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ABSTRACT 
 

Evolving the cooperative behavior in Iterated N-Players Prisoners’ Dilemma (INPPD) is studied over 
several evolutionary models. These models presented solutions for evolving cooperative behavior among 
INPPD players. Studying existing models revealed that when the number of the players’ increases, the 
models lose their capabilities in maintaining stable levels of cooperation between the players. In this paper, 
we present an evolutionary model for enhancing the cooperation levels in large population of INPPD 
players. The model focuses on optimizing the communication topology of INPPD, as well as building a 
knowledge base to support players’ future decisions based on the evolved knowledge gained from historical 
actions taken by different players. The presented communication topology along with the knowledge base 
present considerable support for the evolutionary Particle Swarm Optimization (PSO) algorithm to evolve 
the players’ strategies. The results showed that the model could increase the cooperative rate among INPPD 
player and allow players to achieve higher payoffs against benchmark strategies 

Keywords: Prisoners’ Dilemma, Game Theory, Communication Topology, Particle Swarm Optimization, 
Knowledge base 

 
1. INTRODUCTION  
 

The prisoner’s dilemma (PD) game is one of the 
more well-known two player games in the field of 
Game Theory. As our real-life decision making is 
not commonly based on a single strategy, an 
iterated version of PD is developed and is known as 
iterated prisoner’s dilemma game (IPD). IPD is 
found to support decision makers with different 
viewpoints (i.e. strategies). IPD is also used to 
model emergent cooperative behaviors in selfish 
populations as in biology [1], sociology [2], 
psychology [3] and economics [4]. 

Understanding the evolution of cooperation in 
humans is a challenge for economists and 
biologists. Conditional cooperation is important 
mechanisms to prevent free riding in social 
dilemmas [5]. In large populations, we found that 
single individuals should have a substantial 
influence on their peers. Therefore, influencing 
peers should be oriented toward the best 
cooperative players in the population to evolve 
cooperative behavior between the players. 

Evolving cooperation behavior in a large 
population is a complex problem in modeling 
Iterated n-Players Prisoner's Dilemma (INPPD) [6]. 

The evolution of a cooperation behavior in a given 
population requires the discovery of a strategy that 
a large group of opponents follow throughout the 
game. However, discovering the opponents’ 
strategies requires the use of evolutionary 
algorithms that can search for the most optimal 
strategies among a large number of possibilities. 

In this paper, we focus on avoiding premature 
players’ convergence issue that evolves the 
cooperative behavior of INPPD players. Existing 
communication topologies allow players to 
communicate with a static set of neighbors. This 
may lead players in group (G1) to imitate the 
behavior of the best players in that particular group 
(G1), since the players in (G1) have no extra 
knowledge on the behavior of other players in other 
groups in that population. To solve this problem, we 
present an alternative topology that explores the 
behavior of wider range of players in the 
population. The new topology is dynamic to 
facilitate effective exchange of experiences between 
players in large populations and to ensure the 
provision of sufficient communication channels 
between players. Hence, particle swarm 
optimization (PSO) is used here to evolve players’ 
strategies. 
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  The remainder of the paper is organized as 
follows. Sections 2 and 3 provide an overview on 
INPPD and the PSO, respectively. Section 4 
discusses the related works of evolving the 
cooperative behavior of INPPD. The proposed 
model is introduced in Section 5. A number of 
performance tests are conducted and the results are 
presented in Section 6. A concluding remark is 
given in Section 7. 

2. ITERATED N-PLAYERS PRISONERS’ 
DILEMMA 

Two IPD players may play against each 
other several times. This allows players to generate 
strategies based on previous interactions. Hence, 
any given player’s move has a substantial effect on 
the behavior of a future opponent’s moves. The 
consequences of IPD eliminate the domination of 
single strategy of mutual defection, since players 
use complex strategies based on previously played 
moves. The purpose behind this concept is to 
maximize the payoff scored by a given player 
against other players. Dilemma occurs when 
players are unaware of each other’s actions until the 
actions are taken. In that case, players are always 
cautious in performing cooperative actions, 
whereas other players are defecting [6],[8].  

Assessing the performance of a given 
player depends on the payoff scored by that player 
in each game and generation. The concept is that 
the higher the payoff, the better is the strategy. As 
part of the rules of the game, the players should be 
aware of the payoff matrix being used throughout 
the game. Yao & Darwen [8] presented a payoff 
matrix to support INPPD as shown in Table 1 and 
Table 2. The columns and rows refer to the number 
of cooperators, and choices that a given player can 
make, respectively.  
 

Table 1. Payoff matrix of INPPD 

 
 

Table 2: Numerical values of INPPD actions 

 
 

Each prisoner in INPPD represents a 
player and the players are distributed over a game 

space (usually a lattice). To facilitate the 
communication between players during the game, a 
set of communication topologies are available. 
These topologies specify the group of neighbors 
which are available for the center player to play 
against. Practically, the communication between the 
players is restricted to their pre-defined neighboring 
levels. The following sub-sections present a brief 
description on the well-known static topologies that 
are commonly used in INPPD [9], [10]. 

 
2.1 Ring Topology 
In ring topology, each player is connected to its l 
immediate neighbors in a one-dimensional space 
(left-right or up-bottom). Therefore, each player can 
only share his experience with his immediate two 
neighbors. The overall impact of this topology on 
the population, defined as all participating players, 
may result in lower levels of cooperation because 
the players’ knowledge is restricted to its own small 
group of neighbors. 

Cooperative behavior in a given population of n 
players may emerge after several games, for 
example, in a tournament of n games. The low 
payoffs that a player gains after each game will 
motivate that player to change his behavior based 
on his own experience and the experiences of his 
own neighbors. Therefore, ring topology provides 
narrower levels of experience for each INPPD 
player. 

 
2.2  Star Topology 
Star topology is a fully connected structure that 
allows each player of the group to share 
information globally. This topology is mainly based 
on sharing the best experience, found by the best 
player, among all other players in the population. 
The neighborhood of a given player is the entire 
population. Thus, information is instantaneously 
distributed to all players, attracting the entire group 
to the superior behavior. 
   The star topology is one of the most efficient 
topologies in sharing experiences in small 
populations. However, star topology requires the 
processing of a huge amount of information as well 
as communication overhead in the information 
exchange between large numbers of players. 
 
2.3 Von Neumann Topology 
This structure adds another dimension to the 
searching algorithm in order to extend the ring 
communication structure. This structure considers 
immediate neighbors which are connected to a 
particular player from the left, right, up and bottom. 
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The Von Neumann topology is very useful for 
many optimization problems[9],[10]. 
  The INPPD model proposed in [11] adopts the 
Von Neumann topology as a communication 
topology between INPPD players. The cells in the 
edges of the lattice have neighbors on the opposite 
sides of the lattice. However, the choice of the next 
player to interact with his neighbors during the 
simulation can be sequential or random. 
 
2.4 Cluster Topology 
In this topology, the players are divided into n 
clusters. Each cluster communicates directly with 
others through the connections, previously defined 
between players. Usually, each cluster is associated 
to a number of connections that are equal to the 
number of neighbor clusters. 
  The group is divided into three or four clusters. 
The players are connected to every other player in 
their cluster, but only a few connections between 
the clusters exist. The INPPD model presented in 
[6] shows that a high degree of community 
structure can ensure that cooperative players can 
insulate themselves from neighboring non-
cooperating behaviors. Community structure is one 
form of clustering where collections of nodes are 
joined together in tightly knit groups between 
which only loose connections exist. The members 
of neighboring communities can update their 
behavior to imitate that of a more successful 
behavior and this technique proves that cooperation 
can propagate through society. 
 
2.5 Random Topology 
Given n players, n random symmetrical connections 
assigned between pairs of individuals exist. 
Random topology assigns connections at random 
between pairs of players. The lattice is formed in 
such a way that every player on the lattice has eight 
immediate neighboring players. 
  The work presented in [7] examines the 
effectiveness of co-evolutionary learning in a 
specialized environment with fixed and random 
communication structures. The consideration of 
random communication structures with inner and 
outer neighborhoods conducts the experiment. 
Inner neighborhood refers to the selection of group 
members within the eight immediate neighboring 
players, whereas the outer neighborhood refers to 
the selection of group members from anywhere 
across the entire population. 
  However, the communication topologies discussed 
in this section are varying in term of their efficiency 
in evolving cooperative behavior between INPPD 

players. In the next section, we discuss the current 
researches that focus on the communication 
topologies as tools for evolving cooperative 
behavior. 
 
3. PARTICLE SWARM OPTIMIZATION 

Swarm Intelligence (SI) is an attractive 
area that deals with the scalability issue for multi-
agent systems while maintaining system robustness 
and individual simplicity. SI is an interesting 
computational technique that is inspired by the 
behavior of flocking, herding and insects swarming, 
where robust and coordinated group behavior 
requires a small set of simple local interactions 
between individuals, and between individuals and 
the environment[12],[13]. 

The swarm intelligent agents communicate 
and cooperate by implicit rules of cohesion, 
separation and alignment focusing to solve a 
problem which is guided by a decision metric 
known as fitness [14]. SI initiates several intelligent 
agents to solve a given optimization problem. 
These agents communicate and cooperate based on 
the corresponding SI approaches. 

Particle Swarm Optimization (PSO) is the 
most popular approach in SI [14]. Like general 
evolutionary algorithms (EA), PSO maintains a 
population of individuals, which are called 
particles. These particles represent potential 
solutions to an optimization problem. However, 
PSO generates new individuals based on explicit 
mathematics models, instead of the well-known 
genetic operators (e.g. crossover and mutation) 
[15]. 

Searching for the best solution in PSO is 
carried out by endowing each particle to fly through 
the search space and update its velocity at regular 
intervals. This loop of updating continues towards 
both the best location it personally has found 
(personal best), and the globally best position found 
by the entire swarm (global best). The global best 
solutions are stored in a shared memory where all 
particles can access it to determine their individual 
velocities. However, PSO is the most favorable 
approach in terms of exploration and exploitation. 
The general flowchart of PSO is described in Fig. 1. 
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Figure 1: Flowchart of PSO Algorithm 
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4. RELATED WORKS 

 
The evolution of cooperative behavior in 

INPPD is discussed in several studies. We found 
that some research presented models for evolving 
cooperative behaviors of the players based on: the 
different usage of the players’ memory resource 
[16], the punishment in a structure population 
playing the social dilemma [5], the randomness of 
opponent memories sizes [17] and others. 

The state of art reveals that many studies 
discuss different aspects for evolving cooperative 
behavior between INPPD players. Research shows 
that communication topologies between players 
have a great impact on the evolution of cooperative 
behavior [18]-[20].  

The work presented in [18] focuses on 
understanding network-related factors that affect 
the evolutionary stability of a strategy. It is shown 
to be critical in making accurate predictions about 
the behaviour of a given player when reflected in a 
strategic decision making environment in the real-
world. The goal of this work is to examine the 
effect of network topology on evolutionary 
stability. The results show that the topological 
connection patterns influence the decisions made 
by individual players over time. 

In [20], the authors stress the role of the 
structure of the communication topologies in the 
play profile generated by their genetic algorithm-
based model. The results show that communication 
topologies play a vital role in evolving cooperative 
behavior between the players.  

The work published in [21] focuses mainly 
on the use of a graph concept to represent the 
communication topology between the players. The 
results showed that adjusting the degree of the 
graph has an impact on the cooperation rate in the 
population. Decreasing the degree of the graph will 
decrease the cooperation rate. 

The work presented in [22] investigated 
the application of co-evolutionary training 
techniques based on PSO to evolve cooperation of 
INPPD. The experiments conducted in this work 
focuses on the impact of communication topology 
on the evolvement of cooperative behavior. The 
results revealed that fully-connected topology could 
enhance the cooperation ratio between the players 
compared to other communication topologies. 
However, the model presented in this work is 
oriented toward calculating the cost and benefits by 
adjusting the payoff matrix of INPPD and accept n 
choices rather than two exact choices with fixed 
probability. 

In [23], the authors explore the 
dependence of the evolution of cooperation on soft 
control (well-designed updating rules) by an 
evolutionary IPD game. The shills (agents) are 
adopting their behavior based on the mechanism 
used by the particles in PSO. The results show that 
the cooperation can be promoted by the population 
of agents and that the frequency of the promotion 
can be enhanced if proper parameter settings are 
selected. This research also highlighted that adding 
agents to the population has a negative impact on 
the promotion of cooperative behavior. To 
overcome this issue, the authors suggest assigning 
higher weight to the collective knowledge for 
strategy updating process. 

The promotion of cooperation in INPPD is 
also presented in [24]. The authors investigate the 
application of co-evolutionary training techniques 
based on PSO to evolve the cooperative behavior of 
INPPD games. The simulation results show that 
three factors affect the promotion of cooperation in 
INPPD populations. These factors are mainly 
related to the length of the history record which 
players can access during the game, the ratio of the 
cost the players are paying against the benefits they 
can get for a specific action, and finally the size of 
the group in which the players are interacting. 

Similarly, the authors in [25] discuss the 
power of PSO in evolving the cooperation behavior 
among INPPD players. Beside the evolution of 
cooperation, the authors addressed the issue of 
evolutionary stability in noisy environments. 
Experimental results show that PSO evolves the 
cooperative behavior between INPPD players. It is 
also noted that players with strong social mentality 
with other players choose higher levels of 
cooperation with no impact of noise on the overall 
level of cooperation. 

The research presented in [26] presents a 
PSO-based model for evolving the cooperation 
behavior among selfish INPPD individuals. The 
model aims to simulate the behavior of swarms’ 
particles over the INPPD players to track the 
players with the highest payoff attained within a 
local topological neighborhood. However, the 
simulation results reveal that PSO was able to 
significantly increase the level of cooperation in the 
population in such environments that strongly favor 
the proliferation of defection. 

As a conclusion, we found that none of the 
existing models have considered the ultimate 
utilization of best players’ experiences in the game. 
Existing models give equal consideration for all 
players in the game while changing only the 
communication topology. Adopting specific 
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topology in PSO results in assigning higher weights 
for only the best players in the local topological 
neighborhood. This issue motivates us to look 
beyond the existing communication topologies and 
construct an evolutionary model which focusses on 
the capabilities of the best players with social 
awareness to evolve the cooperative behavior 
among INPPD players. 

 
5. RELATED WORKS 

In this section we introduce our 
evolutionary model which is based on PSO. The 
pivotal components forming the base of our model 
are: the use of PSO as evolutionary algorithm, the 
adoption of and alternative neighborhood 
topological structure to ensure proper sharing of 
experiences between the players, and the utilization 
of knowledge base to support the players’ decision 
making process. 

 
5.1 Neighborhood Topological Structure 
Specifying the neighborhood topological structure 
is essential for the players before starting 
communication. It is one of the most important 
aspects that affect the performance of PSO. The 
topology refers to the form on which each particle 
is connected with its neighborhoods. Practically, 
too loose a topology forces the particles to spend 
too much effort in low quality regions of the space, 
which leaves promising regions exploited by just a 
little amount of elements, while, a highly connected 
topology could make the particles collapse too 
quickly, making the system easily trapped in local 
optimum. Hence, a good topology should properly 
support the exploration of promising regions in the 
search space, and allow the existence of several 
search spots with easy exchange of information 
among them. 
In this model we present an alternative 
communication topology which allows the best 
players to propagate their experience among all 
other players. Our alternative topology divides the 
particles into sub-swarms. Particles in each sub-
swarm are communicating through Von-Neumann 
topology, as well as the communicating with the 
best particles from the neighboring sub-swarms. 
Our topology considers Von-Neumann topology for 
supporting intra-communication between sub-
swarm as illustrated in Fig. 2. This design prevents 
particles from wasting their efforts in low quality 
regions as in too loose topology, and at the same 
time, prevents particles from becoming trapped in 
local optimum as in highly connected topologies. 
Practically, each particle in PSO chooses its moves 

according to the behavior of its own sub-swarm, as 
well as the behavior its neighboring sub-swarms. 
 

 
 
Figure 2: Alternative communication topology between 

PSO particles (INPPD players) 
 
5.2 Players’ Knowledge Base 
The model facilitates the players to access the 
history repository of best players’ behavior. This 
repository is designed to be evolving as the players 
making decisions through the iterations of INPPD 
games. Therefore, this repository is defined as 
knowledge base in our model. As players’ decisions 
represent our data, the knowledge base aims to 
generate meaningful knowledge structures that are 
hidden in these data. This is to aid the decision 
making process of the players.  
  The knowing process is taken place when a 
particular player has some information that might 
help enhancing the performance (payoffs) of the 
player itself or the performance of other players. 
These payoffs are mainly calculated based on the 
learned knowledge during the game. A knowledge 
base of the game is constructed in the main 
memory, and the team strategy is mostly made 
using a knowledge base. However, the player is 
said to have knowledge if it knows, with a 
probability, what is the outcome of the action it 
may perform, or the actions performed by other 
player.  
  Our knowledge base consists of two main rational 
entities. The first entity covers the sub-swarm 
activities, while the second entity covers the swarm 
(whole population) activities. The sub-swarm 
entities are designed to store players’ moves and 
strategies adopted within each sub-swarm. Each 
sub-swarm has a unique identifier in each entity 
which distinguishes it from other sub-swarms. 
These entities are also tracking the best neighbors 
(with respect to our neighborhood communication 
topology) of each sub-swarm.  
  The swarm entities are designed to track the best 
strategies achieved by the population, finding the 
global best players and the current positions of all 
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players to assist PSO tracking of the best players in 
the population and support the global best 
orientation. Both sub-swarm and swarm entities 
assist the model to enhance the cooperation ratio 
between players and in predicting the opponents’ 
behaviors, which allows the players to adopt the 
countermeasure strategy that can defeat the 
opponents’ strategy.  However, the knowledge base 
in our model acts as an analytical tool of the 
players’ strategies and for supporting our PSO to 
find the best solution among n possible solutions. 
5.3 PSO-based Evolutionary Model 
Each particle in PSO aims to find the best position 
while they move through the problem space. These 
particles are randomly initialized by a random 
velocity and position at the beginning of the 
searching. Each particle adjusts its position in a 
direction toward its own personal best position and 
the neighborhood best position. In this model we 
represent each group of players as a sub-swarm of 
particles. 
  Finding neighborhood’s best particle depends on 
the communication topology being used. For that 
reason, the knowledge base consists of all 
information that helps the model finding the best 
neighbors based on the adopted neighborhood 
structure. Our topological neighborhood structure 
(as described in section 5.1) aims to identify the 
best pn players among the participating players. 
This is to provide the population with extra 
connections with the best players in the population 
and ensure diversity and experience sharing 
between INPPD participants.  
  INPPD is carried out by a number of agents in a 
specific number of generations, games, and moves. 
The generation is composed of multiple games, and 
each game is operated by multiple moves. When 
the number of agents, generations, games and 
moves are increased, INPPD will tend to be more 
complex. Hence, our evolutionary model aims to 
effectively handle the increasing number of players 
in INPPD games.  
  To enhance the cooperation ratio and generate 
competitive strategies of INPPD game, PSO 
particle flies through the game space to find the 
best possible position among all possible positions. 
The initial position (Xi) and velocity (Vi) of each 
particle are randomly chosen at the beginning of the 
search. During the search process, PSO particles 
change their positions and velocities (referred by 
behavior) based on the behavior of their close 
neighbors and the particle’s behavior itself. PSO 
particles are equipped with a memory for its best 
personal position (Pbest) and a memory for its best 
neighborhood position (Nbest). Each particle aims to 

change its own position and velocity under the 
guidance of its own experience (with respect to its 
Pbest) and its neighbors’ experience (with respect to 
the Nbest value) to reach the best possible area 
(global optimum). In addition, we consider one 
extra parameter (Gnbest) which identifies a set of the 
best particle position in the population. These three 
parameters are continuously updated as our 
knowledge base continues to evolve. 
  In early generations of PSO, particles have 
insufficient level of knowledge about their 
neighbors’ behaviors. Therefore, the expected 
payoff of most particles will not exceed t, such that 
(where Mt is the maximum possible payoff value): 
  

        t < Mt          (1) 

  As the generations are passing through, a 
particle’s knowledge will be reinforced by its own 
experience and its neighbor’s behavior. The 
reinforcement of a particle’s knowledge results in 
evolving the particles strategies through the 
generations. However, the evolved strategies can 
achieve higher payoff (et) values such that (where e 
is a constant): 
 

        et < Mt          (2) 

   
  The evolvement of INPPD player’s strategy is 
affected by its corresponding PSO particle flying 
over the searching space. At the end of generation, 
each PSO particle compares its best personal 
position with the other particles in its sub-swarm 
and the swarm. Before starting a new generation, 
each particle should update its own position and 
velocity according to the behavior of the best 
particles (sub-swarm and swarm levels). 
  The position Xi of a given particle is updated with 
respect to its velocity Vi according to: 
 

          Xi(t+1) = Xi(t) + Vi(t+1)                      (3) 
 
where the velocity of the particle is calculated using 
the formula in Eq. (4): 
 
Vi(t+1)=wVi(t)+c1r1(t)(yi(t)–xi(t))+c2r2(t)(ȳi(t)–xi(t))    (4) 
 
such that the parameters r1, r2 represent two random 

numbers such that r1,r2 (0,1)n, yi denotes the 
personal best position of particle i, and ȳi denotes 
the neighborhood best position with respect to our 
communication topology. This parameter is 
computed as shown in Eq. (5): 

       ȳi(t+1) {Ni| f(ȳi(t+1)) = max{f(x), x  Ni}          (5)   
 



Journal of Theoretical and Applied Information Technology 
15th March 2019. Vol.97. No 5 

 © 2005 – ongoing  JATIT & LLS    

 

ISSN: 1992-8645                                                         www.jatit.org                                                        E-ISSN: 1817-3195  

 
1562 

 

where the neighborhood Ni of neighborhood size l 
is defined in Eq. (6) as follows: 
 
       Ni = {yi-1(t), … , yi-1(t), yi(t), yi+1(t), … , yi-1(t)}      (6) 

 
The two coefficients c1, c2 are two time-varying 

acceleration coefficients, which are developed by 
Ratnaweera to modify the local and the global 
search ability and increase the diversity [27]. The 
mechanism of these two factors is to linearly reduce 
c1 and increase c2 with time. This mechanism has a 
significant impact on enhancing the global search 
ability of PSO at the early stages of the search, and 
at the same time, improving the local search ability 
at the end of the search. However, the values 
assigned to the acceleration coefficients should 
balance between global and local search ability of 
PSO. If the difference between c1 and c2 is larger 
than 1, the convergence accuracy stability of PSO 
becomes poor. Generally, the acceleration 
coefficient c1 governs the individual experience of 
each particle, while the coefficient c2 governs the 
social communication between particles. In our 
model we set c1 and c2 to 2.0 and 2.5 respectively. 

The parameter w in Eq. (4) is the inertia weight 
parameter that is first introduced by Shi and 
Eberhart [28]. This parameter is created to balance 
the global exploration and the local exploitation of 
PSO. Inertia weight w is a parameter within the 
range [0, 1] and is often decreased over time to 
control the impact of the previous history of 
velocities on the current velocity. The importance 
of this parameter comes from its ability in 
influencing the trade-off between global and local 
exploration capabilities of the flying particles. The 
experiments conducted by Shi and Eberhart showed 
that a larger inertia weight facilitates global 
exploration while a smaller inertia weight facilitates 
local exploration. Thus, setting the suitable inertia 
weight is responsible for providing a balance 
between global and local exploration abilities, 
resulting in a less number of iterations to find the 
optimum. In our model, we set the parameter w to 
the initial weight 1.0 (w=1.0) as recommended in 
[29]. The initial value of w is decreased from 1.0 to 
0.1 as the particles fly over the PSO search space. 
Starting from 1.0 and then decrementing the inertia 
weight toward 0.1 is important to promote 
exploration in early optimization stages, and to 
eliminate oscillatory behaviors in later stages. Note 
that the lower bound is set to 0.1 to prevent the 
previous velocity term from disappearing. 

As INPPD players represent PSO particles, 
each particle starts changing its own behavior based 

on the quality (specified through the payoff) of its 
own previous behavior and the behavior of its 
neighboring particles (according to our alternative 
communication topology). This technique allows 
players to change their low-quality behavior by 
adopting the behavior of neighboring players. After 
completing m generations, the players start to move 
toward promising regions which includes the best 
possible game strategy. At the end of each 
generation, PSO evaluates the fitness of each agent. 
That fitness specifies the best possible agent in the 
population. Note that the best agent refers to its 
strategy which achieved the best fitness compared 
to other agents. However, PSO encourages other 
agents to follow the best agent by adopting its 
strategy. 

Agents communicate with each other’s in 
several communication topologies. Nevertheless, 
our population is divided into sub-swarms (group). 
Each sub-swarm has a fixed number of agents and 
it allows its agents to communicate thoroughly. 
When PSO is activated, each sub-swarm will have 
its own local best agent, and the whole population 
will, accordingly, have one single global best agent. 
  Many problems may arise when the number of 
players is increased. These problems include the 
complexity of representing players’ strategies and 
the slowness in convergence towards the optimal 
solution due to the insufficiency of the 
communication level provided by traditional 
topologies. Therefore, in our model we presented 
the knowledge base component to assist PSO in 
making better decisions and providing INPPD 
agents with clearer vision on the performance of 
wider range of agents in the population. 
 
6. PERFORMANCE ANALYSIS 

The evolutionary model presented in this 
paper focuses on enhancing the cooperation ratio 
among INPPD rational players and enables players 
to evolve their strategies to survive even when they 
play against the most defective players. In this 
section we evaluate our model in term of 
cooperative ratios as well as the capability of 
evolving competing strategies against well-known 
strategies. 

To standardize the evaluation process, we 
initialized the INPPD game as shown in Table 3. 
These parameters are tuned to measure the 
performance of the model from different angles. 
Note that the values of this table are used in all 
evaluation tests carried out in this section. 
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Table 3: INPPD Initialization 

Parameter Initialized Value 
no. of generations 2000 
no. of games 50 
no. of moves 50 
no. of players in population (n) 30-100 
no. of simulations 20 

 

The evaluation tests carried out in this 
section is divided into two categories. The first 
category is concerned in analyzing the performance 
of INPPD players (as individual player, as sub-
swarm and as population) using our evolutionary 
model. The second category involves comparative 
testing against benchmark strategies. Note that our 
evolutionary model is denoted by PSO-evo while 
traditional PSO model is denoted by PSO for easier 
comparisons.  

Based on the parameters setting shown in 
Table 3, we start by testing PSO-evo on INPPD by 
tuning the values of the model parameters. This part 
of analysis aims to show the efficiency of our 
model in increasing the number of cooperators in 
INPPD games. Fig. 3 shows how PSO-evo could 
generally enhance the performance of INPPD 
players. 

 Obviously, PSO-evo has achieved better 
results when tested on both population sizes. We 
noticed that PSO achieves better results on early 
generations as the players are allowed to play 
randomly at the early stages of INPPD game. 
Nevertheless, the performance is changed 
dramatically as our communication topology along 
with the evolving of the knowledge base are 
operating during the new generations. 
 

 
 

Fig.2: Performance of PSO-evo and PSO on INPPD of 
size 50 and 100 

 
The performance of the individual player 

has an impact on the performance of its neighbors 
in the sub-swarm, particularly, and on the whole 
population, generally. Hence, we examine the 

impact of our model in enhancing the performance 
of the sub-swarms and the population as a whole. 
The tests aim to measure the ability of PSO-evo in 
leading the PSO particles to the optimal possible 
positions. A population of 30, 50 and 100 particles 
are examined and analyzed. In this part of the 
evaluation we choose the best sub-swarm and 
compare its behavior (with respect to its payoff) 
with the average behavior of the population in 2000 
generations. Fig. 4 shows that the best sub-swarm 
could achieve average payoffs which are almost 
close to the average payoffs achieved by the whole 
population. This indicates that particles within the 
whole population are sharing their experiences 
effectively. 
 

 
 

Fig.4: Correlation between INPPD sub-swarm’s 
performance and population’s performance 

 
It is obvious that the difference between 

the average payoff achieved by the best sub-swarm 
and the average payoff achieved by the whole 
population (on different population sizes) is 
negligible. This is due to the efficiency of our 
alternative neighborhood communication topology 
which facilitates effective communication between 
the participated sub-swarms. 

In [30], the experiments showed that the 
occurrence of the following two conditions during a 
specific generation indicates that a cooperative 
behavior is approaching within the population: 
 Condition 1: the total number of cooperation 
actions made by a particular player with the largest 
payoff is ten times greater than the population size. 
 Condition 2: the total number of cooperative 
actions made by the whole population is ten times 
greater than the population sizes.  

Satisfying these two conditions indicate 
that the population favors cooperation. Based on 
the initial settings stated in Table 3, our simulations 
are carried out on a population of size 30. Each 
generation is composed of 50 games and each game 
consists of 50 moves. Therefore, the total number 
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of actions made by each player in any given 
generation is 2500 actions.  

We have tested our results against the 
conditions 1 and 2 and we found that our 
population favors the cooperative behavior rather 
than the defective behavior. Fig. 5 shows that the 
best player among the 30 players has played more 
than 300 cooperative actions (where 300 is ten 
times the population size) in less than 1000 
generation. Moreover, the number of cooperative 
actions played by the best player is found to be 30 
times greater than the population size in the last 
generation. 
 

 
 
Fig.5: Measuring the behavior of the population (n = 30) 
in term of the number of cooperative actions made by the 

best player 
 

Increasing the population size played a 
pivotal role in decreasing the number of 
cooperative actions made by the best player. We 
have tested PSO-evo on two more population sizes 
of 50 and 100. When the population size is 
increased to (n =100), PSO-evo satisfied 70% of the 
first condition where the best player could make a 
number of cooperative actions which is 
approximately 7 times greater than the population 
size. Fig. 6 illustrates the impact of population size 
on the number of cooperative actions made by the 
best player of the corresponding populations. 

On the other hand, we have tested our 
model against the second condition and the results 
showed that PSO-evo has satisfied this condition 
efficiently with populations of sizes (n = 30) and (n 
= 50) as shown by Fig. 7. With larger populations, 
PSO-eco showed less efficiency in satisfying this 
condition. A population with 100 players could 
achieve an average number of cooperative actions 
that is about 6 times the population size. 
 

 
 

Fig.6: Measuring the behavior of the populations (n = 
50, n = 100) in term of the number of cooperative actions 

made by the best player 
 

 
 

Fig.7: Measuring the behavior of the populations (n = 
30, n = 50 and n = 100) in term of the average number of 

cooperative actions made by the population 
 

However, our model is still able to survive 
and drag players towards cooperative behaviors 
even in large populations. In the following test, we 
examine our model against well-known benchmark 
strategies which are extensively used by many 
important researches dealing with Prisoner’s 
Dilemma. The results aim to show the total payoff 
achieved by each strategy when played against 
other benchmark strategies as well as the efficiency 
of each strategy compared to the standard 
benchmark measurements. Based on the simulation 
parameters given in Table 3, we examine our 
generated strategies against 10 well-known 
benchmark strategies. These strategies are 
described in Table 4. 

Testing our strategies against 
benchmarking strategies is essential to show the 
capability of our model in generating efficient 
strategies that can defeat selfish strategies (favoring 
defections). Research showed that these strategies 
proved to be hard-to-defeat in 2IPD games. 
Therefore, we examined the strength of these 
benchmark strategies in surviving in INPPD game. 
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This is to measure the efficiency of the competent 
strategies with respect to their average scores. At 
the end of each INPPD generation, the game will 
produce n strategies (one strategy for each player). 
The strategy of each player is selected based on the 
highest payoff that could be achieved at that 
particular generation. The selected n strategies in 
generation i is made to play against 10 other 
opponent strategies (benchmark strategies). 
However, all strategies (n + 10) are moved to the 
competition pool where they play against each 
other accordingly. 

Calculating the playoff of each strategy 
depends on the same INPPD payoff matrix 
presented in Table 1. For instance, given an INPPD 
of 10 players, our model will generate 10 strategies 
at the end of each generation. The strategy of player 
i in generation r is denoted by SPr,i, where 
i∈{1,2,3,…,10} and r∈{1,2,3,…,m}. These 
strategies play against the other 10 benchmark 
strategies. Based on the adopted payoff matrix (F), 
each strategy will score a specific payoff on every 
action it takes.  

The payoff function (F) calculates the 
number of cooperated players (Cr) among the other 
n-1 players. This number determines the payoff 
amount that each player should obtain based on the 
payoff matrix. For instance, Table 5 shows a list of 
three moves generated by the participated players. 
Note that Mi denotes the current move number, ‘Mi 
Score’ denotes the payoff of Mi and the ‘Total 
Score’ denotes the total payoff that each strategy 
could achieve during each tournament. 
 

Table 4: Benchmark Strategies 

Strategy 
Code 

Strategy Description 

AC 
Always 
Cooperate 

Cooperates on every move 

AD Always Defect Defects on every move 

TFT Tit-for-Tat 
Cooperates on the first move, 
and then copies the 
opponent’s last move 

STFT 
Suspicious Tit-
for-Tat 

Same as TFT except that it 
defects in the first move 

TFTT Tit-for-two-Tat 
Cooperates on the first move 
and defects only when the 
opponent defects two times 

HTFT Hard Tit-for-Tat 
Cooperates on the first move 
and defects only if the 
opponent has defects on any 

of the previous three moves 

PAV Pavlov 

Cooperates on the first move 
and defects only if both 
players did not agree on the 
previous move 

SPT Spiteful 
Cooperates until the 
opponent defect, and then 
always defect. 

SMJ Soft Majority 

Start cooperating, and 
cooperates as long as the 
number of times the 
opponent has cooperated is 
greater than or equal to the 
number of times it has 
defected, else it defects. 

HMJ Hard Majority 

Defects on the first move, 
and defects if the number of 
defections of the opponent is 
greater than or equal to the 
number of times it has 
cooperated, else cooperates 

 

 
The example shown in Table 5 indicates 

that both of SP1,8 and HMJ strategies could achieve 
the highest payoff (total score of 65) among the 
other strategies. The score of each move is 
calculated as follows: for the move M1 of each 
strategy, the function F found that the total number 
of cooperated moves was Cr = 12. That means, 
each player with C move is awarded a payoff of a 
value 2(12-1)=22, while the rest of players with D 
move are awarded 2(8-1)+1=15. The same 
procedure is applied on all subsequent moves. 
 

Table 5 Illustrative example on calculating the payoff 
scores in IPD of 20 players 

Strategy 
M
1 

M1 
Score 

M
2 

M2 
Score 

M
3 

M3 
Score 

Total 
Score 

SP1,1 C 22 D 23 D 17 62 

SP1,2 C 22 C 14 D 17 53 

SP1,3 D 15 D 23 D 17 55 

SP1,4 D 15 D 23 D 17 55 

SP1,5 C 22 D 23 D 17 62 

SP1,6 D 15 D 23 C 20 58 

SP1,7 C 22 C 14 C 20 56 

SP1,8 C 22 D 23 C 20 65 

SP1,9 D 15 D 23 C 20 58 
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SP1,10 C 22 D 23 D 17 62 

AC C 22 C 14 C 20 56 

AD D 15 D 23 D 17 55 

TFT D 15 D 23 C 20 58 

STFT C 22 C 14 C 20 56 

TFTT D 15 C 14 C 20 49 

HTFT D 15 C 14 C 20 49 

PAV C 22 D 23 D 17 62 

SPT C 22 C 14 C 20 56 

SMJ C 22 C 14 D 17 53 

HMJ C 22 D 23 C 20 65 

 
In order to examine the strength of our 

strategies against the benchmark strategies, a 
complete INPPD game of 40 players is initiated. 
Among the participated players, we have 10 players 
who are assigned to play the selected ten benchmark 
strategies as fixed strategies throughout the game. 
The rest of the players are changing their behavior 
according to our PSO-evo model’s suggestions. The 
results presented in Table 6 (ordered from highest to 
lowest payoff scores) show the average scores of 
PSO-evo strategies when played against the selected 
benchmark strategies in 2000 generations. The 
average payoff score is calculated by summing the 
payoff scores achieved by each strategy in each 
generation, and then divides it over the total number 
of generations. The maximum payoff that a strategy 
can achieve in each generation is 2(40-1)+1=79. 
Therefore, after completing 2000 generations, the 
maximum payoff that a strategy can achieve should 
not exceed 158000. 
 

Table 6 Average scores of PSO-evo strategies against 
benchmark strategies (40 players) 

 

Rank Strategy 
Average 

Score 
Rank Strategy 

Average 
Score 

1 SP25 72 21 SP2 44 

2 SP14 68 22 SMJ 39 

3 TFT 67 23 SP21 37 

4 SP1 65 24 SP5 36 

5 SP8 65 25 SPT 35 

6 HTFT 62 26 SP24 35 

7 SP13 60 27 SP3 34 

8 TFTT 58 28 SP20 30 

9 SP22 57 29 AC 28 

10 SP10 57 30 SP30 25 

11 SP16 57 31 SP4 25 

12 STFT 56 32 SP15 25 

13 SP28 55 33 SP7 24 

14 SP19 54 34 SP17 24 

15 HMJ 53 35 SP23 22 

16 SP11 53 36 AD 19 

17 SP27 52 37 SP9 18 

18 SP6 52 38 SP12 18 

19 PAV 50 39 SP26 17 

20 SP29 45 40 SP18 15 

 
Each strategy has an efficiency value 

which reflects its performance with respect to the 
maximum payoff value that can be achieved. For 
instance, the efficiency of SP25 is found to be (72 ÷ 
79 = 91.1%). Fig. 8 reflects the performance 
efficiency of PSO-evo’s strategies against 
benchmark strategies in the first tournament. 

In the second tournament, we increased the 
number of participated strategies to 60. The 
experiment results showed that PSO-evo strategies 
could also defeat the benchmarking strategies. From 
the other side, we noticed that the performance of 
benchmark strategies was degraded, resulting in a 
lower ranking for these strategies as obviously seen 
in Table 7. 

 
 

 
Fig.8: The Performances Efficiency of PSO-evo Strategies 

against Benchmark Strategies (Tournament-1 of 40 
players) 
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Table 7 Average Scores of PSO-evo Strategies against 
Benchmark Strategies (60 players) 

 

Rank Strategy 
Average 

Score 
Rank Strategy 

Average 
Score 

1 SP34 70 31 SP35 48 

2 SP16 70 32 SP2 47 

3 SP22 70 33 SP10 45 

4 SP9 69 34 SP23 44 

5 SP12 68 35 PAV 43 

6 SP27 68 36 SP37 38 

7 SP43 68 37 SP3 37 

8 SP14 67 38 SP17 35 

9 TFT 67 39 SP29 35 

10 SP11 67 40 SP26 35 

11 SP32 62 41 SP38 31 

12 SP36 61 42 SMJ 29 

13 HTFT 61 43 SP20 28 

14 SP6 61 44 SP48 28 

15 HMJ 60 45 SP19 25 

16 SP8 57 46 AC 22 

17 SP31 56 47 SP46 22 

18 SP44 56 48 SP1 21 

19 SP15 55 49 SP30 21 

20 TFTT 54 50 SP25 20 

21 SP33 54 51 AD 19 

22 SP45 54 52 SP7 17 

23 SP4 53 53 SP49 17 

24 SP18 53 54 SP41 17 

25 SPT 51 55 SP47 17 

26 SP5 50 56 SP40 16 

27 SP50 49 57 SP39 14 

28 SP24 49 58 SP28 14 

29 STFT 48 59 SP21 14 

30 SP13 48 60 SP42 11 

 
In the third tournament, the number of 

participated strategies was increased to 100 
strategies. The experiment results, presented in 
Table 8, showed that PSO-evo strategies could 
defeat the benchmarking strategies. We also noticed 
that only TFT strategy could survive in the top 10 
strategies. As a result, the efficiency of benchmark 
strategies is found to be degraded as we increase the 

number of participated strategies in the competition 
pool. 

 
Table 8 Average scores (Avg.) of PSO-evo strategies 

against benchmark strategies (Str.) (100 players) 

Str. Avg. Str. Avg. Str. Avg.  Str. Avg. 

SP12 74 SP51 55 SP87 37 SP67 15 

SP59 74 SP54 55 SP10 35 SP34 14 

SP36 72 SP22 54 SP39 32 SP11 14 

SP8 72 SP26 53 SP42 32 PAV 14 

SP44 72 SP5 53 SP57 29 SP43 13 

TFT 69 SP85 53 SP75 28 SP13 13 

SP79 69 SP16 53 SP62 25 SP45 12 

SP88 69 SP56 52 SP63 25 SP21 12 

SP74 68 SP38 51 SP32 25 SP25 12 

SP19 68 SP50 50 SP84 25 SP49 11 

SP64 68 SP20 50 SMJ 25   

SP86 66 HTFT 50 SP29 24   

SP6 66 SP55 48 SP90 24   

SP77 65 SP33 48 SP53 24   

SP7 64 SP58 47 SP48 23   

SP1 64 AC 46 SP27 23   

SP40 64 SP71 45 SP15 23   

SP68 64 SP17 45 SP73 22   

SP82 63 SP83 45 SP46 21   

SP69 63 HMJ 40 TFTT 20   

SP3 61 SP4 40 SP9 20   

SP80 61 SP47 40 SP81 20   

SP66 61 SP60 39 SP23 20   

SP89 60 SP41 39 SP52 19   

SP61 58 SP24 39 AD 19   

SP31 58 SP72 38 SP18 18   

SP2 57 SP14 38 SP76 18   

SP28 57 SPT 38 SP70 18   

STF
T 

56 SP65 38 SP37 17   

SP30 56 SP78 38 SP35 16   

 
After analyzing the performance of PSO-

evo strategies against the benchmark strategies, we 
found that the performance of benchmark strategies 
is inversely proportional to the number of the 
participated strategies in the game. As we increase 
the number of players, the performance of the 
benchmark strategies is degraded. Fig. 9 illustrates 
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the impact of increasing the number of players on 
reducing the number of benchmark strategies in the 
winning top 10 strategies. 

 

 
Fig.9: List of top 10 Strategies in the First, Second and 

Third Tournaments 

 
In order to confirm the efficiency of our 

model in generating competent strategies, we 
conduct a comparative study against other existing 
models. These models claimed to generate 
competitive strategies which can defeat benchmark 
strategies. Among these models we choose the 
models published in [31]-[33] as we relatively share 
similar platforms. The strategies generated by [31]-
[33] are denoted by Freud, Strategy-MO and 
Gradual, respectively.  

In this test, we measure the average payoff 
of each model against five benchmark strategies, 
including: TFT, TFTT, PAVLOV, AC and AD. The 
reason for choosing only five benchmark strategies 
is that the chosen models choose these particular 
benchmark strategies in their tests. 

The results presented in Table 9 shows that 
PSO_evo strategies outperforms the benchmark 
strategies as well as the other three models as it 
could achieve the highest approximate average 
payoff among the other strategies. These results 
indicate that PSO-evo strategies could generate 
complex strategies to survive in complex 
environments. 
 
Table 9 Average Payoff of the Competent Models against 

Benchmark Strategies 

 

 Avg. 
Payoff 

TFT TFTT PAVLOV AC AD 

Freud 559 540 547 462 392 427 

Strategy-
Mo 

448 391 370 334 337 396 

Gradual 334 314 N/A 289 255 244 

PSO-evo 720 670 580 500 280 190 

 
From the other perspective, one can easily 

note that TFT strategy has higher performance than 
the other benchmark strategies. Fig. 10 shows a 
performance comparison between the competent 4 
models against the selected five benchmark 
strategies. The results show that the selected 
benchmark strategies have lower performance on 
PSO-evo strategies when compared to Freud, 
Strategy-MO and Gradual strategies. 
 

 
Fig.10: Performance of the benchmark strategies against 

the competent models 
 

The experiments results show that our 
model has successfully evolved the cooperative 
behaviour among the players to achieve the best 
possible outcomes. Our model is tested against well-
known models and the performance results shows 
that the cooperative behaviour of the players 
adopting our model, could achieve better scores 
compared to other models. 
 

7. CONCLUSION 

In this paper we have investigated the 
evolution of cooperative behavior in INPPD. For the 
purpose of enhancing the cooperation rate in large 
INPPD populations, an evolutionary model was 
presented using the PSO. The model was able 
strengthen the communication between INPPD 
players at different levels, which is essential for 
establishing proper collaboration. The utilization of 
the evolving knowledge base played a primary role 
in assisting INPPD players in predicting their 
opponents’ behavior though game’s generations.  

The results showed that our evolutionary 
model was able to enhance the cooperation rate in 
INPPD games of large populations. The results also 
showed that our model could help INPPD players to 
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strongly survive against defectors and those who are 
equipped with static benchmark strategies. 
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