
Journal of Theoretical and Applied Information Technology
15th April 2019. Vol.97. No 7

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

2032

A NEW PERMUTATION METHOD FOR SEQUENCE OF
ORDER 28

1ABDULLAH AZIZ LAFTA, 2AMMAR KHALEEL ABDULSADAH, 3SAFAA JASIM MOSA

1,2,3 University of Kufa, Faculty of Education for Girls, Department of Computer Science, Najaf, Iraq

E-mail: 1abdullaa.lafta@uokufa.edu.iq, 2ammar.khaleel@uokufa.edu.iq, 3safaaj.aljuburi@uokufa.edu.iq

ABSTRACT

Permutation is reordering for a set of objects with taking into consideration the important of order of their
locations. In order to increase security performance, this paper presents a new method of permutation for
sequence of order 2^8. In this propose method, any information can be converted to the sequence of
approximate values between 0 and 255 as a set of blocks. It is needed to build the so called lookup table so
that it contains the frequency and positions of the original sequence values. In the experiments, twenty-six
image files have been experimented as evidence to the proposed method. In addition, the correlation and
entropy measures are computed to test the quality of permutation. All the tests observed that method have
significantly effective in reducing the correlation and thereby decreasing the perceptual information of the
sequence. Hence, the security is improved.

Keywords: Permutation, Algorithm, Frequency, Sequence, Byte

1. INTRODUCTION

In statistics, permutation is a method to
make changes on the elements of samples of data to
measure the significant extent of original data. The
data sequence can be divided into blocks for analysis
purposes [1]. Nowadays, many works in different
fields, such as signal processing [2], digital image
encryption [3][4][5], bioinformatics [6],
neuroimaging [7] and so on use permutation to
understand the contents of data to solve a particular
problem, such as the highest correlation in data
sequence.

The challenge in the permutation field is
getting the highest benefits offered from the set of
assumptions. Furthermore, a specific type of data
adapts with a specific permutation approach.
Permutation approaches that are good for textual
data may not be suitable for multimedia data [8]. In
most of the natural images, the values of the
neighboring pixels are strongly correlated. This
means that the value of any given pixel can be
reasonably predicted from the values of its neighbors
[9]. This information is reduced if decreasing the
correlation between the image elements using certain
permutation process. As a result, when the
correlation is decreased, the values of its neighbor’s
elements become difficult to predict [3].

In the digital data domain, the smallest

element of data is the binary bit in which the data

element (basic unit of information) is represented
using the binary number system of ones (1) and zeros
(0). Since the byte is a unit of digital information that
consists of eight bits, it is permitting the values from
0 to 255. A combination of bytes is referring to one
isolated item of information [10].

Data bytes are formed as a set of a sequence
of elements which stored at a specific location, for
example in a file to be serialized in a file format. The
file can be decomposed into blocks or sequences
where assuming that the block size is N elements.
Small blocks are preferred by some researchers in
computer security [4, 5].

The main idea behind the present work is

that any source of data, for example a file, can be
viewed as an arrangement of N-blocks. The
intangible information that presented in that source
is due to the correlations among the N-blocks in a
given arrangement. This information can be reduced
by decreasing the correlation among the N-blocks
using the proposed permutation method. In this
study, we try to indexing the contents of a sequence
into structure that depends on the frequency of each
value and the locations of that value within the
sequence. The purpose of this approach is to get a
complete different structure to the original while
retaining the information between the values if a
reverse approach has been applied.

The rest parts of this paper are organized as
follows: section two presents the propose

Journal of Theoretical and Applied Information Technology
15th April 2019. Vol.97. No 7

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

2033

methodology in details. Section three shows the
experimental results and discussion while the
conclusions are summarized in section four.

2. RESEARCH METHODOLOGY

The research methodology is concern with
the input sequence of distinct values to build the
lookup table for location of these values which help
to compute new quantities. These quantities are
combined to form the output sequence

2.1. Input Sequence: Definition and Properties

The input for the proposed is a sequence of

elements, denoted by S=(V,L). This sequence
supposes it contains strong information, which is the
orders of its elements, see Figure 1. The sequence
has a finite or limited number of elements, say N+1
elements. Here, the maximum possible value could
be for N is 255×256+255. As illustrate in figure (1),
the two sets V and L are V is the list of all element
values appear in S, and L is the list of the
corresponding locations of these values where they
appear in S.

V={v0,v1,…,vN } and L={l0,l1…,lN} (1)

Also, the input sequence S can be seen as a

sequence of ordered pairs of objects as follows:
S={(v0,l0),(v1,l1),…,(vN,lN)} (2)

Define the set B is, B={x: 0 ≤ x ≤ 255}

contains only non-negative integers that less than
256. Then vk ∈ V is must be also vk ∈ B.

Each element, say e, in the sequence S has

two objects: value, ve ∈ V, and an index or a location,
le ∈ L, i.e. e = (ve, le). The element values are belong
to the set B, i.e. 0 ≤ ve ≤ 255 for any e such that
0 ≤ e ≤ N. That is, V= {ve: ve∈B ∀ 0 ≤ e ≤ N}.
Whereas, the locations of elements are belonging to
the range 0⋯N. i.e. L= {le: 0 ≤ le ≤ N ∀ 0 ≤ e ≤ N}.
The element values are explicit information, where
element location values are implicit information.

Figure 1: Input Sequence(S)

2.2. Output Sequence: Definition and Properties

The results of the proposed method are four

sequences of elements, denoted by QL, RL, QF, and
RF. These can be written as follows:

QL= {q0, q1,⋯,qN}and RL={r0,r1,⋯,rN} (3)
QF={q0,q1,⋯,q255 } and RF={r0,r1,⋯,r255 } (4)

Such that, qi ∈ B ∀ qi ∈ QL and

ri ∈ B ∀ ri ∈ RL for 0 ≤ i ≤ N. Also, qx ∈ B ∀ qx ∈ QF
and rx ∈ B ∀ rx ∈ RF for 0 ≤ x≤ 255.

Where QL and RL are two sequences
related to the set L, such that:
li=qi×256+ri for qi∈QL and ri∈RL ∀ 0 ≤ i ≤ N (5)

The other two sequences, QF, and RF are

related to frequencies of values in input sequence S.
That is, for any value x ∈ B, there is a counter for
how many times that value x is repeated in sequence
S. Call this value as the frequency of value x,
denoted by fx, such that:
fx=qx×256+rx where qx∈QF and rx∈RF ∀ x∈B (6)

Here, if all income values are N values each
between v0 and vm, then it should be:

∑ f୶
ଶହହ
୶ୀ଴ = N + 1 (7)

It is important to say that is:

F= {f0, f1,⋯,f255} (8)

The set F also is related to set B, by the
following:

F={f_x:x∈B} (9)

2.3. Part I Algorithm: definition and steps

In this part, the locations of the distinct

value are fetched in order to build a locations table:
The algorithm is composed based on three

forward procedures: Build Lookup Table, Generate
Output Sequence, and Data Compression.

The first procedure, which called Build

Lookup Table algorithm, builds a lookup table
called 𝑇 (Figure 2). It is similar to the adjacency list
used in graphic representation.

The frequency and location table is a triple

set, denoted by (F, V, L). The notation V={v0, …vm}
is the set of all possible income 𝑚 ordered sequence
of values could be found. All these values are equal
the notation 𝐹 = {𝑓଴ . … 𝑓௠}, is the set of all
frequency of each value belong to 𝑉. The 𝐿 =
{𝐿଴ . … 𝐿௠}, is set of sets of locations where the
values 𝑣଴. … 𝑣௠ are occurred, e.g. 𝐿ଵ଴଴ is a set of all
locations have the value 100.

Journal of Theoretical and Applied Information Technology
15th April 2019. Vol.97. No 7

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

2034

Figure 2: Lookup table T

The main column of the lookup table 𝑇

contains sequentially list of all possible elements of
set 𝐵 as shown in figure (2). Hence, one cell for each
𝑥 ∈ 𝐵. The second column, on the left side of the
table 𝑇, is the values of frequency of the elements,
which labeled 𝑓௫. The third part of the table 𝑇 is on
the right hand side of the table 𝑇, where there are 256
lists. For each 𝑥 ∈ 𝐵 there is a list, called 𝐿௫. The
list 𝐿௫ contains of all possible values of location
where the element 𝑥 found in sequence 𝑆. The total
number of locations where the element 𝑥 found is 𝑓௫.
If such a location labeled 𝑙௫.௜, then 𝐿௫ =
{𝑙௫.ଵ . 𝑙௫.ଶ. … . 𝑙௫.௙ೣ } .This part of table could be seen
as a linked list of location values.

Since searching is repeated multiple times
on the same sequence of data, we need to speed up
the process by building a table for the locations of
these data values. So, without losing the locations,
the lookup table is work as an index to where these
values are in original sequence.

The Build Lookup Table algorithm, as in

Figure 3, comprises two loops. According to the
elements of set 𝐵, the first loop will initialize for
each element 𝑥 in 𝐵, a frequency counter, 𝑓௫, to zero,
and a location list, 𝐿௫, to null, i.e. to be empty. Since
there are 256 possible elements in 𝐵, accordingly
there are 256 frequency counters, and 256 list
pointers. Next, the second loop will get each element
𝑒 in sequence 𝑆. And, according to the element
value, 𝑣௘, the frequency value, 𝑓௫, where 𝑥 = 𝑣௘ is
incremented by one. Also, the element location, 𝑙௘,
added to the locations list, 𝐿௫, where 𝑥 = 𝑣௘.

𝐴𝑙𝑔𝑜𝑟𝑖𝑡ℎ𝑚 𝐵𝑢𝑖𝑙𝑑_𝐿𝑜𝑜𝑘𝑢𝑝_𝑇𝑎𝑏𝑙𝑒(𝑆)

𝐹𝑜𝑟 𝑒𝑎𝑐ℎ 𝑥 ∈ 𝐵
𝑀𝑎𝑘𝑒 𝑓𝑜𝑟 𝑥 𝑎 𝑐𝑒𝑙𝑙 𝑖𝑛 𝑇
𝐼𝑛𝑖𝑡𝑖𝑎𝑙𝑖𝑧𝑒 𝑓௫ 𝑡𝑜 𝑧𝑒𝑟𝑜
𝐼𝑛𝑖𝑡𝑖𝑎𝑙𝑖𝑧𝑒 𝐿௫ 𝑡𝑜 𝑛𝑢𝑙𝑙

𝐹𝑜𝑟 𝑒𝑎𝑐ℎ 𝑒 ∈ 𝑆
𝐼𝑛𝑐𝑟𝑒𝑚𝑒𝑛𝑡 𝑓௫ୀ௩೐

 𝑏𝑦 𝑜𝑛𝑒
𝐴𝑝𝑝𝑒𝑛𝑑 𝐿௫ୀ௩೐

 𝑏𝑦 𝑙௘

Return T

Figure 3: Build lookup table

Proposition 1: Build Lookup Table algorithm is
correct. The running time is Θ(𝑁).
Proof: For the correctness observe that the first for-
loop iteratively makes a table row for each 0 ≤ 𝑥 ≤
255, where two initialized quantities, 𝑓௫ and 𝐿௫, are
located. The next for-loop iteratively get each
element in sequence S, increments by one a specific
frequency quantity that was initialize by the first-
loop, and append a specific list, which also was
initialize by the first-loop, according to the testing of
the value of that element. Each iteration of both
loops, the algorithm updates its local data. So they
are both able to perform the computation correctly.

For the complexity observe that the first
for-loop is executed Θ(256) times, and the second
for-loop is executed Θ(𝑁). Totally, algorithm has a
running time is Θ(𝑁).

The next work is done by Generate Output

Sequence algorithm (figure 4). This algorithm used
the lookup table 𝑇 in order to generate the output
sequence, called 𝑆ᇱ. This sequence is a result of a
concatenate of the four sequence GF, RF, QL and
RL, as shown in the figure (5). So, this algorithm
firstly makes these sequences and then finally joins
them in one sequence.

𝐴𝑙𝑔𝑜𝑟𝑖𝑡ℎ𝑚 𝐺𝑒𝑛𝑒𝑟𝑎𝑡𝑒_𝑂𝑢𝑡𝑝𝑢𝑡_𝑆𝑒𝑞𝑢𝑒𝑛𝑐𝑒(𝑇)

𝐼𝑛𝑖𝑡𝑖𝑎𝑙𝑖𝑧𝑒 𝑄𝐹. 𝑅𝐹. 𝑄𝐿. 𝑅𝐿 𝑡𝑜 𝑛𝑢𝑙𝑙
𝐹𝑜𝑟 𝑒𝑎𝑐ℎ 𝑐𝑒𝑙𝑙 𝑥 𝑖𝑛 𝑇

𝐶𝑜𝑚𝑝𝑢𝑡𝑒 𝑞௫ = ⌊𝑓௫/256⌋
𝐶𝑜𝑚𝑝𝑢𝑡𝑒 𝑟௫ = 𝑓௫ − 𝑞௫ × 256
𝐴𝑝𝑝𝑒𝑛𝑑 𝑄𝐹 𝑏𝑦 𝑞௫
𝐴𝑝𝑝𝑒𝑛𝑑 𝑅𝐹 𝑏𝑦 𝑟௫
𝐹𝑜𝑟 𝑒𝑎𝑐ℎ 𝑙௫.௜ ∈ 𝐿௫

𝐶𝑜𝑚𝑝𝑢𝑡𝑒 𝑞௜ = ⌊𝑙௫.௜/256⌋
𝐶𝑜𝑚𝑝𝑢𝑡𝑒 𝑟௜ = 𝑙௫.௜ − 𝑞௜ × 256
𝐴𝑝𝑝𝑒𝑛𝑑 𝑄𝐿 𝑏𝑦 𝑞௜
𝐴𝑝𝑝𝑒𝑛𝑑 𝑅𝐿 𝑏𝑦 𝑟௜

𝑆ᇱ = 𝑐𝑜𝑛𝑐𝑎𝑡𝑒𝑛𝑎𝑡𝑖𝑜𝑛 𝑜𝑓 𝑄𝐹. 𝑅𝐹. 𝑄𝐿. 𝑅𝐿

 𝑅𝑒𝑡𝑢𝑟𝑛 𝑆ᇱ

Figure 4: Generate output sequence

The Generate Output Sequence algorithm
start by initializes each set of 𝑄𝐹. 𝑅𝐹. 𝑄𝐿. 𝑎𝑛𝑑 𝑅𝐿
to null, or make an empty set for each. Next,
algorithm works top-down on table 𝑇, for each cell
𝑥 in that table, it computes the quantities 𝑞௫ and 𝑟௫
from the frequency counter of 𝑥, 𝑓௫. These
computations using the following formulas:

𝑞௫ = ቔ
௙ೣ

ଶହ଺
ቕ . 𝑎𝑛𝑑 𝑟௫ = 𝑓௫ − 𝑞௫ × 256 (10)

Journal of Theoretical and Applied Information Technology
15th April 2019. Vol.97. No 7

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

2035

Which yields two quantities in range
0 ⋯ 255. Then, the values 𝑞௫ and 𝑟௫ will be added to
the sets 𝑄𝐹 and 𝑅𝐹, respectively. The next step in
the procedure is working with the locations list of 𝑥,
𝐿௫. Now, each location value 𝑙௫.௜ in locations list of
𝑥, 𝐿௫ , is converted to two quantities 𝑞௜ and 𝑟௜, using
the following formulas:

𝑞௜ = ቔ
௟ೣ.೔

ଶହ଺
ቕ 𝑎𝑛𝑑 𝑟௜ = 𝑙௫.௜ − 𝑞௜ × 256 (11)

Also, we yields two quantities in range

0 ⋯ 255. Then, the values 𝑞௜ and 𝑟௜ will be added to
the sets 𝑄𝐿 and 𝑅𝐿, respectively.

Figure 5: Generate output sequence S’

Since, the original sequence 𝑆 has 𝑁 + 1

elements, our final sequence 𝑆ᇱ (figure 5) has more
elements. That is because we use two sequences 𝑄𝐹
and 𝑅𝐹, each of length 256, and two sequences 𝑄𝐿
and 𝑅𝐿, each of length 𝑁 + 1. Which yields a
sequence 𝑆ᇱ of totally size equal to
2 × 256 + 2 × (𝑁 + 1). When calculate the length
of the two sequences, as shown in figure 6, an
increasing in length of elements to double and half.
Also, the ratio of the sequence 𝑆 length to the
sequence 𝑆ᇱ length is 1:2.0078. Therefore, we use a
data compression approach to enforce a solution for
the increasing length problem.

Since, our research not concern to a specific

algorithm for data compression. This step is assumed
as a practical work, and depends on the data that is
used for testing.

|𝑆| = 𝑁 + 1

= 255 × 256 + 255+

= 255(256 + 1) + 1

= (256 − 1)(256 + 1) + 1

= (256ଶ − 1) + 1

 = 256ଶ = 2ଵ଺

|𝑆ᇱ| = 2 × 256 + 2(𝑁 + 1)

= 2 × 2଼ + 2(2ଵ଺)

= 2ଽ + 2ଵ଻

|𝑆ᇱ − 𝑆|

= 2ଽ + 2ଵ଻ − 2ଵ଺

= 2ଽ + 2 ∙ 2ଵ଺ − 2ଵ଺

= 2ଽ + 2ଵ଺ (2 − 1)

= 2ଽ + 2ଵ଺

Figure 1: Calculation of sequence lengths

Proposition 2: Generate Output Sequence algorithm
is correct. The running time is Θ(𝑁).
Proof: For the correctness observe that the outer
for-loop iteratively uses all quantities on all 256
table 𝑇 rows. In each iteration, the 𝑞௫ and 𝑟௫ values
are computed and then update the two pointers 𝑄𝐹
and 𝑅𝐹. The inner for-loop computes 𝑞௜ and 𝑟௜ for
each quantity inside 𝐿௫, and then update the two
pointers 𝑄𝐿 and 𝑅𝐿. This work is always done by the
iterator 𝑥 which it is belong to [0.255] . The four list

𝑄𝐹, 𝑅𝐹, 𝑄𝐿 and 𝑅𝐿, are all of a fixed length, so the
process of concatenate them in one list, 𝑆ᇱ, is simply
and done directly when see them as pointers for
specific starting location in sequence 𝑆ᇱ.The total
work is:

∑ ∑ Θ(1)௜∈௅ೣ
ଶହହ
௫ୀ଴ = ∑ Θ(𝑓௫)ଶହହ

௫ୀ଴ = Θ(𝑁) (12)

2.4. Part II Algorithm: Definition and Steps

In the opposite direction, after removing the
compression, working on reproducing the original
sequence S from the generated sequence Sᇱ is simple.
This procedure called Regenerate Input Sequence
algorithm, as shown in figure 7. Starting with
extracting the four sequences QF. RF. QL and RL
from Sᇱ. This step is assumed to be strictly reversing
for concatenation step in the Generate Output
Sequence algorithm.

𝐴𝑙𝑔𝑜𝑟𝑖𝑡ℎ𝑚 𝑅𝑒𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑒_𝐼𝑛𝑝𝑢𝑡_𝑆𝑒𝑞𝑢𝑒𝑛𝑐𝑒(𝑆ᇱ)
𝐸𝑥𝑡𝑟𝑎𝑐𝑡 𝑄𝐹. 𝑅𝐹. 𝑄𝐿. 𝑅𝐿 𝑓𝑟𝑜𝑚 𝑆ᇱ
𝐶𝑟𝑒𝑎𝑡𝑒 𝑆 𝑤𝑖𝑡ℎ 𝑁 + 1 𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛𝑠
𝐹𝑜𝑟 𝑒𝑎𝑐ℎ 𝑥 ∈ 𝐵

𝐺𝑒𝑡 𝑞௫ 𝑓𝑟𝑜𝑚 𝑄𝐹
𝐺𝑒𝑡 𝑟௫ 𝑓𝑟𝑜𝑚 𝑅𝐹
𝐶𝑜𝑚𝑝𝑢𝑡𝑒 𝑓௫ = 𝑟௫ + 𝑞௫ × 256
𝐼𝑛𝑖𝑡𝑖𝑙𝑖𝑧𝑒 𝑐𝑜𝑢𝑛𝑡𝑒𝑟 𝑖 𝑏𝑦 1
𝑤ℎ𝑖𝑙𝑒 𝑖 ≤ 𝑓௫

𝐺𝑒𝑡 𝑞௜ 𝑓𝑟𝑜𝑚 𝑄𝐿
𝐺𝑒𝑡 𝑟௜ 𝑓𝑟𝑜𝑚 𝑅𝐿
𝐶𝑜𝑚𝑝𝑢𝑡𝑒 𝑙௜ = 𝑟௜ + 𝑞௜ × 256
𝐺𝑖𝑣𝑒 𝑣𝑎𝑙𝑢𝑒 𝑥 𝑡𝑜 𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛 𝑙௜ 𝑖𝑛 𝑆
𝐼𝑛𝑐𝑟𝑒𝑚𝑒𝑛𝑡 𝑖 𝑏𝑦 𝑜𝑛𝑒

𝑅𝑒𝑡𝑢𝑟𝑛 𝑆

Figure 2: Generate input sequence

Remember that 𝑆 = 〈𝑉. 𝐿〉. After done the
extracting work correctly, an empty sequence 𝑆 is
created with 𝑁 + 1 locations. That is, the set 𝐿 is
accomplished. Then we need to accomplish the set
𝑉. Remember that all element values of set 𝑉 are
elements of set 𝐵. The sequence 𝑆ᇱ are now an
information of the distribution of set 𝐵 elements
within locations of sequence 𝑆. In order to fill these
locations by their values, we use the same approach
of take 𝑥 from table 𝑇 in the Generate Output
Sequence algorithm. Accordingly, in a sequential
manner, for each 𝑥 ∈ 𝐵, we get 𝑞௫ value from
sequence 𝑄𝐹, and get 𝑟௫ from sequence 𝑅𝐹, in order
to compute the frequency counter of 𝑥, 𝑓௫, using the
following formula:

𝑓௫ = 𝑟௫ + 𝑞௫ × 256 (13)

This will allow us to determine how many

elements in 𝑆 that must be given the value 𝑥. Now,
we need to determine which element locations to
filled by 𝑥. So, there are 𝑓௫ elements taken from the

𝑞ଶହହ  𝑞଴ 𝑞ଵ 𝑟ଶହହ  𝑟଴ 𝑟ଵ 𝑞ே  𝑞଴ 𝑞ଵ 𝑟ே  𝑟ଵ𝑟଴

𝑄𝐹 𝑅𝐹 𝑄𝐿 𝑅𝐿

Journal of Theoretical and Applied Information Technology
15th April 2019. Vol.97. No 7

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

2036

two sequence 𝑄𝐿 and 𝑅𝐿 that are of respect to the
value 𝑥. Using a loop counter 𝑖 to control how many
time to repeat the taken elements process from the
sequence 𝑄𝐿 and 𝑅𝐿. With each value 𝑞௜ taken from
𝑄𝐿, followed by a value 𝑟௜ taken from 𝑅𝐿, a location
value 𝑙௜ is computed by the following formula:

𝑙௜ = 𝑟௜ + 𝑞௜ × 256 (14)

Hence, the location 𝑙௜ in sequence 𝑆 is filled
by the value of 𝑥. This work will continue until all
element locations of S are filled by their values

.
Proposition 3: Regenerate Input Sequence
algorithm is correct. The running time is Θ(𝑁).
Proof: For the correctness observe that the four list
𝑄𝐹, 𝑅𝐹, 𝑄𝐿 and 𝑅𝐿, are all of a fixed length, so the
process of extracting them from 𝑆ᇱ, is simply done
by determine a starting pointer for each. In the other
hand, the length of the retrieved sequence 𝑆 is known
be 𝑁 + 1. The outer for-loop iteratively uses 𝑄𝐹and
𝑅𝐹. In each iteration, 𝑞௫ and 𝑟௫ are retrieved from
𝑄𝐹and 𝑅𝐹, respectively, in concurrent way for each
0 ≤ 𝑥 ≤ 255, in order to compute 𝑓௫. Next, the inner
while-loop, iteratively reads from 𝑄𝐿 and 𝑅𝐿
concurrently two values, 𝑞௜ and 𝑟௜, respectively, to
compute the location 𝑙௜, in which the current value
of iterator 𝑥 to be written. Here, the iterator 𝑖, 1 ≤
𝑖 ≤ 𝑓௫, control when to stop reading from 𝑄𝐿 and
𝑅𝐿.

The total time work is the same as it for
Generate Output Sequence algorithm that time
complexity computed as follows:

∑ ∑ Θ(1)௜∈௅ೣ
ଶହହ
௫ୀ଴ = ∑ Θ(𝑓௫)ଶହହ

௫ୀ଴ = Θ(𝑁) (15)

Proposition 4: The time complexity for all three
algorithms Build Lookup Table, Generate Output
Sequence, and Regenerate Input Sequence is Θ(𝑁),
where 𝑁 related to the size of sequence 𝑆.
Proof: The working time, the summation of the three
algorithms running time, Θ(𝑁) + Θ(𝑁) + Θ(𝑁), is
Θ(𝑁).

3. RESULTS AND DESCUSSION

The proposed scheme has been
implemented in the C# language and Microsoft
Excel 2016 with several test images. Image files are
used as a source for correlated data. Some results
applied on the TIF format images are below. In the
histograms of the permuted elements the nearly
uniform distribution of elements values is achieved.
In Table 1, 10 of 26 sample tests have been
experimented as image files for input sequences. The
histograms of permuted sequence are shown in

permutation histogram column. Also, Table 1
presents the column of the compressed permutation
sequence histogram. The size in KB for original,
permuted, and compressed files listed in Table 2(a).
Information entropy is defined as the average
amount of information produced by a source of data.
Entropy is a measure of uncertainty. High entropy
means the data has high variance and thus lot of
information is included. The entropy measures of the
original blocks and the produced blocks are shown
in Table 2 (b). The correlation coefficients between
the original sequence and the permutated sequence
for each sample are shown in Table 2 (c). The
samples are selected according to the differences in
the original histogram, as illustrated in
appendix I.

4. CONCLUSION

A simple to implement yet effective
method has been proposed in this paper for elements
permutation taken from files using element
frequency and locations permutation method. The
main idea is that the strong information in a file can
be reduced by decreasing the correlation among the
elements using element frequency and locations
permutation method. This paper has presented as a
method for uniform permutations for image data
components. The intelligible information present in
an image is due to the correlation among the image
elements in a given arrangement. The experimental
results have shown that the process of dividing and
using frequency-location permutation of image
blocks resulted in a lower correlation, a higher
entropy value, and a more uniform histogram.
Furthermore, the permutation process refers to the
operation of dividing and replacing an arrangement
of the original image, and thus the generated one can
be viewed as an arrangement of blocks.

REFERENCES

[1] Pesarin F, Salmaso L. Permutation tests for

complex data: theory, applications and
software: John Wiley & Sons. 2010.

[2] Amishima T, Okamura A, Morita S, Kirimoto
T. Permutation method for ICA separated
source signal blocks in time domain. IEEE
Transactions on Aerospace and Electronic
Systems. 2010;46(2):899-904.

[3] Fu C, Lin B-b, Miao Y-s, Liu X, Chen J-j. A
novel chaos-based bit-level permutation
scheme for digital image encryption. Optics
communications. 2011;284(23):5415-5423.

Journal of Theoretical and Applied Information Technology
15th April 2019. Vol.97. No 7

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

2037

[4] Mitra A, Rao YS, Prasanna S. A new image
encryption approach using combinational
permutation techniques. International
Journal of Computer Science.
2006;1(2):127-131.

[5] Sheri PK, Murthy AT. Advanced Image
Encryption using Combination of
Permutation. International Journal of
Emerging Engineering Research and
Technology. 2015;3(4):52-59.

[6] Barry WT, Nobel AB, Wright FA.
Significance analysis of functional
categories in gene expression studies: a
structured permutation approach.
Bioinformatics. 2005;21(9):1943-1949.

[7] Winkler AM, Ridgway GR, Webster MA,
Smith SM, Nichols TE. Permutation
inference for the general linear model.
Neuroimage. 2014;92:381-397.

[8] Hardiya P, Gupta R. Image Encryption
Based on Pixel Permutation and Text Based
Pixel Substitution. IJSRD. 2014;2(7):142-
145.

[9] Younes MAB, Jantan A. An image
encryption approach using a combination
of permutation technique followed by
encryption. International journal of
computer science and network security.
2008;8(4):191-197.

[10] Dattathreya MS. System and method for
handling invalid condition of a data
element. US7493334B1(Patent). 2009.

Journal of Theoretical and Applied Information Technology
15th April 2019. Vol.97. No 7

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

2038

Appendix I

Table 1: The experimented samples

Original Original histogram Permutation histogram Compressed histogram

Journal of Theoretical and Applied Information Technology
15th April 2019. Vol.97. No 7

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

2039

Table 2: (a) Size in KB for orginal, permuated, and compressed files (Figure 8).
(b) Entropy results for orginal elements and the corresponding permuted elements (Figure 9). (c) Correlation

between original and permuted sequences (Figure 10).

 a b c

Image No. Original Permuted
Compresse

d
Original Permuted Correlation

1 262,549 526,741 317,792 7.5992983 7.9992534 -0.1071

2 65,915 131,963 69,546 7.0264735 7.9975146 -0.0185

3 1,048,710 2,105,478 1,249,159 7.5235114 7.9996149 +0.5638

4 544,014 1,072,398 547,126 6.9972147 7.9658957 -0.0393

5 5,015,774 10,035,422 5,405,778 7.0045683 7.9964787 -0.0252

6 12,216,574 24,501,502 14,222,731 7.3143967 7.9988913 -0.0372

7 10,877,038 21,774,958 11,654,715 7.4698666 7.9973532 +0.1970

8 1,422,636 2,809,644 1,691,867 7.7626486 7.9721755 -0.1165

9 4,857,796 9,745,348 5,490,214 7.4263056 7.9990188 -0.0622

10 11,495,698 23,054,098 13,321,509 7.6220376 7.9989755 +0.0908

11 7,138,088 14,271,272 9,349,120 7.8427694 7.9960315 +0.5869

12 1,930,654 3,846,046 2,165,420 7.3014691 7.9902275 -0.0139

13 5,614,348 11,228,428 7,392,444 7.9000299 7.9964586 +0.5633

14 1,179,248 2,302,064 1,478,571 7.9133797 7.9390950 +0.4362

15 2,359,450 4,737,178 1,260,536 5.1132753 7.9984390 +0.1619

16 6,211,560 12,420,072 8,148,287 7.8877972 7.9961955 +0.5444

17 3,145,882 6,316,186 3,270,663 7.7514876 7.9996105 -0.1474

18 15,116,698 30,307,738 16,904,973 7.7172297 7.9987229 +0.4543

19 8,247,272 16,503,272 8,650,919 7.0034290 7.9964424 -0.0252

20 3,145,882 6,316,186 3,559,137 7.5589123 7.9996158 -0.1049

21 2,001,154 3,982,594 2,416,647 7.7571972 7.9888196 -0.1061

Journal of Theoretical and Applied Information Technology
15th April 2019. Vol.97. No 7

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

2040

22 11,614,618 23,305,114 12,281,158 7.7910437 7.9992485 +0.0721

23 9,313,096 18,691,912 10,031,677 7.3657841 7.9992167 -0.1040

24 2,339,434 4,651,114 2,419,407 7.2934555 7.9856562 -0.0505

25 786,572 1,579,148 814,081 6.6649040 7.9992782 -0.0424

26 1,259,596 2,514,508 1,206,806 7.1949384 7.9933105 -0.0232

Figure 8: Size in KB for original, permuated, and compressed files

