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ABSTRACT 
 

Since the good representation of the complex networks structure can effectively communicate more 
information and can help explore them and understand their behaviors, the purpose of this paper is to 
present and model the structure of social networks. 
Mathematical concepts can be a powerful tool for modeling. However, complex networks in the real world 
are far too complicated to model in their entirety. Therefore, it is important to identify the information that 
the generated model may help illustrate.   
In the present work, we use the spiral of Pythagoras and a combination of mathematical concepts in pre-
topology, graph theory and fuzzy logic to generate two different models: the Rings Model and the Member-
ship Matrix. The first proposed model has a geometric representation which makes all the nodes visible and 
every direct link between two nodes illustrates the number of, direct and indirect, paths that connect them 
and the cost of each one. The second proposed model is a matrix where every column depicts the relation 
between the corresponding node and the rest of the network. 
The most important benefit of the models presented in this paper is that they allow the human eye to get 
information about the strength of connection between the nodes, of complex networks, in an easy and fast 
way. 
Keywords: Spiral of Pythagoras, Pretopology, Fuzzy Logic, Social Networks, Complex Networks, 

Mathematical Modeling, Matrix, Rings Model.) 
 
1. INTRODUCTION  
 

With the huge size of complex networks, it is 
necessary to represent their structure with models 
that have a high readability. A model with a high 
readability is a model that optimizes the search for 
information.  
In the last decades, many complex networks lend 
themselves to the use of graphs [1-6] for analyzing 
and modeling their structure. Usually, the vertices 
of the graph stand for the nodes of the network and 
the edges between vertices stand for (possible) 
interactions between the nodes. 
We cite for example [7-17]: Erdos-Renyi random 
graph model, Barabasi-Albert model, Watts-
Strogatz Small World model, The Kleinberg model. 
However, all these models have some limitations. 
In other words, in the Erdos-Renyi model the edges 
are randomly added, the selected edge had the 
probability p to be selected and the next edge has 
also the probability p to be selected. This makes p a 
constant not a probability. 

Moreover, the both implementations (the model A 
and the model B) of Albert and Barabasi model 
(BA) fail to represent real-world networks because: 
 The model A retains growth but does not 

include preferential attachment. The 
probability of a new node connecting to any 
pre-existing node is equal. 

 The model B retains preferential attachment 
but eliminates growth. The model begins with 
a fixed number of disconnected nodes and adds 
links, preferentially choosing high degree 
nodes as link destinations. 

However, the growth and the preferential 
attachment are simultaneously needed in real 
networks. Therefore, neither the number of nodes 
nor the probability can be fixed. 
Additionally, in the Small World model, of Watts-
Strogatz, the number of nodes and the probability, 
to rewire edges, are fixed. Therefore, this model 
does not represent the growth and the dynamics that 
characterize the real-world networks. 
Finally, it is noticeable that the network size 
influences the readability of the Kleinberg model. 
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Figure 2: The Construction of the Pythagorean Spiral. 

 

In other word, the more the number of nodes and 
the number of edges increase the more complicated 
the structure of the model becomes. 
 
A part of the modeling process is determining the 
answer we are searching and the type of structure or 
operation we are looking for. Therefore, the main 
objective of this paper is to propose mathematical 
models that represent the structure of social 
networks and optimize the search of information. 
In the present work, we illustrate two mathematical 
models with high readability: The Rings Model and 
the Membership Matrix. 
 The first proposed model has a geometric 
representation which makes all the nodes visible. In 
addition, just by looking at the edge that connects 
the nodes X and Y we may know how many paths 
connect them and the cost of each one. 
The second proposed model has a matrix 
representation where every column depicts the 
relation between the corresponding node and the 
rest of the network.  
 
The remainder of this paper is structured as follows. 
Section 2 reviews the mathematical concepts used 
in the proposed models. Section 3 provides a 
historical overview about our assumption of using 
the Pythagorean spiral. Section 4 and 5 present the 
proposed models. Section 6 illustrates an 
application of the Rings model in the real-world 
networks. 
 

 

2. DEFINITIONS 

 
2.1 The K-th Order Neighbor 

Let the nodes B, C, D, E, F, G and H be the 
neighbors of the node A (See Figure 1).  According 

to the degree of neighborhood, the neighbors of A 
can be classified into: The 1st order neighbors (B, C 
and D), the 2nd order neighbors (E, F and G) and the 
3th order neighbors (H). 
 

 
 

Figure 1: The K-th Order Neighbor. 
 

2.2 The Membership Function 
 
The membership function for a fuzzy set A on 

the universe of discourse X is defined as  
µA:  X → [0,1], where each element of X is mapped 
to a value between 0 and 1. This value, called the 
membership degree, quantifies the grade of 
membership of the element in X to the fuzzy set A 
[18-20]. 

 
2.3 The Construction of the Pythagorean Spiral 
 

Figure 2 depicts the drawing process of the 
Pythagorean spiral [21-23]. 

 
 

3. HISTORICAL OVERVIEW 

 
The main reasons for using the Pythagorean 

spiral in the present work can be summarized in 
defining a distance equal to one for neighbors 
nodes that are directly connected and greater or 

1st order neighbors 

2nd order neighbors 

3th order neighbors 
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Figure 3: The Pythagorean Spiral 
 

equal to one between a node and its K-th order 
neighbor. 
In other words, suppose we have 4 vertices: A, B, C 
and D where B is a neighbor of A, C is a neighbor 
of B and D is a neighbor of C. Unlike an ordinary 
graph where the nodes are drawn anywhere and the 
lengths of edges have no importance, in this paper 
we took into account the graph spatialization (how 
the nodes occupy the space) by using the 
Pythagorean spiral. For example, in order to draw 
the graph corresponding to the 4 vertices above we 
do the following steps: 
 
 B is a neighbor of A: To draw B, we draw a 

line segment onto A (See Figure 3-(a)). 
 C is a neighbor of B: To draw C, we add 

another line segment onto B with a right angle 
(See Figure 3-(b)). 

 D is a neighbor of C: To draw D, we add 
another line segment onto C, the end of the 
hypotenuse AC, with a right angle (See Figure 
3-(c)). 
 

By looking at Figure 3-(c), A and B (Resp. B and C 
(Resp. D and C)) are direct neighbors, thus: 
 

𝑑(𝐴, 𝐵) = 𝑑(𝐵, 𝐶) = 𝑑(𝐶, 𝐷) = 1 
 

A and C (Resp. A and D) are not direct neighbors: 
C (Resp. D) is the 2nd (Resp. 3th) order neighbor of 
A, thus: 

d(A, C) = √2  and d(A, D) = √3   
 

 

Likewise if we search the distance between D and 
its neighbors we need to take D as a root (instead of 
A) as shown in figure 3-(d). Hence we have:  
 

𝑑(𝐷, 𝐶) = 1, 𝑑(𝐷, 𝐵) = √2, 𝑑(𝐷, 𝐴) = √3   
 
Last but not least, our assumption of using the 
Pythagorean spiral in modeling, complex networks 
and particularly social networks, faced two 

problems: The first is that a node (individual, page, 
event), in general, has many neighbors as in the 
case of social networks. The second is the cycles. 
We get to handle these problems as follows. 
Concerning the first issue, we look at the 
Pythagorean spiral in three dimensions instead of 
two dimensions. In other words: 
 
 For the 1st order neighbors of the root node of 

the spiral: The only condition between this 
special node and its 1st order neighbors the 
distance must be 1. By going back to the 
previous example and looking at Figure 3-(a), 
it is clear that B can be any point of the set of 
points that consists the sphere with A center 
and 1 radius. Hence, the root node A can have 
an infinite number of (direct) neighbors. 

 For the remaining nodes of the spiral: By 
looking at Figure 3-(b), to draw C the first 
order neighbor of B we needed to fulfill two 
conditions:  
 

𝑑(𝐵, 𝐶) = 1 and  (𝐵𝐶) ⊥ (𝐴𝐵). 
 

Thus C can be any point of the set of points 
that consists the perimeter of the base (directrix 
) of the right circular cone with apex A and 
height AB and radius BC=1 as shown in Figure 
4-(a). Hence, B can have an infinite number of 
(direct) neighbors. Likewise to draw D the first 
order neighbor of C (Figure 3-(c)) we needed 
to fulfill two conditions:  
 

𝑑(𝐶, 𝐷) = 1 and (𝐷𝐶) ⊥ (𝐴𝐶) 
   
Thus, D can be any point of the set of points 
that consists the directrix (perimeter of the 
base) of the right circular cone with apex A and 
height AC and radius CD=1( see Figure 4-(b)). 
Hence, C can have an infinite number of 
(direct) neighbors. In brief, the number of 
neighbors is not a problem, we can draw as 
much as we need of neighbors. 
 

Concerning the second issue (the cycles): We 
assume that an individual A will be represented by 
a set of nodes {A1, A2, A3,….,An} (where n is an 
integer greater than or equal to 1) rather than one 
node.  
 

Finally, using a set of nodes to represent an 
individual is just an intermediate step in our work, 
it does not appear in the final models. 
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Figure 4: Infinite Number Of Neighbors 
 
 

 
 

Figure 5: The New Form Of The Spiral 
 

 
4. THE FIRST PROPOSED MODEL: THE 

RINGS MODEL 

 
4.1   Model Description 
 

Our first model relies on the assumption that a 
social network can be represented by isolated 
components. In each component, every pair of 
nodes (A,B) is connected by at least one edge, the 
cost of each edge that connect the pair (A,B) is 
d(A,B) where d(A,B) is the distance between A and 
B that is gotten by using the Pythagorean spiral. 
Furthermore, each component takes the shape of a 
ring.               

                              
4.2   New Form of the Pythagorean Spiral 
 

The direct use of the Pythagorean spiral in the 
distances calculation process gave us irreadble 
structure. Thus, we make the following 
simplification: 

 
  We straighten the spiral (see Figure 5-(a)). 
 We replace edges with arrows to indicate the 

direction of the Pythagorean spiral 
construction.   

 We add columns: the first column contains the 
root node of spiral, the kth column contains the 
(k-1)th order neighbors of the root node. 

 By looking at Figure 4, we deduct that the 
distance between the root node of the 
Pythagorean spiral (for example the node A in 
Figure 3) and its kth order neighbors is √k − 1. 
Thus, in the top of the kth column we put 
√k − 1  (see Figure 5-(b)). 

 
In the remainder of this paper, we use the new 

form of the Pythagorean spiral (see Figure 5-(b)) 
instead of the real form. 
 
4.3   The Exploring Rule 
 

In the exploring process, we use the following 
rule: 
Let A and B be nodes. A and B belong to the same 
spiral S: If A is already displayed as a direct or an 
indirect predecessor of B, A must not be added as a 
successor of B in S. 
 
4.4   The Distances Calculation Algorithm 
 

Figure 6 depicts the algorithm that we use to 
calculate the distances between a node and its k-
order neighbor. 

 
4.5    Illustration: Calculation Of The Distances 
 

For illustration purposes, we consider the list 
of individuals and their friends presented in Table 
1: 
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Initial conditions 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 6: The Distances Calculation Process 
 

 
Table 1: Relations between individuals 

 
Individual Friends 

A 

H 

J 

M 

H 
A 

N 

J 
A 

F 

F 
J 

M 

M 
A 

F 

N H 

 
4.5.1 Calculation of the distances between F and 

his neighbors. 
To calculate the distance between the 

individual F and his neighbors, we have to make 
the node F the root node of the Pythagorean spirals, 
thus we put it in the first column (See Figure 7-(a)).  
The individual F has 2 friends (See Table 1):  J and 
M, we put them in the second column (See Figure 
7-(a)) and we assign to them the index 1: As we 
already assume that an individual X will be 
represented by a set of nodes {X1, X2,…,Xn}, thus 
for every new occurrence of X we assign a new 
value to the X index. 
Next, we explore the first order neighbors of each 
node in the second column (Breadth-first search): 

 
 
 
 
 
 
 
 
 
 
 
 
 
 For J1, J has 2 friends: F and A, they are the 1st 

order neighbors of the node H1 and the 2nd 
order neighbors of the node A. Therefore, in 
the 3th column we write A1 but according to the 
Exploring Rule we cannot write F: F is 
already the predecessor of J1 (See Figure 7-
(b)). We use 1 as index for A1 because this is 
the first occurrence of A.  

 For M1, M has 2 friends: A and F thus we add 
A2 to the graph seen in Figure 7-(a), but 
according to the Exploring Rule we do not 
add F: F is already a predecessor of M1 (See 
Figure 7-(a)). Hence we get the graph 
presented in Figure 7-(b). We use 2 as index 
for A2 because this is the second occurrence of 
A. 

 
Next, we explore the nodes of the third 

column and we deploy their first order neighbors. 
For the node A1 (Resp. A2), A has 3 friends: J, H 
and M. By applying the Exploring Rule, we add 
just M2 and H1 (Resp. J2 and H2) to the graph seen 
in Figure 7-(b) because J (Resp. M) is already a 
direct predecessor of A1 (Resp. A2) in the spiral F→ 
J1→A1 (Resp. F→M1→A2). Thus we get the graph 
presented in Figure 8. 

 

Next, we explore the nodes of the 4th column 
and deploy their first order neighbors: 

Selection of a node X 

Exploring the neighborhood 
of X 

Concatenation of the 
distances 

End 

 
 

Figure 7 : Calculation Of Distances Between  F And 
His Neighbors 

 
 

Figure 8: Calculation Of Distances Between F 
And His Neighbors 
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 For M2, M has 2 friends: A and F. By looking 

at the spiral or the path F⟶J1⟶A1⟶ M2, M2 
has already A (Resp. F) as direct (Resp. 
indirect) predecessor. Thus according to the 
Exploring Rule, we add nothing to the graph 
seen in Figure 8. 

  For H1 (Resp. H2), H has 2 friends: A and N. 
Thus according to the Exploring Rule, we add 
just N1 (Resp. N2) as shown in Figure 8. 

 For J2, like M2, J has two friends but they are 
already predecessors of the node J2. Thus 
according to the Exploring Rule, we add 
nothing to the graph seen in Figure 8. 
 
Next, we explore the nodes of the 5th column 

and deploy their first order neighbors. For N1 (Resp. 
N2), the individual N has only H as a friend. But 
according to the Exploring Rule, we add nothing to 
the graph seen in Figure 8 because N1 (Resp. N2) 
has already H as a predecessor (see Figure 8). 
 

Finally, according to the exploring rule we 
cannot add more nodes to the graph presented in 
Figure 9. Therefore we get to the end of the 
exploring process. 
 
 

 
 
 
 
By looking at Figure 9, the graph is composed of 4 
Pythagorean spirals (in the new form): 
 
 The first spiral: F →J1→A1→M2. 
 The second spiral: F →J1→A1→H1→N1. 
 The third spiral: F →M1→A2→ H2→N2. 
 The fourth spiral: F →M1→A2→J2. 
 
Furthermore, in the graph presented in Figure 9, M 
has 2 occurrences: M1 and M2, that means anything 
shared by F can reach M in 2 different ways: The 
first path is F→M1, the length of this path is 

d(F,M1)=1. The second path is F →J1→A1→M2, the 
length of this path is d(F,M2)=√2. 
Moreover, these paths are independent: if F deletes 
M from his contact list, M can still receive what F 
shared because the fact that F deletes M from his 
contact list is actually deleting the first path. Thus if 
F really want to delete any exchange or sharing 
with M, he needs to delete all the gateways that 
connect him to M in other words he has to delete J 
from his contact list. 
Last but not least, the graph seen in Figure 9 helps 
us determinate the distance between F and his 
neighbors (See Table 2). For example, the distances 
between F and the nodes of the 4th column (see 
Figure 9) are: 
 

d(F,M2)=d(F,H1)=d(F,H2)=d(F,J2)=√3. 
 

H has 2 occurrences in this column thus we write 
the both distances d(F,H1) and d(F,H2) in the table 
of distances (Table 2) because the paths 
F→J1→A1→H1 and F→M1→A2→H2 are 
independent. 
 
 

Table 2: Distances between F and his neighbors 
 

 A H J F M N 

F 
√2 √3 1 0 1 √4 

√2 √3 √3  √3 √4 
 
 
4.5.2   The results of distances calculation 

We follow the same process used in the 
calculation of distance between F and his neighbors 
to calculate the distances between A (Resp. H 
(Resp. J (Resp. M (Resp. N)))) and his neighbors. 
Then we concatenate the tables of distances. In the 
end, we get the distances presented in Table 3. 
 
4.6   Rings Model 
 

On the one hand, by looking at Table 3 we 
notice that the distance between every pair of nodes 
is finite. Thus, we represent the connection between 
every pair of individuals as shown in Figure 10. 

 
 
 

 
Figure 10: Connection Between Two Nodes, The 
Distance Between A And J Has 2 Values: 1 And √3, 
These Values Are Used As The Cost Of The Edge 
(A,J) 

 
 
 
 
 
 
 
 
 
Figure 9: Calculation Of Distances Between F 

And His Neighbors 
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Figure 11: The Rings Models 

 
Table 3: Distances Between Every Pair Of 

 Individuals 

 
 A H J F M N 

A 
0 1 1 √2 1 √2 

  √3 √2 √3  

H 
1 0 √2 √3 √2 1 

  √4 √3 √4  

J 
1 √2 0 1 √2 √3 

√3 √4  √3 √2 √5 

F 
√2 √3 1 0 1 √4 

√2 √3 √3  √3 √4 

M 
1 √2 √2 1 0 √3 

√3 √4 √2 √3  √5 

N 
√2 1 √3 √4 √3 0 

  √5 √4 √5  

 
 
In addition, by arranging the nodes as a ring and 
adding all the possible connections we get a ring 
where every pair of nodes is connected as shown in 
Figure 11-a. 
 

In the other hand, we assume that the structure 
of social networks is composed of isolated rings: 
For illustration purposes, we consider the 
neighborhood relations presented in Table 4. Then 

we calculate the distance between the individuals of 
this table (See Table 5) and we create the 
corresponding rings model (See Figure 11-b). 

In the end, we can see that there is no 
neighborhood relation between the individuals of 
Table 1 and the individuals of Table 4. No 
neighborhood relation no edge between the both 
rings. Hence, we get two isolated rings (See Figure 
11). 
 

Table 4: Neighborhood Relations 
 

Individual Friends 

I 
R 

L 

R 

L 

O 

I 

L 
I 

R 

O R 

 
 

Table 5: Distance between  neighbors 
 

 I R L O 
I 0 1, √2 1, √2 √2, √3 
R 1, √2 0 1, √2 1 

L 1, √2 1, √2 0 √2, √3 
O √2, √3 1 √2, √3 0 
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Figure 12: Evolution of the network structure: After merging, the two rings become one big ring  

 
Moreover, if the individual I and the individual J 
become friends, the two rings seen in Figure 11 are 
merged. Therefore we get a big ring as shown in 
Figure 12.  
 
4.7   Discussion 
 
The main goal of modelling is to amplify cognition 
by reducing the search for information and 
encoding them. The rings model is not a perfect 
model but it is better than the existed structure 
models because it makes the structure of social 
network more readable and it provides interesting 
information. In other words: 
 
 The geometric presentation of the model makes 

the nodes and the edges visible despite the size 
of the network, we can follow every edge from 
source to destination. 

 The global structure of social network is 
composed of isolated rings. The size of the 
rings may change by individuals (or nodes) 

joining in or withdrawing from one or more 
rings. 

 Parallel calculation is done in the generation 
process. In other words, the calculation of the 
distances between : 
 
 The individual F and his neighbors. 
 The individual A (Resp. H (Resp. J (Resp. 

M (Resp. N )))) and his neighbors. 
 

can be done in parallel.  
  In the update process, the previous structure is 

used. 
  The cost of the edge (A, B) may show how 

closely and strongly connected A and B are. 
 The diameter of the ring R is: 

(max({d(X,Y) /X, Y ∈ R}))2 
 
In addition, by using the rings model we distinguish 
between the active degree and the passive degree. 
We define the passive degree K of the node X as 
follows: 
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 KX = n-1 where n is the number of the ring 
nodes. 

  If X and Y belong to the same ring R then   
KX = KY. 

 
It (the passive degree) shows how large the node 
network is. In other words, if the active degree tells 
us how many first order neighbors the node has, the 
passive degree tells us how many Kth order 
neighbors it has. 
 
5. THE SECOND PROPOSED MODEL: THE 

MEMBERSHIP MATRIX 
 
5.1   Definition Of The Membership Function 
 
        We define the membership function F as 
follows: 
 
  FX(X)  = 1 
 FX(Y) = 0 if X and Y are isolated (there is no 

direct or indirect neighborhood relation 
between X and Y).  

 FX(Y)= 
ଵ

୫୧୬(ௗ(,))
 if Y is the K-th order 

neighbor of  X. 
 
Where FX(Y) is the membership degree of Y to the 
neighborhood of X. 
 
5.2    Constructing The Membership Matrix 
 
5.2.1 Algorithm 

Figure 13 depicts the algorithm that we use to 
generate the Membership matrix. 
5.2.2 Illustration 
To construct the Membership matrix, we follow the 
following steps: 
 
1) From Table 3 (Resp. Table 5), we extract the 

table of minimum distances (see Table 6 (Resp. 
Table 7)) by keeping just the minimum value of 
each cell.  

2)  We calculate the degree of membership of an 
individual to the neighborhood of another 
individual. For example, to calculate the degree 
of membership of the individuals of Table 1 and 
Table 4 to the neighborhood of the individual A, 
we use the  following relations (Definition of 
our membership function F) : 
 FA (A) =1. 
 FA(Y) =0 if A and Y are isolated.  

 FA(Y )= 
ଵ

୫୧୬(ୢ(,ଢ଼))
 If Y is a K-th order 

neighbor of A. 

 
Figure 13: The Generation Process Of The 

 Membership Matrix 

 
Table 6: The Minimum Distances 

 
 A H J F M N 

A 0 1 1 √2 1 √2 
H 1 0 √2 √3 √2 1 

J 1 √2 0 1 √2 √3 
F √2 √3 1 0 1 √4 
M 1 √2 √2 1 0 √3 
N √2 1 √3 √4 √3 0 

 
 

Table 7: The Minimum Distances 
 

 I R L O 
I 0 1 1 √2 
R 1 0 1 1 

L 1 1 0 √2 
O √2 1 √2 0 

 
Thus: 
 
 FA(A)  = 1, 

 FA(M) = FA(J) = FA(H) =  
ଵ

୫୧୬(ୢ(,))
 = 1 

  FA(F) = FA(N)= 
ଵ

୫୧୬(ௗ(,))
  = 

ଵ

୫୧୬(ௗ(,))
 = 

ଵ

√ଶ
  

 There is no neighborhood relation between A 
and the individuals of Table 4. So A and I 
(Resp. R (Resp. L (Resp. O))) are isolated. 
Thus: FA(I) = FA(L) = FA(O) = FA(R) = 0. 

 
We organize these values into a table (See Table 8). 

Initial conditions 

Generation  
of the minimum distances 

Calculation 
of the membership degrees 

Concatenation 
of the membership degrees 

End 
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Table 9 : Membership Matrix 

 
 A H J F M N I R L O 

A 1 1 1 1

√2
 

1 1

√2
 

0 0 0 0 

H 1 1 1

√2
 

1

√3
 

1

√2
 

1 0 0 0 0 

J 1 1

√2
 

1 1 1

√2
 

1

√3
 

0 0 0 0 

F 1

√2
 

1

√3
 

1 1 1 1

√4
 

0 0 0 0 

M 1 1

√2
 

1

√2
 

1 1 1

√3
 

0 0 0 0 

N 1

√2
 

1 1

√3
 

1

√4
 

1

√3
 

1 0 0 0 0 

I 0 0 0 0 0 0 1 1 1 1

√2
 

R 0 0 0 0 0 0 1 1 1 1 

L 0 0 0 0 0 0 1 1 1 1

√2
 

O 0 0 0 0 0 0 1

√2
 

1 1

√2
 

1 

 

 
Table 8: The Membership Degrees To  

The Neighborhood Of A 
 

 A 

A FA (A) =1 

H FA (H) =1 

J 1 

F 1

√2
 

M FA (M) =1 

N 1

√2
 

I 0 

R 0 

L 0 

O 0 

 
 
Likewise, we calculate the membership degree to 
the neighborhood of every individual. In the end we 
get the matrix presented in Table 9. 

 
5.3   Discussion 
 

Unlike the Adjacency Matrix, the Membership 
Matrix provides more information about the 
relation between a node and the rest of the network. 
For example, By just using the Membership Matrix 
presented in Table 9 and by looking at the first 
column of this matrix (the column corresponding to 
A) we can deduct: 
 
 H is a direct neighbor of A because FA(H)=1. 
  N is an indirect neighbor of A because  

 0 < FA(N) < 1. 
 The individual J is near to A than N because 

FA(J) > FA(N) (1 > 
ଵ

√ଶ
 ). 

 The individual I is not connected to the 
network of A because FA(I) = 0. 

 Every individual X who has 0<FA(X)≤1 can 
receive what the individual A shares. 

 Every individual X who has FA(X) = 0 can 
never receive what the individual A shares. 

 
6. APPLICATION 
 

Complex networks in the real world are far too 
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Figure 14: The rings model of Morocco's national airline routes: The airport ESU and OZG are isolated: 
they are not connected to the national airports of Morocco however they are connected to the international 
airports. This graph is obtained by using JUNG JAVA graph library [27]. 

complicated to model in their entirety. Hence, when 
generating models, it is necessary to determine 
what information we are seeking to get just by 
looking at the model. 
The airline routes network is one of the most 
complex networks used nowadays. Drawing 
directly this network gives a complicated structure 
(review the graph [24]). This structure may become 
more complicated if the direction of the routes was 
taken into account and every possible route 
between two airports was represented. 
 

The proposed models are not limited to social 
networks, they can be used to represent the 
structure of many other complex networks. 
Therefore, as the first application of the rings model 
in the real-world networks, we generate the rings 
model of Morocco's (Resp. Tunisia's) national 
airline network. 
An airline network is composed of directional 
airline routes which connect two locations. Thus, 
from routes.dat [25-26], we extract the graph 
𝐺(𝑉, 𝐸) (Resp. 𝐺′(𝑉′, 𝐸′) ) where: 

 
  V (Resp. V′) is the set of airports codes inside 

Morocco (Resp. Tunisia).  
 𝐸 (Resp. 𝐸′) is the set of arrows (X, Y) where X 

is the source airport code and Y is the 
destination airport code. 

 
Then we use 𝐺(𝑉, 𝐸) (Resp. 𝐺′(𝑉′, 𝐸′) )  to 
generate the rings model presented in Figure 14 
(Resp. Figure 15) and we opt to display the square 
of the distances to avoid the approximation of the 
square root.  
In addition, to illustrate the evolution of the 
network, we add the direct routes between the two 
countries. Therefore, the rings presented in Figure 
14 and Figure 15 are merged as shown in Figure 16. 
  

Unlike other models, the rings model optimizes 
the search of information. In other words, it (the 
rings model) permits to obtain more information in 
less time. For example, by comparing the graphs 
presented in figure 17 and figure 14, it is clear that  
getting information about the strength of the  
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Figure 16: Evolution of airline network structure of Morocco and Tunisia. This graph is obtained by using JUNG 
JAVA graph library [27]. 

 

 
 
Figure 15: The Rings model of Tunisia's 
national airline routes. This graph is 
obtained by using JUNG JAVA graph library 
[27]. 

 

connection between national airports of Morocco is 
faster by using the rings model (Figure 14) than 
using the graph presented in Figure 17. Despite the 
fact that the both graphs (Figure 14 and Figure 17)  
are using the same database (Routes.dat [25]). For 
instance: By dragging and zooming out the nodes 
GLN and VIL, we may know how many paths can 
be used to go from the airport GLN to the airport 
VIL (Resp. from VLN to GLN) and the cost of each 
path without looking at the rest of the graph. For 
example, in Figure 14, the cost of the arrow 
(GLN,VIL) is  3;4;5 that means to go from the 
airport GLN to the airport  VIL, by using the 
national airline network of Morocco, there are 3 
different paths: the first (Resp. the second (Resp. 
the third)) path uses 2 (Resp. 3 (Resp. 4)) 
intermediary airports. 
 

Finally, whatever the network size, the rings 
model highlights information about the connection 
between a node and the rest of the network.  
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Figure 17: National airline routes network of Morocco. This graph is extracted from [26]. 

 
Therefore, the human eye may get information 
about the connection between two nodes in an easy 
and fast way as already illustrated in Figure 14. 

 
7. CONCLUSION 
 

Complex network modeling has a rich history. 
In this paper, we have presented two new models: 
The Rings model and the Membership Matrix, the 
both represent the structure of complex networks in 
particularly social networks.   
The most important characteristic of these models 
(The Rings model and the Membership Matrix) is 
the high readability. In other words, the huge size 
of complex networks makes the human eye struggle 
to get information about the connection between 
nodes. However, the mathematical models 
proposed in the present work focus on highlighting 
the information that the human eye may look for 
which helps making its (the human eye) searching 
easier and faster. 
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