian Matrix of the adjacency matrix of the 
graph needs to be equipped with the technique or 
method for choosing the best initial center so that 
graph clustering process more efficient. 
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