
Journal of Theoretical and Applied Information Technology 
15th March 2019. Vol.97. No 5 

 © 2005 – ongoing  JATIT & LLS    

 

ISSN: 1992-8645                                                         www.jatit.org                                                        E-ISSN: 1817-3195  

 
1457 

 

EXTENDING THE TRANSLATION FROM PSEUDOCODE TO 
SOURCE CODE WITH REUSABILITY 

 

1SHEILA NURUL HUDA, 2*ZAINUDIN ZUKHRI, 3TEDUH DIRGAHAYU, 4CHANIFAH INDAH 
RATNASARI 

1,2,3,4 Department of Informatics, Universitas Islam Indonesia, Yogyakarta, Indonesia 

E-mail:  1sheila@uii.ac.id, 2zainudin@uii.ac.id, 3teduh.dirgahayu@uii.ac.id, 4chanifah.indah@uii.ac.id 
* Corresponding author   

 
 

ABSTRACT 
 

Pseudocode is made of a set of words in a natural language and a set of conventions to define algorithms. 
Pseudocode is written in a natural language that is convenience for students. In our previous work, we have 
developed an automatic translation from pseudocode into source code. In this paper, we extend it to handle 
constructs which have not been covered yet, including two types of iteration, functions, and procedures call 
to complete all constructs for defining algorithms. Our translation approach uses an intermediate model in 
XML that benefits us with the reusability of translation modules. Using reusability, we develop a new 
translation from pseudocode in English to source code in C++. Pseudocode and the corresponding 
intermediate model are Platform-independent Models (PIMs). This allows us to translate them to source 
code in different programming languages. The source code resulted from the translation process is 
Platform-Specific Model (PSM). In the translation process, it must be ensured that all models, i.e. 
pseudocode, the corresponding intermediate model, and the resulted source code, represent the same 
algorithm. Therefore, we define a conceptual metamodel for defining all the models. This paper contributes 
a new approach that allows reusability based on a conceptual metamodel for preserving the behavioral 
equivalence between all the models.  

Keywords: Pseudocode, Source Code, Conceptual Metamodel, Translation, Reusability 
 
1. INTRODUCTION  
 

In learning algorithms, there are two types of 
students, i.e. (i) students who prefer to use a 
graphical method, e.g. flowchart, and (ii) students 
who prefer to use a verbal method, e.g. pseudocode 
[1]. In spite of this fact, introductory textbooks in 
computer science mostly present algorithms 
verbally using pseudocode. An algorithm defines 
explicitly what must be done by a computer. The 
algorithm is later implemented in a chosen 
programming language as a computer program. 

Pseudocode is made of a set of words in a natural 
language and a set of conventions to define 
algorithms [2]. Pseudocode is usually written in a 
natural language that is convenience for the 
students. For example, pseudocode in most 
textbooks in Indonesia uses Bahasa Indonesia. The 
use of a natural language, instead of an unfamiliar 
programming language, is intended to make easier 
for the students in understanding algorithms [3]. 

The widespread use of computer programs in 
various fields other than computer science, such as 

biology, physics and medicine, increases the need 
to use pseudocode. Experts in those fields have to 
communicate their ideas with programmers in order 
to develop computer programs to facilitate their 
works. The programmers should not expect that the 
experts are familiar with programming languages. 
Hence, in most common situations, both parties 
have to communicate in a natural language using 
pseudocode.  

In [4], it was concluded that less natural and 
complex syntax in programming languages is a 
major obstacle for novice students. It can also be a 
major barrier to understand computational thinking. 
Computational thinking emphasizes students’ 
ability to think at the level of abstraction to solve 
problems [5]. The ability to think at this level of 
abstraction is important for a computer scientist in 
designing computer programming algorithms.  

Other research on translation from pseudo code 
to a target programming language had been carried 
out. The research in [7] simplifies and structures 
pseudocode using XML. This approach requires 
pseudocode to have a strict structure. However, 



Journal of Theoretical and Applied Information Technology 
15th March 2019. Vol.97. No 5 

 © 2005 – ongoing  JATIT & LLS    

 

ISSN: 1992-8645                                                         www.jatit.org                                                        E-ISSN: 1817-3195  

 
1458 

 

when we consider that, in general, novice students 
who are beginning to learn algorithms and 
programming do not yet know and learn XML, the 
use of XML would be a drawback.  

In our previous work [6], we have developed an 
automatic translation from pseudocode to source 
code. In this paper, we extend the translation to 
handle other constructs that have not been handled 
yet, i.e. iteration, function, and procedure call to 
complete all constructs that had been developed 
previously. 

This paper is presented in the following structure. 
Section 2 discusses the approach we use. Section 3 
discusses the details of the pseudocode structure 
and the intermediate model in XML format for 
some constructs. Section 4 illustrates the use of our 
translation in a case study. Section 5 indicates the 
conclusions and subsequent work of our research. 

 
2. REUSABILITY IN TRANSLATION WITH 

A CONCEPTUAL METAMODEL  
 

In our approach, we use pseudocode written in a 
natural language, i.e. Bahasa Indonesia, that follows 
a certain format [8] so that it is easier to understand 
by students. XML is used as an intermediate format 
to allow reusability in the development of 
translations from pseudocode in different natural 
languages, i.e. not only in Bahasa Indonesia, to 
source code in different programming languages, 
i.e. not only in C++ as in our original translation. 
This intermediate format [9][10] allows us to 
decompose the translation into several smaller 
translation modules. These translation modules can 
be reused in other translations. 

In this context, reusability is a quality that 
indicates the ability to reuse existing translation 
modules in the development of a new translation. 
Our translation consists of two translation modules 
that are (i) a module to translate pseudocode in 
Bahasa Indonesia to an intermediate format in XML 
and (ii) a module to translate the intermediate 
format in XML to source code in C++. When one 
need to develop a new translation from pseudocode 
in English to source code in C++, one can develop a 
module to translate from the pseudocode to an 
intermediate model and reuse the existing module 
that translates the intermediate model to source 
code in C++. Moreover, the development and 
maintenance of smaller translation modules would 
be more efficient than large monolithic translations. 

Three types of models are involved in our 
translation approach, i.e. pseudocode, intermediate 

model, and source code. They represent algorithms 
in different syntaxes, i.e. in a natural language, 
XML format, and a programming language, 
respectively. To ensure the equivalence of the 
semantics between those models, we define a 
conceptual metamodel as an underlying common 
model from which all the models can be represented 
or derived [6]. The conceptual metamodel is shown 
in Figure 4. The metamodel is defined by 
considering the grammar of common programming 
languages. 

Our translation approach considers pseudocode 
as a model or representation of an algorithm. 
Pseudocode is taken as an input that will be 
translated into target artifacts, such as source code 
in programming languages. The approach uses an 
intermediate model in XML format so as to 
introduce reusability to the translation modules.  
For example, we can develop translations from 
different natural languages or to different 
programming languages. Pseudocode and the 
intermediate model are Platform-Independent 
Models (PIMs); whereas the output, i.e. source code 
in a target programming language, is Platform-
Specific Model (PSM). 

By using an intermediate model that is platform 
independent, further development of different 
translations can benefit from the reusability because 
the process of translation from a pseudocode to an 
intermediate model is decoupled from the process 
of translation from the intermediate model to source 
code in a target programming language. For 
example, we can develop translation of pseudocode 
in English. 

Our approach is validated in two aspects, i.e. 
syntax and semantic. For the syntax aspect, we 
define an XML schema as an implementation of the 
conceptual metamodel. Using this XML schema, 
we can validate whether the intermediate model 
complies with the conceptual metamodel. The 
syntax of the source code is validated by compiling 
the resulted source code. A successful compilation 
indicates that the syntax of the source code is valid 
and hence comply with the conceptual metamodel.  

For the semantic aspect, the validation is done by 
running the executable program resulted from the 
source code compilation. When the program 
execution behaves as the algorithm defined in the 
pseudocode, it indicates that the semantic is valid. 

While the validation of the syntax aspect can be 
done automatically using available tools, the 
validation of the semantic aspect has to be done 
manually. For complex algorithms, this way of 



Journal of Theoretical and Applied Information Technology 
15th March 2019. Vol.97. No 5 

 © 2005 – ongoing  JATIT & LLS    

 

ISSN: 1992-8645                                                         www.jatit.org                                                        E-ISSN: 1817-3195  

 
1459 

 

validation requires intense work and is prone to 
human error.  

3. PSEUDOCODE AND XML STRUCTURE 
 

In this section, we discuss the structure of 
pseudocode that we adopt and the structure of the 
intermediate model that we develop. 

Pseudocode describes an algorithm using a set of 
words in a natural language and a set of loose 
conventions. The fact that there are a lot of token 
variations in a natural language is a challenging 
issue. Therefore, in our translation, we restrict the 
structure of pseudocode by adopting a popular 
pseudocode format used by academia in Indonesian 
higher education [8]. The format is then customized 
to accept tokens in Bahasa Indonesia and is 
extended to accept tokens in English. 

3.1 Structure of Pseudocode  
A pseudocode consists of one or more modules 

that can be functions, procedures, or a program. 
Figure 5 shows an excerpt of the grammar that 
implements the metamodel for the module 
construct. 

A module consists of three sections, i.e. title, 
dictionary, and algorithm. A variable declaration is 
placed in the dictionary section. The algorithm 
section contains a sequence of statements. These 
statements can be input, output, assignment, 
decision, or iteration statements. The intermediate 
format represented in XML format for this 
construct is shown in Figure 6. 

3.2 Decision Construct 
A decision consists of one or more cases; each of 

which has its own condition. The order of case 
statements is important and hence considered in the 
translation process. Figure 7 shows the grammar for 
the decision construct. Token IF and ELSE may use 
different terms or words in Bahasa Indonesia with 
their respective meanings. Similarly, when we work 
with pseudocode in English, different tokens with 
the same meanings can also be used. This extension 
for pseudocode in English creates opportunity for 
the translation to be used in wider academia society. 

Furthermore, a decision can contain one last case 
without condition. This case serves as a default case 
when conditions in all other cases cannot be met. 
Each case consists of a series of actions that will be 
executed when the case’s condition is met. The 
XML format for the decision construct is shown in 
Figure 8. 

3.3 Iteration Construct 
We distinguish an iteration into two forms, 

namely type-1 (WHILE-DO) iteration and type-2 
(REPEAT-UNTIL) iteration. A type-1 iteration 
checks the condition first. If the condition is met, it 
will execute a series of statements and then return 
to condition checking. A type-2 iteration executes a 
series of actions first, then checks the condition to 
proceed to the next iteration. The semantics of both 
iteration forms can be seen in Figure 1. 

Figure 9 shows the grammar for the constructs of 
both types of iteration. Token WHILE, DO, 
REPEAT, and UNTIL may use different terms or 
words in Bahasa Indonesia or English with 
respective meaning.  

In an intermediate model, both forms of iterations 
have that same XML format, but are indicated by 
the type attribute. The XML format for the iteration 
constructs is shown in Figure 10. 

 

 
(a) Type-1 Iteration 

 

 
(b) Type-2 Iteration 

Figure 1: Semantic Difference between (a) Type-1 and 
(b) Type-2 Iteration 



Journal of Theoretical and Applied Information Technology 
15th March 2019. Vol.97. No 5 

 © 2005 – ongoing  JATIT & LLS    

 

ISSN: 1992-8645                                                         www.jatit.org                                                        E-ISSN: 1817-3195  

 
1460 

 

 
4. CASE ILLUSTRATION 
 

Our previous work was limited in terms of 
constructs and the natural language for defining 
pseudocode, i.e. Bahasa Indonesia. In this work, we 
apply the advantage of reusability to extend the 
translation from the input model, i.e. pseudocode in 
English, to an intermediate model. As we can reuse 
the translation module from the intermediate model 
in XML to source code in C ++, we need only to 
develop the module to translate pseudocode in 
English to an intermediate model in XML. 

In this case illustration, we present a pseudocode 
in Bahasa Indonesian as it is a mother tongue used 
by the majority of students in Indonesia. 

 
4.1 Decision  

Figure 11 shows pseudocode in Bahasa Indonesia 
that defines a simple algorithm to determine the 
form of water, given an input of the water 
temperature. Water can be in the form of solid, 
liquid, or gas depending on the temperature. The 
translation is developed using ANTLR Parser 
Generator that generates a parse tree for further 
processing to an intermediate model in XML. The 
translation result is shown in Figure 12. 

All the XML elements, i.e. program, variables, 
sequences, input, outputs, decision, and cases, in the 
resulted intermediate model comply with an XML 
schema that are defined as an implementation of the 
conceptual metamodel. This compliance preserves 
the equivalences of algorithm behavior as in the 
corresponding pseudocode. 

This intermediate model is then translated to 
source code in C++ using XSLT. The source code 
resulted from the translation is shown in Figure 2. 
This source code complies with the C++ grammar 
which also complies with the conceptual 
metamodel. This compliance ensures that the source 
code has an equivalent behavior with the 
corresponding pseudocode and intermediate model. 

4.2 Iteration  
Figure 13 shows pseudocode in English that 

defines a simple algorithm that repeatedly receives 
inputs as temperature until the input entered is less 
than 100 OC. When this condition is met, the 
algorithm will conduct second iteration to 
repeatedly receive inputs as temperature until the 
input entered is higher than 100 OC. This 
pseudocode contains both types of iteration. The 
first iteration is a type-1 iteration and the second is 
a type-2 iteration. 

#include <iostream> 
#include <string> 
using namespace std; 
     
int main() {  
  double t; 
  cin  >> t; 
  if (if (t < 0) { 
    cout  << "bentuk padat"; 
  } 
  else if (t < 100) { 
    cout  << "bentuk cair"; 
  }  
  else {  
    cout  << "bentuk gas"; 
  }   
} 
Figure 2: Source Code with Decision Case as the Output 

 
#include <iostream> 
#include <string> 
using namespace std; 
     
int main() {  
  double t; 
  t  = 200; 
  while (t < 100) { 
    cin  >> t; 
  } 
  do { 
    cin  >> t; 
  } while (T > 100);  
} 
Figure 3: Source Code with Iteration Case as the Output 

 
The translation results in an intermediate model 

in XML shown in Figure 14. Iteration type and 
condition are represented as attributes of the 
iteration element. This result complies with the 
defined the XML schema of the conceptual 
metamodel.  

The translation results of the intermediate model 
to source code in C ++ is shown in Figure 3. A 
type-1 iteration is translated to a while-do construct 
and a type-2 iteration is translated to a do-while 
construct.  

 
5. CONCLUSION 
 

In this paper, the development of automatic 
translations from pseudocode in natural languages, 
i.e. Bahasa Indonesia and English, to source code in 
a target programming language, i.e. C++, has been 
carried out. The translation uses an intermediate 
model in XML to decouple between (i) the 
translation from pseudocode to an intermediate 
model and (ii) the translation from the intermediate 



Journal of Theoretical and Applied Information Technology 
15th March 2019. Vol.97. No 5 

 © 2005 – ongoing  JATIT & LLS    

 

ISSN: 1992-8645                                                         www.jatit.org                                                        E-ISSN: 1817-3195  

 
1461 

 

model to source code. This decoupling is to provide 
reusability in the development of new translations. 
The development of a translation module that 
translates pseudocode in English to an intermediate 
model is the utilization of this reusability. 

To ensure the behavioral equivalence between 
the models involved, i.e. pseudocode, intermediate 
model, and source code, a conceptual metamodel is 
defined to represent the behavior of all the models. 

ACKNOWLEDGEMENT 
 

This work is part of the project sponsored by the 
Directorate of Research and Community Services of 
the Indonesian Ministry of Research, Technology, 
and Higher Education, 2018. 

REFERENCES:  
  
[1] Scanlan DA. Learner preference for using 

structured flowcharts vs. pseudocode when 
comprehending short, relatively complex 
algorithms: A summary analysis. Journal of 
Systems and Software. 1988; 8(2): 145-155. 

[2] Robertson LA. Pseudocode. Encyclopedia of 
Information Systems. 2003: 575-588. 

[3] Oda Y, Fudaba H, Neubig G, Hata H, Sakti S, 
Toda T, and Nakamura S. Learning to generate 
pseudo-code from source code using statistical 
machine translation. Proc. 30th IEEE/ACM Intl. 
Conf. Automated Software Engineering. 2015; 
pp. 574-584. 

[4] Kelleher C, and Pausch R. Lowering the 
barriers to programming: A taxonomy of 
programming environments and languages for 
novice programmers. ACM Computing 
Surveys. 2005; 37 (2) 83–137. 

[5] Wing J. CT. Communications of the ACM. 
2006; 49 (3) pp. 33-35. 

[6] Dirgahayu T, Huda SN, Zukhri Z, Ratnasari CI. 
Automatic translation from pseudocode to 
source code: A conceptual-metamodel 
approach. 2017 IEEE International Conference 
on Cybernetics and Computational Intelligence 
(CyberneticsCom). Phuket. 2017: 122-128. 

[7] Mukherjee S, and Chakrabarti T. Automatic 
algorithm specification to source code 
translation. Indian J. Computer Science and 
Engineering (IJCSE). 2011; 2 (2) pp. 146-159. 

[8] Liem I. Diktat Algoritma dan Pemrograman: 
Pemrograman Prosedural. Bandung: STEI ITB. 
2007. 

[9] Parekh V, and Nilesh D. Pseudocode to source 
code translation. Intl. J. Emerging Technologies 
and Innovative Research (JETIR). 2016; 3 (11) 
pp. 45-52. 

[10] Dirgahayu T, Quartel D, and van Sinderen M. 
Development of transformations from business 
process models to implementations by reuse. 
Proc. 3rd Intl. Workshop on Model-Driven 
Enterprise Information Systems (MDEIS). 
2007: pp. 41-50. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Journal of Theoretical and Applied Information Technology 
15th March 2019. Vol.97. No 5 

 © 2005 – ongoing  JATIT & LLS    

 

ISSN: 1992-8645                                                         www.jatit.org                                                        E-ISSN: 1817-3195  

 
1462 

 

 

 
Figure 4: Conceptual Metamodel 

 
grammar pseudocode_eng; 
spec: module+ EOF; 
module: title dictionary algorithm; 
algorithm: description?  sequence; 
sequence : (statement | comment)*; 
statement : input | output | assignment | decision| iteration |procedure_call; 

Figure 5: Grammar for The Module Construct  

 



Journal of Theoretical and Applied Information Technology 
15th March 2019. Vol.97. No 5 

 © 2005 – ongoing  JATIT & LLS    

 

ISSN: 1992-8645                                                         www.jatit.org                                                        E-ISSN: 1817-3195  

 
1463 

 

 
<?xml version="1.0" encoding="UTF-8"?> 
<specification xmlns="informatics.uii.ac.id/pseudo/1.0" name="example">  
   <program name="main"> 
      <variables> 
      . 
      . 
      . 
      </variables> 
      <sequence> 
      . 
      . 
      . 
      </sequence> 
   </program> 
   <function name="example1" output="output_type"> 
      <parameter name="par_name" type="par_type"/> 
      . 
      . 
      . 
      <parameter name="par_name1" type="par_type1"/> 
         <variables> 
         . 
         . 
         . 
         </variables> 
         <sequence> 
         . 
         . 
         . 
         </sequence> 
   </function> 
   <procedure name="example2"> 
      <parameter name="par_name" type="par_type" direction="in/out"/> 
      . 
      . 
      . 
      <parameter name="par_name1" type="par_type1" direction="in/out"/> 
      <variables> 
      . 
      . 
      . 
      </variables> 
      <sequence> 
      . 
      . 
      . 
      </sequence> 
   </procedure> 
</specification> 

Figure 6: XML Format for The Module Construct 

 
decision: IF condition openthen sequence closethen (ELSE (elseif | other))?; 
condition: expression; 
elseif: decision; 
other: '(' sequence ')'; 

Figure 7: Grammar for The Decision Construct 
 



Journal of Theoretical and Applied Information Technology 
15th March 2019. Vol.97. No 5 

 © 2005 – ongoing  JATIT & LLS    

 

ISSN: 1992-8645                                                         www.jatit.org                                                        E-ISSN: 1817-3195  

 
1464 

 

 
<decision>  
   <case condition="some_expression">  
      <sequence>     
      . 
      . 
      .     
      </sequence>  
   </case>  
   <case condition="some_expression">  
      <sequence> 
      . 
      . 
      .     
      </sequence>  
   </case>  
   <case>       
      <sequence> 
      . 
      . 
      .     
     </sequence>  
   </case>  
</decision> 

Figure 8: XML Format for The Decision Construct 

 
iteration1: WHILE condition DO open_itr sequence close_itr; 
iteration2: REPEAT open_itr sequence close_itr UNTIL condition; 
condition: expression; 

Figure 9: Grammar for The Iteration Construct 

 
<iteration type = "1" condition = "some_condition">  
   <sequence> 
   . 
   . 
   . 
   </sequence>  
</iteration> 
<iteration type = "2" condition = "some_expression">    
   <sequence>  
   . 
   . 
   . 
   </sequence>     
</iteration> 

Figure 10. XML Format for The Iteration Construct 



Journal of Theoretical and Applied Information Technology 
15th March 2019. Vol.97. No 5 

 © 2005 – ongoing  JATIT & LLS    

 

ISSN: 1992-8645                                                         www.jatit.org                                                        E-ISSN: 1817-3195  

 
1465 

 

 

Program Menentukan_bentuk_air 
{Menentukan bentuk air jika diketahui suhu air dalam oC. Menggunakan statement 
if-then-else} 
Kamus 
T : real {suhu dalam oC} 
Deskripsi Algoritme 
baca(T) 
jika (T kurang dari 0) maka ( 
  tulis("bentuk padat") 
) 
selain itu 
jika (T kurang dari 100) maka ( 
  tulis("bentuk cair") 
) 
selain itu ( 
  tulis("bentuk gas") 
) 

Figure 11: Example of Pseudocode with Decision Cases 

 
<?xml version="1.0"  encoding="UTF-8"?> 
<specification xmlns= "informatics.uii.ac.id/pseudo/1.0"     
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"  
name="Menentukan_bentuk_air"> 
   <program name="main"> 
      <variables> 
         <variable name="t" type="double"/>  
      </variables> 
      <sequence> 
         <input variable="t"/>  
         <decision>  
            <case condition="t &lt; 0"> 
               <sequence> 
                  <output expression="&quot;bentuk padat&quot;"/> 
               </sequence>  
            </case>  
            <case condition="t &lt; 100"> 
               <sequence> 
                  <output expression="&quot;bentuk cair&quot;"/> 
               </sequence>  
            </case>  
            <case>  
               <sequence> 
                  <output expression="&quot;bentuk gas&quot;"/> 
               </sequence>  
            </case>  
         </decision> 
      </sequence> 
   </program> 
</specification> 

Figure 12: Intermediate Model in XML with Decision Cases 



Journal of Theoretical and Applied Information Technology 
15th March 2019. Vol.97. No 5 

 © 2005 – ongoing  JATIT & LLS    

 

ISSN: 1992-8645                                                         www.jatit.org                                                        E-ISSN: 1817-3195  

 
1466 

 

 

Program Receiving_input_iteratively 
{Receive input of temperature repeatedly until certain condition } 
Dictionary 
T : real {temperature in oC} 
Algorithm Description 
T is 200 
while T is less than 100 do (read(T)) 
repeat (read(T)) until T>100 

Figure 13: Example of Pseudocode with Iteration  

 
<?xml version="1.0" encoding="UTF-8"?> 
<specification xmlns="informatics.uii.ac.id/pseudo/1.0" 
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" 
name="Menerima_input_iteratif "> 
   <program name="main"> 
      <variables> 
         <variable name="t" type="double"/>  
      </variables> 
      <sequence> 
         <assignment variable="t" expression="200"/> 
         <iteration type="1" condition="t &lt; 100"> 
            <sequence> 
               <input variable="t"/>  
            </sequence>  
         </iteration> 
         <iteration type="2" condition="t &lt; 100"> 
            <sequence> 
               <input variable="t"/>  
            </sequence>  
         </iteration> 
      </sequence> 
   </program> 
</specification> 

Figure 14: Intermediate Model in XML with Iteration  

 
 


