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ABSTRACT 

 

During 2000 to 2011, rubber plantations rapidly expanded in northeast Thailand, which had not been 

historically planted. Information about planted areas and their distribution is a prerequisite for formulating 

land use planning and understanding its consequences on ecosystems. This study aimed to establish a model 

for digitally devising a synergistic approach to distinguishing the different stages of rubber plantations in 

the northeasternmost region of Thailand and a small portion of the Lao People's Democratic Republic (Lao 

PDR). The combination of Object-Based Image Analysis (OBIA), Vegetation Canopy Density (VCD), 

plant phenology and intensive ground observation was applied to THAICHOTE satellite data. Two levels 

of classification based on OBIA approach were performed. At the first level, multi-scale image 

segmentation of pansharpened imagery was performed to divide the image set into objects with different 

spectral and spatial characteristics. Incorporating the normalized difference vegetation index (NDVI) and 

brightness index (BI) into the objects, the image set was subdivided into four different subsets of VCD. 

Analyses were then performed at the next level classification on each of VCD subsets by using certain and 

a range of different approaches to discriminate stand age rubber tree plantations. Rubber tree phenology and 

OBIA feature optimization were used to differentiate the different stages of rubber plantations. The results 

indicated that the agreement between field-based classification and image-based classification was well 

correlated. The overall accuracy of 79.00 % and Cohen’s kappa coefficient of 0.77 were achieved for the 

integrated models for the different stage of rubber plantations. 

 

Keywords: THAICHOTE satellite data; Different stages of rubber plantations; Object-based image 

analysis (OBIA); Vegetation canopy density (VCD); Plant phenology; Northeast Thailand 

 

1. INTRODUCTION  

 

Natural rubber (Hevea brasiliensis Muell. Arg) is 

the main economic crop cultivated in southern 

Thailand, where climatic conditions and land 

qualities are highly suitable. Rubber trees were not 

historically planted in northeast Thailand. Over the 

past fifteen years, with an attractive price for rubber 

products, northeast farmers switched and diversified 

their lands to cultivate rubber trees instead of the 

traditional crops (cassava and sugar-cane) that had 

been cultivated for many decades. The world 

production of natural rubber amounted to 7.9 

million tons in 2003, of which Thailand contributed 

approximately 36% [1]. In 2016, the world 

production of natural rubber reached 12.40 million 

tons [2]. Thailand’s rubber production has been the 

world’s largest by export volume, accounting for 

30.31% of the world market [3]. The rapidly 

increasing expansion provoked competition for the 

scarce uplands, which led to encroachment on the 

government’s conservative forests and low land 

paddy fields marginally suitable for the rubber trees 

[4]. Rubber exporters posted declines from 2012 to 

2016, with a surplus of rubber production and 

unattractive prices. The Thai government has 

attempted to decrease the surplus of rubber 

production by logging rubber trees cultivated in 

forest reserves and the increase in domestic use. 

Information about rubber plantation areas and their 
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spatial distribution is a prerequisite for global sales 

of natural rubber products, strategic planning, 

agricultural extension, and sustainable land use 

planning. In addition to these applications, data on 

rubber plantation areas and their spatial distribution 

may have significant impacts and consequences on 

land ecosystems when indigenous, ecological 

forests are replaced by rubber plantations. 

With the advent of satellite technology and the 

high capability of computers, information about 

cropping areas and covering types over the ground 

surface, including resource management and 

environmental issues has been updated rapidly. 

Several studies have been conducted by using the 

traditional pixel-based image analysis (PBIA) of 

vegetation indices to discriminate rubber-planted 

areas. One study investigating the potential of 

Pléiades data and three selected vegetation indices 

(the normalized difference vegetation index (NDVI) 

enhanced vegetation index (EVI) and soil-adjusted 

vegetation index (SAVI)) for discriminating mature 

rubber plantations from the high vegetation density 

[5]. Another study used SAVI, EVI, and NDVI in 

Kedah, Malaysia to determine different stages of 

rubber trees, and it concluded that some remained 

misclassifications might cause under- or over-

estimation [6]. The study applied the NASA 

Landsat GeoCover product by developing NDVI 

and tasseled-cap transformation for the 

Mahalanobis Typicality classifier. They claimed 

that well-matching with provincial statistics for 

mature and middle-age rubber tree growth areas. 

The estimation of young rubber tree areas was 

difficult for performing this method to coarse 

resolution satellite data. Improvements could be 

produced to map young rubber trees more 

accurately with intensive high-quality training 

information [7]. Moreover, the investigation 

extended their applications to Southeast Asia by 

using Moderate Resolution Imaging 

Spectroradiometer (MODIS Terra) time-series 

NDVI data, and it claimed that the earlier problem 

was successfully overcome [8]. In Mindanao island 

of Philippines, the six bands of Landsat 8 OLI data 

and satellite-derived indices Tasseled Cap 

(Brightness, Greenness and Wetness), the Wetness-

Brightness Difference Index (WBDI), NDVI and 

the Normalized Difference Structure Index (NDSI) 

were used to classify rubber tree plantations by 

using Mixture Tuned Match Filtering (MTMF) 

method. The results indicated the capability of the 

method to differentiate young from mature rubber 

plantations, with an overall accuracy of 73% [9]. In 

China’s Xishuangbanna Prefecture, where a tropical 

forest is abundant, the forest areas were converted 

to rubber plantations during the period of booming 

rubber prices. The Land use change detection 

analysis was conducted to detect vegetation change 

of the other vegetation types large proportion 

transformed to rubber plantations by using Landsat 

7 ETM+ and SPOT images acquired at different 

times [10]. Regarding a tremendous conversion of 

natural forests to rubber tree plantations in China’s 

Xishuangbanna Prefecture, another study applied 

multi-temporal Landsat images (acquired in 1989, 

2000, and 2013), producing overall accuracy over 

80% [11]. Attempting to distinguish forests from 

rubber plantations, the integration of vegetation 

indices time-series and rubber tree phenological 

attributes was conducted to rapidly estimate 

plantation areas. [12] identified two phenological 

periods of rubber trees: 1) during the leaf abscission 

period in late February–March; and 2) during the 

new leaf emergence period in late March–April. 

Differences in vegetation indices were found to 

distinguish rubber plantations from forests. In 

addition, many approaches attempted to 

differentiate different stages of rubber plantations 

by using Radar imagery because of its cloud 

penetrability, many of which reported success [13] 

[14] [15]. However, very high cost-effectiveness 

was the disadvantage for performing to a very large 

areas of the global level planning. 

Most digital image processing is mainly based on 

colours represented by values of digital numbers in 

each pixel combined into images. Timely 

monitoring using satellite data for the stages of 

rubber plantations has been less available in 

Thailand [7]. The Geo-Informatics and Space 

Technology Development Agency (GISTDA) 

provided financial support to map tapped rubber 

plantation areas for the entire country based on 

Landsat8 OLI [16]. The goal was to estimate the 

rubber latex yield to compensate the farmer’s grant 

because of the decline in rubber prices since 2012. 

The study applied the on-screen digitizing method 

to delineate the tapped rubber plantations by using 

low- resolution image of this method, the tapped 

rubber tree plantations (> 7 years old) were still 

easily confused with the high vegetation density 

areas such as evergreen forest and very dense 

deciduous forest. Moreover, the confusion between 

other stages of rubber plantations and other Land 

Cover/Land Use (LCLU) types was encountered 

when using traditional PBIA approach, e.g., 

between young age rubber trees with intercropping 

and field crops and paddy fields with herbaceous 

plants; and between middle-age rubber tree 

plantations and the moderate vegetation density 

areas. 
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The satellite technology has been continually 

developed with increasing spatial resolution remote 

sensing imageries for supporting a detailed 

landscape mapping and local land-use planning. 

However, a speckle or “salt and pepper” 

disadvantage was generally found when the 

traditional PBIA was applied to very high-

resolution images. With this problem contributed to 

the inaccuracy of the PBIA classification [17] [18], 

it has been completely overcome by the use of 

Object-Based Image Analysis (OBIA) to segment 

image objects based on both spectral and spatial 

characteristics [19] [20]. A commercial software 

package for OBIA was made available in 2000, and 

research into the use of OBIA has highly increased 

in a number of applications, particularly for high-

resolution satellite data [21].  

There have been numerous research studies 

comparing traditional PBIA and OBIA 

classification for LCLU application. The study 

confirmed that application of OBIA had a superior 

performance than PBIA for urban landscape 

classification using QuickBird data, with the high 

overall accuracy of 90.40 % [22]. The high 

accuracy was found as using OBIA for urban land 

use applying to both medium and high spatial 

resolution imageries with an overall accuracy of 

77.90% and 85.65%, respectively [23]. Moreover, 

the application of multi-spectral GeoEye imagery 

for urban tree species mapping confirmed that 

OBIA was significantly better than PBIA [24]. 

OBIA has been compared to PBIA for supporting 

LCLU change analysis. The study reported the 

potential of OBIA for extracting land cover 

information from ASTER data with an overall 

accuracy of 78.5%. The resulting map has improved 

on capturing over spatially heterogeneous land 

covers of tropical Australia [25]. For LCLU 

mapping in Selangor, Malaysia, spectral bands of 

SPOT 5 data were applied, and OBIA was used to 

compare with PBIA. The result indicated that 

overall accuracy of OBIA classification was higher 

than PBIA [26]. The mapping of salt cedar using 

QuickBird imageries with multi-scale OBIA, which 

employed spectral, texture and shadow features, 

produced a high overall accuracy of 91.6% [27]. 

With the rapid expansion of rubber tree 

plantation in northeast Thailand, the application of a 

very high resolution image processing and OBIA to 

distinguish rubber plantations was critical for 

estimating their proportion of land use within and 

between international borders. Moreover, the stand 

age class of rubber tree plantations information was 

important for supporting watershed land-use 

planning in term of economic and environmental 

analysis. Therefore, the minimizing of confusion 

between rubber tree plantations and other mixed 

and diverse ground cover conditions, including 

forest areas via the integration of OBIA with 

satellite derived indices, image texture, plant 

phenology, and field observations was the goal of 

our study. We applied THAICHOTE satellite data 

as well as intensive ground observation for training 

areas to model and digitally devise a synergistic 

approach to distinguish different stages of rubber 

plantations and aggregate OBIA, plant phenology 

and satellite-derived indices. With this study, we 

expected to rapidly increase and enhance the 

mapping of rubber plantations with higher 

accuracy. The obtained results could be used to 

encourage farmers to use attractive, highly priced 

crops as viable land use alternatives. 

 

2. STUDY AREA  

 

The study area is in the northeasternmost 

region of Thailand and a portion of the Lao People's 

Democratic Republic (Lao PDR) (Fig. 1) between 

latitude 18°00’ to 17°46’N and longitude 104°08’ 

to 104°12’E; the study area covers much of the 

province of Nakhon Phanom, including part of 

Bueng Kan. The uppermost boundary is the 

Mekong river, which shares the border with the 

province of Bolikhamsai of the Lao PDR. The 

study area covers an area of approximately 36,856 

ha, with elevations between 130 and 550 m above 

mean sea level [28]. 

 The climate is tropical monsoon with a 

mean annual rainfall of approximately 2,340 mm 

[29], most of which is distributed from May to 

October. The region is among the areas affected by 

tropical cyclones from the South China Sea in the 

period of August to October, with the intensity of 

tropical storms or higher that bring more and 

heavier rains. The gently undulating topography of 

a continuously alternating surface of uplands and 

lowlands, and some prominent hills characterize the 

landscape in the region. The areas are drained 

southeastwards to the Mekong by numerous creeks 

(Huai Langka, Huai Sai, Nam Mao, Huai Kathat). 

Soils are inherently low in fertility, have coarse to 

medium texture and were formed from alluvium 

with a high proportion of sandy materials. Most of 

the soils are Typic Ustifluvents, Aeric 

Kandiaquults, Plinthic Paleaquults and Typic 

Plinthustults [30] [31]. Traditional agriculture is 

cassava, sugarcane, and orchards for upland well-

drained soils and rice for flat lowlands. The bund-

paddy field in association with sparse trees and 

rubber stand plantation dominate the land use and 
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land cover in the area. The native forest patches of 

dry dipterocarp and mixed deciduous and evergreen 

types are also found. Rubber trees were not 

historically planted in this region. Moreover, the 

rubber plantations replace the traditional field crops 

and the ecologically native forest, which has led to 

forest fragmentation. To date, most rural 

households are engaged in rubber production and 

paddy rice, which generates inconsistent incomes 

because of the highly volatile market prices [32] 

[33] 

 

3. MATERIALS AND METHODS  

 

In this study, we used cloud-free, 

multispectral and panchromatic THAICHOTE data 

(formerly known as Thailand Earth Observation 

System-THEOS) acquired after the rainy season. 

For image pre-processing, the data were 

transformed to top-of-atmosphere (TOA) radiance 

and geometric correction was performed. The 

eCognition developer package [34] was applied for 

OBIA. Two levels of classification based on OBIA 

approach were performed. At the first level, the 

four different subsets of Vegetation Canopy 

Density (VCD); high VCD, moderate VCD, low 

VCD, and very low VCD were classified using the 

integration of multi-scale image segmentation, the 

association of NVDI with BI, and intensive training 

areas. At the second level, the rubber plantation 

areas derived from each of four subsets were next 

classified to discriminate stand age class of rubber 

plantations from other LCLU types with a 

particular approach and a range of different 

approaches. Several exemplars of the field survey 

for gathering information about LCLU rubber tree 

stand age and geographical characteristics were 

observed. The information obtained was used for 

the identification of training sets and some were set 

aside for output validation. Figure 2 shows the 

flowchart of the study. Details of the 

methodological procedure are as follows. 

 

3.1 Image Selection  

The THAICHOTE satellite, launched in 

October 2008, was Thailand’s first Earth 

observation satellite and had the objective of 

resource management and mapping in Thailand and 

around the world. The characteristics of the 

THAICHOTE satellite are shown in Table 1. In this 

study, we used the panchromatic, pansharpened and 

multi-spectral image set acquired on December 

15th, 2012, including the multispectral band on 

February 8th, 2011, which was the period of 

flushing rubber tree leaves [35] [36].  

3.2 Pre-Processing 

To normalize the THAICHOTE data, 

digital values of the selected images were 

transformed to TOA radiance based on the method 

developed by [37] using raster calculation in PCI 

Geomatica 2014, which the exo-atmospheric solar 

irradiance, the Earth–Sun distance, and the solar 

zenith angle are required. The THAICHOTE image 

scenes were then transformed to the world geodetic 

system 1984 (WGS84) coordinates using ground 

control points (GCP) from the 2002 aerial 

orthophotography and the nearest neighbour 

resampling method. Then, the areas of water bodies 

were excluded using Near Infrared. Additionally, 

panchromatic and multi-spectral bands acquired in 

December 2012 were used to create pansharpened 

images using the automatic image fusion algorithm 

[38] available in PCI Geomatica 2014 developed by 

PCI Geomatics Ontario, Canada.  

 
Table 1: The Characteristic of THAICHOTE Satellite 

Data. 
 

Characteristics Capabilities 

Bands 

Panchromatic: 0.45 - 0.90 µm 

B1 (Blue): 0.45 - 0.52 µm 

B2 (Green): 0.53 - 0.60 µm 

B3 (Red): 0.62 - 0.69 µm 

B4 (Near infrared): 0.77 - 0.90 µm 

Spatial 

Resolution 

Panchromatic 2 m 

Multispectral 15 m 

Swath width 
Panchromatic: 22 km at Nadir 

Multispectral: 90 km at Nadir 

Repeat cycle 26 days 

 

3.3 Image Segmentation and Vegetation Canopy 

Density (VCD) Subset Extraction 

For this stage, the eCognition developer 

package was used for OBIA. The VCD map was 

generated through the integration of multi-scale 

image segmentation, the association of NDVI with 

BI, and intensive training areas. Image 

segmentation is the importantly first step for 

dividing the image set into objects or regions with 

different spectral and spatial characteristics. The 

multiresolution segmentation was used, which 

algorithm required shape, compactness, band layers 

and scale parameters to derive meaningful image 

objects. Trials of shape factors were tested and 

iterated within a factor of 0.3 to 0.7 because of 

homogeneous, large, and more obvious regions of 

the rubber plantation areas. As a result of the trials, 

we set the shape factor to 0.4 as an appropriate 

value. The shape and color balance led to a color 
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factor of 0.6; the lower the shape value, the greater 

the impact of color on the segmentation process. 

Moreover, given a similar trial procedure for the 

compactness factor, its value was set to 0.6, which 

provided a smoothness factor of 0.4; the greater the 

compactness value, the more compact the objects. 

In this operation, we defined band layer weights of 

1, 1 and 2 for B2, B3, and B4, respectively. Paying 

attention to scale is more important to 

multiresolution segmentation, and estimates of the 

scale parameter 2 (ESP-2) Tool [39] generated a 

relationship between the local variance (LV) and 

scale by which the rate of change for the scale 

could be computed (Fig. 3). The peaks in the rates 

of change provided the scale levels at which the 

image set could be segmented for the multi-scale 

segmentation process. The first, second and third 

scale level selected were adopted to the image sets 

with 31, 71 and 126 for fine, moderate and coarse 

image objects, respectively (bold vertical dashed 

line in Figure 3).  

 

 
 

 

Figure 3: Estimation of the scale parameter. 
 

At the same time, the establishment of 

VCD using the multispectral band was executed by 

defining a fusion of NDVI [40] and BI [41]. This 

relationship was obtained from the mean vector and 

the standard deviations of training areas. Since 

emphasis was placed on the rubber tree plantation 

areas, the classifiers required the presence of the 

other class information. Sufficient training sites 

required both the rubber tree plantation areas and 

other classes. The training areas totalled 620 sites 

(Table 2) and came from ground observation via 

field surveys and set asides to not only understand 

LCLU types but also for further verification of the 

classification. 

Figure 4 shows a map of the ground 

observations for the training areas. Ground 

observations were financially supported by 

GISTDA under the project on the development of a 

landowner database for rubber plantations using 

THAICHOTE satellite imagery. The combination 

of NDVI and BI was then developed to intimately 

incorporate with the objects. The high values of 

NDVI are associated with low values of BI, and 

high VCD is an association of high NDVI and low 

BI values. In contrast, lower VCD values are 

attributed to the highest BI values with much 

smaller NDVI values; such a combined value was 

set as bare fallow land or built-up areas. The 

formulas for computing the BI and NDVI are as 

follows:  

 

4B3B

4B3B
NDVI






                      (1) 
 

2

3B2B
BI

22 
                         (2) 

 

where  B2 is TOA reflectance in the green band 

(0.53 - 0.60 µm), B3 is TOA reflectance in the red 

band (0.62 - 0.69 µm) and B4 is TOA reflectance in 

the near infrared band (0.77 - 0.90 µm)  

 An interval of generated VCD values was 

then classified into four subsets (Fig. 5) based on 

the Jenks Natural Breaks Classification, which 

assigns data to optimize the arrangement of a set of 

values into "natural" classes. This is done by 

seeking to minimize the average deviation from the 

class meanwhile maximizing the deviation from the 

means of the other groups [42]. In this study, the 

VCD was input into image objects to develop four 

subsets with fine-scale of 31 for high VCD and 

moderate VCD regions, moderate-scale of 71 for 

low VCD regions and coarse-scale of 126 for very 

low VCD regions. Details of each VCD subset, 

which consist of the rubber tree plantation areas 

and their confusion, are provided in Table 3. The 

photographs of different age rubber trees and other 

land cover and land use types were shown in figure 

6. The four VCD subsets that resulted from the first 

level classification were further processed to 

differentiate the rubber tree stand ages of the 

plantation areas.  

 
Table 3. The possible confusion within VCD subsets. 

 
VCD Subsets Confusion 

High VCD 
MatureR )rubber trees > 7 years(, 

VDF 

Moderate VCD 
MidR )rubber trees 4-7 years(, MDF, 

PerennialC, FC 

Low VCD 
YoungR )rubber trees 1-4 years(, 

Paddy, FC, DF, Built up 

Very low VCD 
SaplingR )rubber trees < 1 years(, 

FLpaddy 

 

3.4 Rubber tree stand age and LCLU 

classification 

The aim of analysis within high VCD was 

to distinguish MatureR (rubber trees > 7 years) 
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from other high VCD. High VCD regions, as 

described in Table 3, had confusing areas among 

MatureR and very dense forest (VDF), mostly 

dense forest types that were substantially covered 

by uneven layers of canopy of over 4 stories and 

that showed coarse texture in the images. The 

canopy of MatureR had even crowns and 

completely covered the ground surface with the 

crown length is over 10 m. The understory of 

MatureR was relatively sparse wild plants and 

herbaceous plants, with mostly bare soil because of 

light interception and being trampled underfoot for 

rubber tapping. In high VCD regions, the December 

15th, 2012 multispectral image had confusion 

between the MatureR and the other plants. The 

MatureR trees typically flush their leaves during 

February, whereas no common occurrence of leaf 

shedding was found for young rubber trees. 

Therefore, the mean of NDVI features of 

THAICHOTE for December 15th, 2012 and 

February 8th, 2011 were used to investigate class 

separability. The 41 exemplars each for the leaf 

flushing and VDF areas were applied (Table 4), 

which resulted in NDVI values that provided 

threshold sets of two date images. Applying the 

membership function classifier [22], which is the 

interval of the NDVI values as threshold sets, 

determined the MatureR class. The MatureR areas 

that shed their leaves could be delineated and 

differentiated from the VDF within high VCD 

regions. 

 
Table 4: Training and test sites use in High VCD, 

Moderate VCD, Low VCD, and Very low VCD regions. 

 
VCD 

Subsets 

LCLU Class No. of 

training 

areas 

High 

VCD 

 Rubber tree plantations > 7 years (MatureR) 41 

 Very Dense Forest (VDF)  41 

 Total 82 

Moderate 

VCD 

 Rubber tree plantations 4-7 years (MidR) 58 

 Moderately Dense Forest (MDF) 24 

 Perennial crops and orchard (PerennialC) 19 

 Field crop and herbaceous plants (FC) 28 

 Total 129 

Low VCD  Rubber tree plantations 1-4 years (YoungR) 31 

 Paddy fields (Paddy) 19 

 Field crop and herbaceous plants (FC) 17 

 Degraded forest (DF) 25 

 Urban and Built up areas (Built up) 15 

 Total 107 

Very low 

VCD 

 Rubber tree plantations < 1 years (SaplingR) 70 

 Fallow bare land and paddy field  (FLpaddy) 62 

 Total 132 

  

For moderate VCD regions, differentiating 

a range of the MidR (rubber trees 4-7 years) areas 

from the other moderate VCD was the purpose of 

this stage, in which a decision tree for classification 

using the classification and regression tree (CART) 

approach was performed. The MidR had an 

intercrown spacing of approximately 40-70%, 

which means sky visibility from a point beneath 

with the appearance of rows of trees. The 

plantations usually had confusion with MDF, DF, 

PerennialC, and FC. Ground observations of 

locational areas of a total of 129 training areas 

(Table 4) were accomplished. The input features for 

CART decision tree classifier were defined using 

feature space optimization (FSO tool) [34] [43], 

which determined 12 spectral, 7 shape, and 12 

texture features (Table 5). Based on the eCognition 

nearest neighbour classification, FSO tool assessed 

the Euclidean distance in feature space between the 

training exemplars, which produced the best class 

separation distance by the largest of the minimum 

distances between the least separable classes [34]. 

The feature combination providing the best class 

separation distance was chosen for CART 

classifier, which available in eCognition. The 

CART model was created based on the attribute 

information attached to the training segments, 

which resulted in the MidR and others. 

 
Table 5: Input Features. 

 

Category Object Feature 

Spectral  Mean B1, Mean B2, Mean B3, Mean B4, 

Mean BI, Mean NDVI     

Standard deviation (Std.) B1, Std. B2,         

Std. B3, Std. B4, Std. BI, Std. NDVI 

Shape  Asymmetry, Border index, Compactness, 

Elliptic fit, Rectangular fit, Roundness,   

Shape index 

Texture  Grey-level co-occurrence matrix (GLCM) 

Homogeneity (all dir.) PAN,  

GLCM Contrast (all dir.) PAN,  

GLCM Dissimilarity (all dir.) PAN,  

GLCM Entropy (all dir.) PAN,  

GLCM Ang. 2nd moment (all dir.) PAN,  

GLCM Mean (all dir.) PAN,  

GLCM Std. (all dir.) PAN,  

GLCM Correlation (all dir.) PAN, 

Grey-level difference vector (GLDV) Ang. 2nd 

moment (all dir.) PAN,  

GLDV Entropy (all dir.) PAN,  

GLDV Mean (all dir.) PAN,  

GLDV Contrast (all dir.) PAN 

 

For low VCD, the aim of the stage was to 

discriminate confusion between YoungR 

plantations (rubber trees 1-4 years) associated with 

intercropping and herbaceous from the other low 
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VCD cover type. Regarding table 3, this stage 

plantation usually had confusion with Paddy, FC, 

DF, and Urban Build up areas. The method used for 

low VCD was similar to that for moderate VCD. A 

total of 107 exemplars comprised the class, as 

depicted in Table 4. Other procedures were 

accomplished the same as for moderate VCD. 

For very low VCD region, which 

dominated by a very low VCD and the highest 

brightness areas. The rows of SaplingR ( rubber 

saplings newly planted < 1 years old)  were easily 

observed in contrast with more obvious bare land, 

as seen from the THAICHOTE panchromatic 

image (2 m resolution). The rows of rubber saplings 

were distributed equally, with a row spacing of 7 m, 

and we found fallow bare lands and paddy fields 

(FLpaddy) in addition to SaplingR. We tried to 

discriminate the SaplingR and the FLpaddy. The 

GLCM entropy texture algorithm was then applied 

to distinguish the SaplingR from FLpaddy. The 

value for entropy was high in the case of equal 

distribution of the rows of trees. We used the 

GLCM entropy formula as follows: 
 







1N

0ji,

j)lnPi,j(Pi,Entropy

        (3) 
 

where i is the row number, j is the column number, 

Pi,j is the normalized value in the cell i, j and N is 

the number of rows or columns. 

 A total of 132 exemplars were found 

within very low VCD regions (Table 4), which 

consisted of rows of SaplingR and FLpaddy areas. 

Those two classes were separated by their interval 

values coming from the exemplars. The values of 

the training set for the SaplingR class were 

theoretically higher than those of the FLpaddy. The 

membership function with the interval of threshold 

sets achieved was analysed to assign the class 

 

3.5 Validation 

For validation of rubber tree stand age and 

LULC classification within high VCD regions, we 

used the reference areas (mature rubber) using the 

on-screen digitizing method with intensive ground 

observations conducted by GISTDA; the classified 

image acquired from image differencing used 

periods of defoliation in February 2011. High VCD 

regions were divided into cells with four-square 

kilometer grid spacing. Then, random of the 

number of grid cells was carried out for comparison 

made between referenced and estimated areas to 

generate error percentage (% ERROR), root mean 

square error (RMSE) and relative RMSE with the 

referenced area as well as a correlation between the 

reference and the estimate. The formulas for 

computing the error percentage and RMSE are as 

follows: 
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      (4) 
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            (5) 

 

where n is the number of grid cells in the study 

area. 

To validation of rubber tree stand age and 

LULC classification within moderate VCD and low 

VCD regions, the output map was checked against 

the ground observations for a total of 243 sites set 

aside for validation. Of the total sites, 96 and 147 

exemplars were intensively recorded for LCLU 

types present in moderate VCD and low VCD 

regions, respectively. Dispersion of the sites 

throughout the scene increased the chance that they 

were representative of all the LCLU types present 

in the scene (Fig. 7). Observations used to ensure 

reliable exemplars included rubber tree age, 

diameter at breast height, rubber tree stand height, 

visible VCD, understory plants, and others. A 

confusion matrix between the output map and the 

ground observations was created to compute the 

accuracy of users and producers and the overall 

accuracy as well as the Cohen's kappa coefficient 

[44] [45]. The validation procedure for very low 

VCD was similar to that of high VCD because there 

were two LCLU categories to compare. 

 

4. RESULTS AND DISCUSSION 

 

4.1 Vegetation Canopy Density (VCD) Subsets 

Extraction 

A map of VCD subsets is shown in Figure 

8. Table 6 compares the areas of each subset; the 

areas of high VCD, moderate VCD, low VCD, and 

very low VCD covered 30.15%, 25.03%, 31.59% 

and 8.68%, respectively. Each of the subsets was 

spectrally confused with other LCLU types as was 

previously stated. 

The distribution of the rubber plantation 

areas predominantly replaced the traditional crops 

(cassava and sugarcane), degraded forest and some 

forest reserves. More importantly, the study applied 

multi-scale image segmentation to delineate the 

different of VCD subsets, corresponding to fine, 

moderate and coarse regions, depending on the 
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spectral heterogeneity. The fine-scale parameter 

allowed heterogeneity and small objects that 

corresponded to the image objects of high VCD and 

moderate VCD regions. The coarser scale provided 

more homogeneity and large objects. The values of 

the scale parameter produced variation in the size of 

image objects. The largest objects were then 

produced for very low VCD. This study mainly 

corresponded to many authors who stated that the 

multi-segmentation is initially required before 

classify image objects into LCLU classes [46] [47] 

[48] [49], with this procedure have made more 

increase accuracy for LCLU mapping with very 

high resolution satellite data. The multi-scale image 

segmentation was performed to establish three-level 

hierarchical image object for tree species 

classification at the finest level of IKONOS data 

with the high overall accuracy of 90 % [50] and 80 

% for Quickbird data [51]. In the other hand, [52] 

have performed OBIA single-level image 

segmentation for rubber tree stand ages mapping by 

using SPOT-5 imagery. They suggested that the 

intensive and effective of training areas from expert 

systems should be taken for more accurate. 

So far, we remained unable to discriminate 

the rubber plantations from other plants, and the 

MatureR (rubber trees > 7 years), MidR (rubber 

trees 4-7 years), YoungR (rubber trees 1-4 years) 

and SaplingR (rubber trees < 1 years) areas shared 

portions within high VCD, moderate VCD, low 

VCD, and very low VCD regions, respectively. As 

a result, this analysis used the association of NDVI 

with BI and multi-scale image segmentation for the 

first level to extract the distinctive characteristics of 

each region (Fig. 9) 

 
Table 6: Areas of vegetation canopy density subsets for 

the study areas. 

 

VCD Subsets 
Areas 

Ha Percentage 

High VCD 11,111.20 30.15 

Moderate VCD 9,223.39 25.03 

Low VCD 11,641.80 31.59 

Very Low VCD 3,200.17 8.68 

Water body  1,679.87 4.56 

Total 36,856.43 100.00 

 

4.2 MatureR (rubber trees > 7 years) classification 

within high VCD regions. 

The values of the December 2012 NDVI 

were different from those of February 2011 because 

the tapped mature rubber trees shed their leaves, 

and the confusion between MatureR and other 

plants could be resolved by the NDVI differencing 

of the two dates. Figure 10 shows a comparison 

between NDVI values for the two date images 

created from the values of their means and standard 

deviations. Significant differences in the NDVI 

values were found. Note that MidR trees do not 

flush their leaves like MatureR trees. The MatureR 

areas are clearly distinguishable based on NDVI 

image differencing. 

Moreover, a comparison between the 

referenced and estimated areas was made (Table 7); 

the highest error percentage was found in the grid 

ids 1 and 19, whereas most of the areas in other 

grid ids were relatively low: RMSE was 39.49 and 

RMSE/Reference was 0.92%. The referenced and 

the estimated areas were well correlated, with R² = 

0.92 (Fig. 11). Results from this analysis were 

reliable for distinguishing MatureR from very 

dense forest (VDF). 

 
Table 7: Comparison between the referenced and 

estimated areas for mature rubber plantations within 

high VCD regions. 

 

Grid ID 
Reference 

(ha) 

Estimate 

(ha) 

% 

Error 

1 27.70 48.20 74.01 

2 176.75 157.22 -11.05 

3 314.55 234.38 -25.49 

4 267.21 291.81 9.21 

5 70.85 109.57 54.65 

6 314.81 232.74 -26.07 

7 512.14 405.58 -20.81 

8 585.11 526.25 -10.06 

9 31.16 29.72 -4.63 

10 160.82 168.80 4.96 

11 196.94 262.21 33.14 

12 437.27 416.23 -4.81 

13 166.31 246.69 48.33 

14 107.21 112.34 4.78 

15 331.57 313.02 -5.60 

16 223.46 202.67 -9.30 

17 21.91 23.74 8.31 

18 139.31 121.41 -12.84 

19 109.33 185.74 69.89 

20 62.27 82.89 33.12 

21 47.25 67.32 42.47 

Total 4,303.94 4,238.54  

RMSE 

RMSE/ Reference(%) 

39.49 

0.92 
  

 

The distribution of MatureR (rubber trees 

> 7 years) is depicted in Figure 12. Areas of 

MatureR and the VDF accounted for 5,148.13 and 

5,963.07 ha, respectively, representing 46.33% and 

53.67% of high VCD areas. Additionally, selection 

of the defoliage month (February image) was very 

difficult and sometimes not available because of 

cloud cover for applied to THAICHOTE data. In 

this study, we prefer to apply the February 2013 
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image instead of the February 2011 image. The 

comparison between only two dates of NDVI is the 

drawback of this study. Another study used 

temporal resolution potential of Landsat and 

MODIS imageries to support rubber tree 

phenological information with nearly 80 % of 

overall accuracy [53]. Moreover, using Landsat 

NDVI times series incorporated with PBIA and 

OBIA approach produced the high overall accuracy 

of 87 % [54]. However, a potential of spatial 

resolution of THAICHOTE data should be 

integrated with the temporal resolution of Landsat 

data for more accuracy for MatureR classify within 

high VCD regions.  Regarding the monoculture 

rubber tree planted with equal for spacing and 

single crown of MatureR led to presented specially 

of pattern and smooth textural contextual, which 

different from coarse texture classes of very dense 

forests with high crown density. Therefore, this 

method should be improved by using texture image 

analysis conducted by [55] for supporting the multi-

scale image segmentation approach. 

 

 
 

Figure 10: The values in NDVI between two date images. 

 

 

 
 

Figure 1 1 : Correlation between the reference and the 

estimated areas within High VCD. 

4.3 MidR (rubber trees 4-7 years) classification 

within moderate VCD regions. 

We defined 31 features to be applied for 

feature optimization for moderate VCD analysis. 

After compilation of selected features, the FSO tool 

selected 21 features for CART decision tree 

classification (Table 8); the features consisted of 11 

layer values, 5 geometry, and 5 texture features. 

The result of minimum class separation distance for 

the aggregation of features was 0.798151 (Fig. 13). 

Table 9 shows the separation distance matrix of the 

best dimension for moderate VCD and the 

minimum values of the separation distance between 

the pairs of LCLU types. The separation distances 

of the MidR (rubber trees 4-7 years) between other 

LCLU types were 1.073848, 1.052242 and 

0.798151 for FC, MDF, and PerennialC, 

respectively.  

 
Table 9: Separation distance matrix used to evaluate the 

best dimension for moderate VCD. 

 

Class/Class MidR FC MDF PerennialC 

Dimension 21     

MidR 0.000000 1.073848 1.052242 0.798151 

FC 1.073848 0.000000 0.969085 1.739538 

MDF 1.052242 0.969085 0.000000 1.380219 

PerennialC 0.798151 1.739538 1.380219 0.000000 

 

 
 

Figure 13: Distance of each Dimension for distinguishing 

MidR within moderate VCD regions. 
 

Inputs for the CART decision tree 

classifier comprised 21 features and training objects 

as defined and resulted in the classification of 

LCLU types present in moderate VCD regions. Of 

the 21 features selected, only 5 features were 

selected and used by the CART model to estimate 

class membership of the training objects. These 

were GLDV Entropy (all dir.) PAN, GLCM 

Entropy (all dir.) PAN, Mean NDVI, Shape index 

and Std NDVI. Figure 14 represents the output 

CART model generated by the analysis process. 

The five features and associated thresholds are 

shown, each split into the classes in accordance 

with the threshold of the features used. As a result, 
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we could differentiate the MidR from other LCLU 

types. 

The areas of MidR covered 1,546.74 ha, 

16.77% of the moderate VCD regions (Table 10). 

The distribution of MidR is depicted in Figure 15. 

The drawback of this method is that many input 

features are used, particularly for inexperienced 

researchers. However, the study conducted by [56] 

used both layer values and texture features of over 

50 inputs to OBIA combined with the CART 

decision tree to classify arid land vegetation with 

QuickBird imagery. With regard to the feature 

optimization by which GLDV Entropy and GLCM 

Entropy were selected for CART classifier. It can 

reflect the pattern of MidR having rows spacing of 

rubber stands.  

This study applied multi-resolution 

segmentation to determine the optimal scale, 

whereas our study adopted ESP-2 tools to set up the 

optimal scale. It should be observed that we used 

TOA reflectance, which has relatively low values 

and resulted in lower values of separable distance. 

However, the class separability was reliable as is 

described in the validation below (Table 14a). The 

performance of OBIA integrated with multi-scale 

segmentation, feature optimization, and CART 

decision tree classifier to discriminate MidR 

between other LCLU type produced high overall 

accuracy about 84 %. Our study used a combination 

of layer values, texture, and geometry features for 

CART model, which different to another study 

using of only vegetation indices features for 

decision tree classifier with overall accuracy for 80 

% [52]. 

 
Table 10: Areas of the MidR and other cover classes. 

 

Classes 
Areas 

Ha Percentage 

MidR (rubber trees 4-7 years) 1,546.74 16.77 

FC 1,963.23 21.29 

MDF 5,511.37 59.75 

PerennialC 202.05 2.19 

Total 9,223.39 100.00 

 

4.4 YoungR (rubber trees 1-4 years) 

classification within low VCD regions. 

For low VCD regions, YoungR (rubber 

trees 1-4 years old) was confused with other LCLU 

types such as Paddy, FC, DF, and Build up areas. 

The approach to the study method for low VCD 

was similar to that of moderate VCD. Differences 

in scale, input features and separation distance were 

obtained, yielding the moderate segmentation scale 

objects of 71 and 22 input features and a separable 

distance of 1.081108 for distinguishing YoungR 

and other LCLU types within low VCD regions 

(Fig. 16). The 22 input features consisted of 11 

layer values, 4 geometries and 7 textures (Table 

11). Table 12 shows the separation distance matrix 

of the best dimension and the minimum values in 

the separation distance between the pairs of LCLU 

types for distinguishing YoungR and other LCLU 

types. The separation distances of YoungR between 

other LCLU types were 2.092412, 1.542968, 

2.074776 and 2.256650 for Paddy, FC, DF and 

Built up, respectively. It should be noted that the 

six features consisting of GLDV Entropy (all dir.) 

PAN, Std Green, Border index, Mean Red, GLCM 

Correlation (all dir.) PAN and Mean NDVI were 

appropriate for YoungR. The output CART model 

established is shown in Figure 17. 

 
Table 12: Separation Distance Matrix of the best 

dimension for distinguishing YoungR within low VCD 

regions. 

 

Class/ 

Class 

YoungR Paddy FC DF Built up 

Dimension 22 

YoungR 0.000000 2.092412 1.542968 2.074776 2.256650 

Paddy 2.092412 0.000000 1.081108 1.211804 2.700310 

FC 1.542968 1.081108 0.000000 1.352151 4.075604 

DF 2.074776 1.211804 1.352151 0.000000 3.179920 

Built up 2.256650 2.700310 4.075604 3.179920 0.000000 

 
 

 
 

Figure 16: Distance of each dimension for distinguishing 

YoungR within low VCD regions. 
 

It should be noted that the border index 

which provided the ratio between the border lengths 

of the image object and the smallest enclosing 

rectangle was also used in CART classifier.  The 

index helps discrimination YoungR from built up 

and paddy land. The distinction between YoungR 

and other LCLU types is evident. These areas 

covered 1,729.97 ha, which accounted for 14.86% 

of low VCD. Paddy had the largest area found 

within low VCD regions (Table 13). A map 

showing the different classes within low VCD 

regions is illustrated in Figure 18. 
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Accuracy assessments of image-based 

classification against field-based observations 

within moderate VCD and low VCD regions 

created cross tabulation table are shown in Table 

14(a) and (b). The validation results obtained 

Cohen’s kappa coefficient about 0.78 and 0.80 for 

LCLU classification within moderate VCD and low 

VCD, respectively. The accuracy shows high-

reliability user’s accuracy of 81 % for 

discriminating MidR from other LCLU types 

(Table 14a) and 83 % for distinguishing YoungR 

within low VCD regions (Table 14b). Additionally, 

the user and producer accuracies for all LCLU 

classes differentiation were highly satisfactory. We 

can conclude that the differentiation of the MidR 

from the other low VCD cover type was 

successfully achieved with the method studied and 

that YoungR could be resolved from the other 

classes. 
 

Table 13: Areas of YoungR and other LCLU types. 

 

LCLU Classes 
Areas 

Ha Percentage 

YoungR (rubber trees 1-4 years) 1,729.97 14.86 

Paddy 4,012.93 34.47 

FC 3,195.67 27.45 

DF 1,902.27 16.34 

Built up 800.96 6.88 

Total 11,641.80 100.00 

 

Table 14: The agreement between image-based 

classification and field-based observations within 

moderate VCD and low VCD regions. 

 
  (a) Moderate VCD  

Image based 

classification 

Field based observation  Accuracy (%) 

MidR FC MDF PerennialCTotal UA PA 

MidR 29 2 3 2 36 80.56 87.88 

FC 0 24 1 0 25 96.00 85.71 

MDF 3 2 22 1 28 78.57 84.62 

PerennialC 1 0 0 6 7 85.71 66.67 

Total 33 28 26 9 96   

Overall accuracy (%)               84.38 

Cohen's kappa coefficient        0.78 

  (b) Low VCD  

Image based 

classification 

Field based observation Accuracy(%) 

YoungR Paddy FC DF 
Built 

up 
Total UA PA 

YoungR  33 2 3 1 1 40 82.50 86.84 

Paddy 1 26 2 1 0 30 86.67 81.25 

FC 2 2 27 2 1 34 79.41 84.38 

DF 0 2 0 18 0 20 90.00 78.26 

Built up 2 0 0 1 20 23 86.96 90.90 

Total 38 32 32 23 22 147   

Overall accuracy (%)                     84.35 

Cohen's kappa coefficient        0.80 

 

Regarding the possible confusion within 

moderate and low VCD subsets in table 3 and 

figure 5, detailed the confusion between LCLU 

classes more than two categories due to the mixed-

pixels problems occurred within these VCD subsets 

such as herbaceous plants and field crops as planted 

intercrops within YoungR and MidR plantations.  

The stand age rubber tree plantations OBIA 

analyzed within moderate VCD and low VCD 

regions should be improved by the other classifier 

such as Support-Vector Machine (SVM), 

Mahalanobis, and K-Nearest Neighbour (K-NN), 

these classifiers were found that rather providing 

higher performance than decision tree classifier 

[52]. Moreover, the Leaf area index (LAI) and the 

Land Surface Water Index (LSWI) should be used 

to distinguish MidR from oil palm and other 

vegetation [57]. 

 

4.5 SamplingR (rubber trees < 1 years) 

classification within very low VCD. 

Most of the areas under very low VCD 

were associations of the rows of SaplingR newly 

planted rubber trees in 2012 and FLpaddy as shown 

in Figure 19. We applied the GLCM Entropy (all 

dir) PAN for SaplingR discrimination within very 

low VCD, which was not texturally uniform; very 

large entropy was found for the rows of SaplingR 

values and lower entropy for FLpaddy. The two 

LCLU types were distinguishable (Fig. 20), with 

close values in the BI of SaplingR and FLpaddy but 

a significant difference in GLCM Entropy (all dir.) 

PAN. Approximately less than 5% of the overlap 

between the two LCLU types was observed. This 

overlap area exhibited some herbaceous plants 

present in both LCLU types. For the threshold 

values, the values in GLCM Entropy (all dir) PAN 

was calculated and the values higher than 7.70 were 

assigned to SaplingR, whereas the lower values 

were FLpaddy. 

 

 
 

Figure 19: Panchromatic image showing a) the rows of 

rubber sapling plantations and b) the fallow bare lands 

and paddy fields. 

 

The diverse ground conditions of 

vegetation, intercropping and herbaceous plants and 

bare soil within a newly planted rubber tree 

plantations were discussed by [7] [12] that mixed- 

pixels problem within a non-closure canopy cover 
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of young rubber tree plantations lead to the difficult 

for rubber tree plantation stand age mapping. The 

coarser segmentation scales level produced 

decreasing of segmentation accuracies [58]. 

However, our study has presented the advantage of 

multi-scale image segmentation and selecting at the 

coarse scale for very low VCD subset. The image 

objects resulted were more fit pronounced to the 

brightness areas of SaplingR plantations contextual, 

which were obviously contrasted to more VCD 

higher of neighbor areas (Fig. 19a) and enabled 

paddy bunds to be a part of image objects within 

FLpaddy was shown in Figure 19b. 
 
 

 
 

Figure 20: The relationship between BI and GLCM 

Entropy (all dir.) PAN for SaplingR and FLpaddy within 

very low VCD 
 

Table 15: Comparison between the referenced and 

estimated areas for SaplingR within very low VCD 

regions. 
 

Grid ID 
Reference 

(ha) 

Estimate 

(ha) 
% Error 

1 40.86 54.19 32.63 

2 41.78 46.76 11.93 

3 75.62 117.99 56.03 

4 155.54 182.01 17.02 

5 95.00 86.06 -9.41 

6 140.93 167.97 19.18 

7 1.50 0.77 -49.09 

8 89.82 109.72 22.16 

9 92.69 137.68 48.54 

10 121.94 154.65 26.83 

11 97.90 135.23 38.13 

12 17.24 34.22 98.54 

13 51.76 82.37 59.15 

14 120.38 185.49 54.09 

15 40.47 50.70 25.26 

16 30.49 46.42 52.24 

17 6.28 11.07 76.40 

18 39.56 73.65 86.16 

19 19.00 23.39 23.12 

20 17.85 30.83 72.69 

Total 1,296.62 1,731.18  

RMES 

RMSE/ Reference (%) 

22.80 

1.76 
  

 

 
Figure 22: Correlation between the reference and the 

estimated areas within very low VCD regions. 
 

The THAICHOTE rubber sapling map 

defined as less than one-year-old covered an area of 

approximately 70.69% of the totaled very low VCD 

regions, or 2,262.04 ha (Fig. 21). It is expected that 

the areas periodically decreased because of a 

decline in rubber prices that provoked stand logging 

on public land and more interest in traditional 

crops. The separability of the SaplingR from 

FLpaddy is clearly seen, with an RMSE of 22.80 

with an RMSE/Reference of 1.76% (Table 15). The 

high correlation between estimated and reference 

areas was 0.93 (Fig. 22); however, a high error 

percentage in each of the grids may have been 

produced due to uncontinuous rows of unhealthy 

SaplingR and herbaceous plants present in some 

parcels. This is easily confused with FLpaddy 

which we can observe in field observation. 
 

4.6 Different stages of rubber plantations map 

Figure 23 shows the distribution of 

mature, middle-age, young and sapling plantations 

in the study area. The areas of mature, middle-age, 

young and sapling plantations as of 2012 covered 

6.14, 4.69, 4.20 and 13.97%, respectively (Table 

16). To date, the young and sapling rubber 

plantations can be tapped, mature rubber stands can 

be logged, and an agricultural extension programme 

has been promoted by the government to decrease 

the surplus of rubber production. In addition to the 

extension programme, reforestation in public lands 

was extended to reduce the plantations in support of 

the higher price of rubber products. Rapidly 

increasing of rubber tree expansions effects to 

decreasing of paddy fields low land, which is 

unsuitable marginal areas for rubber trees [4][58]. 

The precision of rubber tree stage classes spatial 

information has efficiency for supporting the 

decision of sustainable natural rubber production 
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[59] and the extension agriculture programs of 

government for determining production technology 

appropriated to each of stand age classes rubber tree 

plantations, for example, the intercropping 

extension program; rubber-cassava-rice or rubber-

cassava intercropping systems for farmer higher 

income raising during the first 3 years old stand 

ages rubber trees [60].  

   
Table 16: The areas of mature, middle, young and 

sapling-aged rubber tree plantations for the study areas. 
 

Cover type 
Area 

Ha Percentage 

SaplingR  2,262.04 6.14 

YoungR  1,729.97 4.69 

MidR  1,546.74 4.20 

MatureR 5,148.13 13.97 

VDF 5,963.07 16.18 

MDF 5,511.37 14.95 

PerennialC 202.05 0.55 

DF 1,902.27 5.16 

FC 5,158.90 14.00 

Paddy 4,012.93 10.89 

FLpaddy 938.13 2.55 

Built up 800.96 2.17 

Water body 1679.87 4.56 

Total 36,856.43 100.00 

 
4.7 Overall Validation 

Overall validation was conducted to 

estimate all categories across the VCD subsets. The 

Cohen's kappa coefficient was 0.77 with an overall 

accuracy of 79 % (Table 17). Similarly, [61] 

applied GeoEYE and using a combination of multi-

scale image segmentation and rule set approach for 

tropical agricultural land use classification, which 

give the mean kappa coefficient of 0.77. While, the 

other classifier consisting of Mahalanobis Distance 

(MD), K-NN, SVM were performed to rubber tree 

growth map using SPOT-5 data [52], the analyses 

produced the accuracy of kappa coefficient more 

than 0.90, which higher than our study. However, 

application of THAICHOTE data and OBIA of our 

study be able to increase the accuracy of rubber tree 

stand age map nearly twofold of study conduct by 

[62], the OBIA phenological analysis of Landsat 

time series data for distinguishing rubber tree stand 

age into older 6 years old and less than 6 years old 

with a quite low kappa coefficient of 0.42. 

However, the application of Landsat data a 

moderate resolution satellite imagery for rubber 

tree stage plantations mapping could be improved 

by integrated PBIA and OBIA tree growth model, 

which produced kappa coefficient of 0.75 [54]. 

The accuracy of MidR (rubber trees 4-7 

years) was less than other rubber categories with 

user and producer accuracies of 69.23% and 

87.71%, respectively. Errors and difficulties 

encountered were inherent from mixed, diverse 

ground surface conditions, small agricultural 

parcels and the lack of consistent patterns of land 

use with drought and flooding sometimes occurring 

in the same year. Dynamic land use planning, 

infrastructure development and uncertain policy in 

the support of farmers support trends to shape the 

LCLU types. The appropriateness of this approach 

significantly differentiated SaplingR from the other 

stages of rubber plantations and other LCLU types. 

The ESP-2 tool automated working of OBIA was 

applied to the identification of coarse scale by 

which the separability of SaplingR was apparent. 

The application of imagery in the defoliation period 

to discriminate MatureR from the very dense 

forests has the drawback of some difficulty in data 

acquisition. 
 

5. CONCLUSION  

A synergistic approach that integrated 

OBIA, rubber tree phenology, satellite-derived 

indices, vegetation canopy density (VCD), feature 

selection, and intensive ground observation to map 

different stages of rubber plantations was applied to 

THAICHOTE data. Two levels of classification 

based on OBIA approach were performed for 

discriminating different of stand age rubber 

plantations from the other LCLU types in 

northeasternmost, Thailand. At the first level, 

multi-scale image segmentation of pansharpened 

imagery was performed to divide the image set into 

objects with different spectral and spatial 

characteristics. Incorporating the NDVI and BI into 

the objects, the image set was subdivided into four 

different subsets of VCD. Analyses were then 

performed on each of VCD subsets at the next level 

classification by using certain and a range of 

different approaches to discriminate stand age 

rubber tree plantations. 

The application of rubber tree phenology 

with mature rubber stands older than 7 years old 

shedding their leaves in February provoked the 

difference in NDVI values, which led to the 

differentiation between mature rubber trees more 

than 7 years old and very dense forest under the 

high VCD regions. A highly reliable result was 

obtained, with RMSE = 0.92% of the reference. For 

distinguishing the middle-age rubber plantations 

between 4-7 years old within the moderate VCD 

regions, the FSO tool was applied for feature 

optimization, which consisted of 11 layer values, 5 
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geometry and 5 texture features as inputs for the 

CART classifier and resulted in a high Cohen's 

kappa coefficient. Regarding the young rubber 

plantations between 1-4 years old with 

intercropping and herbaceous plants under the low 

VCD regions, the feature optimization comprised 

11 layer values, 4 geometries, and 7 textures and 

yielded satisfactory results with a high Cohen's 

kappa coefficient. For discriminating the newly 

planted sapling rubber trees less than 1 years old 

dominated by bare fallow land within the very low 

VCD regions, the texture feature of GLCM Entropy 

(all dir.) PAN was applied, which resulted in very 

large entropy in contrast to that of the fallow bare 

land and paddy fields with dry stubble cover. The 

RMSE was 1.76% of the reference. The final 

results included the mapping of different stages of 

rubber plantations and their associated areas with 

an overall accuracy of 79 % and Cohen’s kappa 

coefficient of 0.77.  

Any particular method cannot be adapted 

to the application of high-resolution satellite data 

for different stages of rubber plantations precision 

mapping. The integration of satellite-derived 

indices, image texture, plant phenology, intensive 

field observations based on OBIA approach plays a 

key role in a precision mapping for supporting land 

use and land cover change analysis via using GIS 

and remote sensing technology. 

This study is a limitation of THAICHOTE 

data, in which there are no shortwave infrared and 

thermal bands. For future work, the shortwave 

infrared and thermal bands from the other satellite 

such as Landsat or Sentinel-2 could be used to 

enhance the accuracy of rubber plantations and may 

be useful to determine the vegetation water content 

and burnt areas. The temporal data of vegetation 

indices could be taken to capture the phenological 

events of each different stages of rubber tree 

plantation to improve map accuracy. Moreover, as 

rubber trees require uplands and well-drained soil, 

using additional landforms can exclude areas of no-

rubber-tree plantations. Those areas are the low 

lands with poorly drained soil that are unsuitable 

for rubber trees. 
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Figure 1: The site of study area. Image Background: THAICHOTE image acquired 15th 
December 2012, Band Combination 4 2 3. 

 

 
 
 

Figure 2: The flowchart of the study 
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Figure 4: Locations of training areas for subdivision into four VCD subsets. 

 

 
 

Figure 5: The four VCD subset regions resulting from associating NDVI and BI. 
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Figure 6: Ground observations, High VCD: (a) Rubber trees > 7 years (MatureR), (b) Very dense forest (VDF), (c) forest 

plantation; Moderate VCD: (d) Rubber trees 4-7 years (MidR), (e) Moderately dense forest (MDF), (f) Field crop and 

herbaceous plants (FC); Low VCD: (g) Rubber trees 1-4 years with herbaceous plants (YoungR), (h) Rubber trees 1-4 years 

with intercropping (YoungR), (i) Paddy field with small grass and herbaceous(Paddy); Very Low VCD: (j) Rubber trees < 1 

years old (SaplingR), (k)  Fallow bare land and paddy field (FLpaddy) and (l) Paddy field with dry rice stubble cover. 
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Figure 7: Locations of ground observations used to validate classification within Moderate VCD and Low VCD 

regions. 

 

 
 

Figure 8. The four VCD subsets that consist of MatureR, MidR, YoungR and SaplingR,  

each found confused with other LCLU types. 
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Figure 9: Multi-scale segmentation OBIA and the association of NDVI with BI  

(A = High VCD, B = Moderate VCD, C = Low VCD, and D = Very Low VCD). 
 

 

Figure 12: The distribution of MatureR (rubber trees > 7 years) and very dense forest areas within High VCD regions. 
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Figure 14: CART model to estimate the MidR (rubber trees 4-7 years) and other LCLU within moderate VCD regions. 

 

 
 

Figure 15: The distribution of MidR (rubber trees 4-7 years) and other LCLU within moderate VCD regions. 
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Figure 17: CART model to estimate the YoungR (rubber trees 1-4 years) and other LCLU within low VCD regions. 

 

 
 

Figure 18: The distribution of YoungR (rubber trees 1-4 years) and other LCLU within low VCD regions. 
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Figure 21: The distribution of SaplingR (rubber trees < 1 years old) and FLpaddy within within very low VCD. 
 

 
 

Figure 23: The distribution of mature, middle, young and sapling-aged rubber tree plantations and other LCLU types 

in the study area. 
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Table 2: Number of training areas. 

 

Cover type 

Number of 

training 

areas 

Mature rubber trees older than 7 years old (MatureR) 89 

Middle-age rubber trees between 4 to 7 years old (MidR) 55 

Young rubber trees between 1 to 4 years old dominated by intercropping and herbaceous plants (YoungR) 84 

Newly planted sapling rubber trees less than 1 years old dominated by bare fallow land (SaplingR) 22 

Very Dense Forest (VDF)  63 

Moderately Dense Forest (MDF) 42 

Perennial crops and orchard (PerennialC) 29 

Degraded forest in association with grass and outcrop (DF) 30 

Field crop and herbaceous plants (FC) 70 

Paddy fields with small grass and herbaceous and some few sparse native tree (Paddy) 79 

Fallow bare land and paddy field with dry stubble cover (FLpaddy) 21 

Urban and Built up areas (Built up) 36 

Total 620 

 

 
Table 8: Features selected for CART classification for distinguishing MidR within moderate VCD region. 

 
Category Object Feature Definition 

Layer 

values 

1. Mean Blue 

2. Mean Red 

3. Mean NIR 

4. Mean NDVI 

5. Mean BI 

6. Std. Blue 

7. Std. Green 

8. Std. Red 

9. Std. NIR 

10. Std. BI 

11. Std. NDVI 

Mean values of image object in the Blue band. 

Mean values of image object in the Red band. 

Mean values of image object in the NIR band. 

Mean values of image object in the NDVI. 

Mean values of image object in the BI. 

Standard deviation image object in the Blue band. 

Standard deviation image object in the Green band. 

Standard deviation image object in the Red band. 

Standard deviation image object in the NIR band. 

Standard deviation image object in the BI. 

Standard deviation image object in the NDVI. 

Geometry 12. Asymmetry 

13. Shape index 

 

14. Elliptic fit 

15. Rectangular Fit 

16. Roundness 

The ratio of the lengths of minor and the major axes. 

The border length feature of the image object divided by four times 

the square root of its area. 

An ellipse with the same area as the selected image object. 

A rectangule with the same size as the considered image object.  

The difference of the enclosing ellipse and the enclosed ellipse. 

Texture 17. GLCM Correlation PAN 

18. GLCM Entropy PAN 

19. GLCM Dissimilarity PAN 

20. GLDV Entropy PAN 

21. GLDV Mean PAN 

Grey level co-occurrence matrix correlation for PAN. 

Grey level co-occurrence matrix entropy for PAN. 

Grey level co-occurrence matrix dissimilarity for PAN. 

Grey level difference vector entropy for PAN. 

Grey level difference vector mean for PAN. 
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Table 11: Features selected for CART Classification for distinguishing YoungR within low VCD region. 

 
Category Object Feature Definition 

Layer values 1. Mean Green 

2. Mean Red 

3. Mean NIR 

4. Mean NDVI   

5. Mean BI 

6. Std. Blue  

7. Std. Green 

8. Std. Red 

9. Std. NIR 

10. Std. BI 

11. Std. NDVI 

Mean values of image object in the Green band. 

Mean values of image object in the Red band. 

Mean values of image object in the NIR band. 

Mean values of image object in the NDVI. 

Mean values of image object in the BI. 

Standard deviation image object in the Blue band. 

Standard deviation image object in the Green band. 

Standard deviation image object in the Red band. 

Standard deviation image object in the NIR band. 

Standard deviation image object in the BI. 

Standard deviation image object in the NDVI. 

Geometry 12. Asymmetry 

13. Border index 

 

14. Rectangular Fit 

15. Roundness 

The ratio of the lengths of minor and major axes. 

The ratio between the border lengths of the image object and the 

smallest enclosing rectangle. 

A rectangule with the same size as the considered image object.  

The difference of the enclosing ellipse and the enclosed ellipse. 

Texture 16. GLCM Correlation PAN 

17. GLCM Entropy PAN 

18. GLCM Dissimilarity PAN 

19. GLCM Contrast PAN 

20. GLDV Entropy PAN 

21. GLDV Mean PAN 

22. GLDV Contrast PAN 

Grey level co-occurrence matrix correlation for PAN. 

Grey level co-occurrence matrix entropy for PAN. 

Grey level co-occurrence matrix dissimilarity for PAN. 

Grey level co-occurrence matrix contrast for PAN. 

Grey level difference vector entropy for PAN. 

Grey level difference vector mean for PAN. 

Grey level difference vector contrast for PAN. 

 

 
Table 17: Agreement between field-based observations and image-based classification for all categories 

 
Image based 

classification 

Field based observation Accuracy (%) 

1 2 3 4 5 6 7 8 9 10 11 12 Total User’s Producer’s 

1 24 0 0 0 0 0 0 0 0 0 7 0 31 77.42 96.00 

2 0 32 0 0 0 0 0 1 2 2 0 1 38 84.21 88.89 

3 0 0 27 4 2 3 2 0 1 0 0 0 39 69.23 87.71 

4 0 0 0 16 2 1 0 0 2 0 0 0 21 76.19 57.14 

5 0 0 0 8 15 0 0 0 0 0 0 0 23 65.22 75.00 

6 0 0 3 0 1 21 1 0 1 0 0 0 27 77.78 80.77 

7 0 0 1 0 0 0 6 0 0 0 0 0 7 85.71 66.67 

8 0 0 0 0 0 0 0 13 0 2 0 0 15 86.67 72.22 

9 0 1 0 0 0 1 0 2 37 2 1 1 45 82.22 84.09 

10 0 1 0 0 0 0 0 1 1 25 1 0 29 86.21 80.65 

11 1 0 0 0 0 0 0 0 0 0 4 0 5 80.00 30.77 

12 0 2 0 0 0 0 0 1 0 0 0 17 20 85.00 89.47 

Total 25 36 31 28 20 26 9 18 44 31 13 19 300   

Overall accuracy (%)          79.00 

Cohen's kappa coefficient   0.77 

LCLU type: 1= SaplingR; 2= YoungR; 3= MidR; 4= MatureR; 5= VDF; 6= MDF; 7= PerennialC; 8= DF; 9= FC; 10= 

Paddy; 11= FLpaddy; 12= Built up 

 

 


