
Journal of Theoretical and Applied Information Technology
28th February 2019. Vol.97. No 4

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

1205

A SOFT COMPUTING APPROACH TO OPTIMIZE
COMPONENT BASED SOFTWARE COMPLEXITY METRICS

1POOJA RANA, 2RAJENDER SINGH

1Research scholar, Department of Computer Science and Applications, M.D. University, Rohtak, India

2 Professor, Department of Computer science and Applications, M.D. University, Rohtak, India

1poojakaul24@gmail.com, 2chhillar02@gmail.com

ABSTRACT

 Identification of software components is found to be a crucial task and remains as a challenging area in the
software domain to extract optimal components from the component repository[18]. Several methods are
deployed to identify the software components and observed that clustering based technique is frequently
used and offer a solution with certain limitations such as prior specification of a set of clusters, overlapping
and difficulty in selecting the correct distance metric. In this research, an optimization technique is applied
on some components to get the best result. The genetic algorithm using the concept of number of
chromosomes is applied on software complexity metrics such as Cohesion of Variables within a
Component (COVC), Cohesion of Methods within a Component (COMC) and Total Cohesion Complexity
of a Component (TCCC) which are proposed by Rana and Singh et.al [14]. Fitness function metrics is
proposed for finding out the fitness value. Rana and Singh also empirically evaluate cohesion
metrics(COVC, COMC, TCCC) and perform comparative analysis with existing metrics in another
research paper [15]. In this paper genetic algorithm is applied on these metrics for optimization of results.
After application of genetic algorithm, SPSS a statistic tool is applied on the result to find out the
significance of result. The result obtained shows that better optimization of software metrics is obtained
through application of genetic algorithm compared to without usage of genetic algorithm.

Keywords: Software Component Metrics, Software Cohesion, Reusability, Maintainability, Genetic
Algorithm.

1. INTRODUCTION

The software development process is found
to be development paradigms which are being
promoted as a primary mean for reducing the
time to market, enhancing the rate of
productivity, capturing the effectiveness in cost
and the overall efficiency during the
development through the efforts of software [11].
The incorrectness and partial requirements has
given major concern since they are found to be
key aspect for the failure of software projects
[20]. Therefore, there is a huge requirement for
an effective method to extract and document the
user requirements which will enhance the
success rate of the entire project. Moreover, the
development of the software depends on the
basis of prioritization requirement in view of
client’s responsibility [3]. The above mentioned
are the reasons where metrics should be
considered to measure the success of the project.
Several factors that should be, measured for the
development of the project are the effort,

estimation of the cost and quality and
performance of the final product and rate of
success is determined after the completion and
validation of the product. But the usage of metric
provides a way to determine and predict the
success rate before the product is being validated
or completed.

The traditional based software projects
developed are found to be inadequate and
unreliable, so there is a requirement of
sophisticated metrics to provide a reliable
solution [10]. Several metrics used by number of
authors is found to provide a solution but it is not
effective to predict the performance ability of the
system. The different techniques of software
development are agile based software
development process, clustering based software
development approach and component based
software development approach. From the above
mentioned framework, component based
framework is found to be generally used because

Journal of Theoretical and Applied Information Technology
28th February 2019. Vol.97. No 4

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

1206

of the advantages such as time shrinkage,
production cost and reuse capability.

The development of Component Based Software
System (CBSS) is a promising solution in the
complex and large scale industries. The
traditional existing techniques for software
development are having high cost for
development, low productivity rate, the quality
of software is unmanageable compared to
component based software which leads to a
requirement of new technology for the analysis
of software. The CBSS is found to provide an
efficient mechanism to reduce the development
cost, and increase the maintainability and quality
of the software system [6]. The implementation
has provided remarkable interest in the
developing field especially in software and
academia and the use of modularity concept
provided more controllable, comprehensible and
flexibility options during software integration
[21]. In recent years, very few works is done in
the modular software development by
considering the criteria of reducing the rate of
coupling and enhancing the software module
cohesion [5] [8]. High rate of cohesive module
provides more reusability property and better
maintenance is achieved with loosely coupled
systems. Through optimization and optimal
selection of software components it exhibits high
reliability and reduction in the cost or few
modules in which budget has given more
concentration [4] [17] [22].

The main theme of this paper is to develop an
effective component based software metrics
using genetic algorithms. CBSS comprises with
several reusable components which makes it
advantageous compared to other existing
techniques, but limitations arises with the
complexity in designing process, selection of
irrelevant components and high computational
time. A novel approach is developing which
comprising genetic algorithms to solve this
issues and complexity metrics such as cohesion
is considered for optimization and reducing the
complexity which will be explained in further
stages.

2. LITERATURE REVIEW

A multimode amount of research is available in
the field of software development analysis and
different researchers have developed much
advancement to reduce certain factors and

improve the process of the system. The different
research is as follows

 Agile software development process is found to
be effective and comprises of several agile
values to represent methodologies such as
extreme programming and scrum. The
combination of Capability Maturity Model
Integration (CMMI) along with agile software
technique to synthesize and evaluate software is
developed by author [9]. Agile technique is
found to have high common place during the
software development. CMMI model is generic
software used by numerous organizations and its
hybridization along with agile development is
found to be advantageous through as per the
report submitted by CMMI institute [7]. The
advancement has led to the implementation of
scaling factors of agility in various software
development large industries. The advancement
of a hybrid methodology through a reference
qualitative constructive empirical approach has
been developed by author [2].

Several factors such as business policy, legal,
context, business value, agility, abstraction, and
components or facility elements that is not been
explicitly modeled is discussed in terms of
ISO/IEC 24744 meta model standards. A context
aware hybrid architecture strategy is used as
reference architectural elements for product
enhancement and a developed model with case
studies and constraints is found to be effective in
designing the software. Furthermore, an agile
learning designing approach is used in the design
and development of a system for adaptive
education [1].

Adaptive Educational Hypermedia systems
(AEHS) provide a path to access the data and
information and enhance the process of learning
with the same. AEHS based system is found to
be advantageous in several software engineering
aspects and with the combination of agile based
learning technique allows the designers to
modify, evaluate the design as per the user
requirement. From the study, it is observed that
agile learning aspects show an average
successful rate in terms of design and
development of user component model. The
machine learning based Bayesian network model
has been developed by author [19] to estimate
the effort of task effort during agile software
development. The author has designed Bayesian
network in correspondence to the prediction of

Journal of Theoretical and Applied Information Technology
28th February 2019. Vol.97. No 4

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

1207

method in any agile based method. The
developed model doesn’t have any practical
impact in terms of agility and the author
described several strategies to access the
precision rate of the model and the results are
evaluated in terms of relative error mean,
prediction and accuracy level of predicted
instances, mean absolute error, root relative
squared error. The result obtained from the study
provides a high accuracy level of 99.37% with
100% prediction accuracy for 160 tasks.

A novel based software development approach
comprising component based software analysis
to solve the issues raised in multitude embedded
domains [12]. The specific features of target
platform are found to be hidden during the
language design and can be extracted by
deploying specific mapping tools. The author has
considered “C” code of a populated DOM model
to define the embedded system and wrappers is
generated to access external ports through the
implemented code. From the study on results, it
is observed that the component development
through interrupt handlers and vector tables can
be used to represent the typical aspects of the
embedded system and by using an appropriate
library with open source tool chain can be useful
to enhance the availability of the developed
approach. Furthermore, an optimal approach on
the basis of coupling and cohesion through
component selection based build or buy scheme
is developed by author [16].

The author is concerned about hybridization and
integration of components to build modular
software systems. The terms namely coupling
and cohesion (C&C) plays a critical role in
developing a software system in terms of
maintainability, reliability and availability. The
author defined that high cohesion range and the
rate of low coupling is a major criteria for
defining the good software and selection of
optimization model namely fuzzy bi-criteria is
proved to be effective in build-or-buy scheme.
The results obtained from the study specify that
the developed model increases the rate of intra-
modular coupling density and functionality of
the system within the limited plan of budget.
Furthermore, the delivery time is also reduced
with increase in the reliability of the system. The
study is summarized by stating the performance
of the developed model can be improved by
including the features of compatibility amongst
the model components. The component based

approach for designing the flexible software
integration model is developed by author [13].

The thorough analysis of the software plan, the
requirement of the modification plan and runtime
execution can act as an integrated part of the
software development. Developing the
integration model is found to be a challenging
task because of the existence of numerous
modeling languages and their supportive
comprehensive runtime. The author has
considered model driven and component based
orthogonal development approaches to overcome
the above mentioned challenges. Model driven
approach is found to solve the issues regarding
different modeling languages and component
based approach facilitates modular systems
through divide and conquer approach with their
capability of reuse. The author has considered
the assumption that model deployment and
development of program should be considered as
a first class entity for the software development
life cycle and result obtained from the study
shows that the developed model is found to be a
promising approach to analyze the behavior and
feasibility of the system.

3. RESEARCH METHODOLOGY

Genetic algorithms are suitable for modifying
software architectures as they too have certain
constants which can be implemented in various
ways. Architecture is based on the requirements
as to what the software system is supposed to do.
The basic architecture deals with the question of
how the operations related to the requirements
are divided into components. When further
developing architectures, mechanisms such as
interfaces and inheritance can also be added to
the design. Thus, the set of requirements and
their positioning in the system represents the
basic individual, which too then evolves as
positions of requirements are changed and
mechanisms are added. As there is theoretically
an exponential amount of possible designs for a
system, the use of genetic algorithms to solve the
problem is justified. The architecture is defined
as a group of plan resolutions and architecture
texting minimizes the documentation through the
collection of plan resolutions. However,
difficulties and complexities are more during the
practical implementation. During the deployment
of software modules, the logic considered during
the development inaccessible and in some cases

Journal of Theoretical and Applied Information Technology
28th February 2019. Vol.97. No 4

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

1208

the outcome of the project plan will be hidden or
known only by the developer.

 In this research, architectural knowledge
containing the advantages and limitations of the
software structure design is considered and is
found to provide major changes in the
community of software architecture. A software
system is constructed to serve a specific purpose.
In order to achieve the desired outcome, the
software needs to complete several tasks leading
to the final solution. Component metrics such as
COVC(Cohesion of variables within a
component), COMC (Cohesion of methods
within a component), TCCC (Total Cohesion
Complexity of a Component) proposed by Rana
and Singh [14] are considered for experiment
analysis and evaluated in terms of cohesion and
Fitness Function metrics is proposed to find out
the fitness value for each chromosomes. The
experimentation is conducted for number of
generations. In later stages, genetic algorithm is
applied for the same input metrics and the
number of generations and the results tabulated
is compared with the values without genetic
algorithm which will be explained in the
following stages. Two type of comparison is
performed firstly by graphical representation and
secondly by using paired sample t-test.

Maintainability and reusability are the key
components considered for the identification of
components. Genetic algorithm is found to be
effective in the following key components and it
employs the COVC, COMC, TCCC will be
explained below

4. MEASUREMENTS OF SOFTWARE
DESIGN

The two main factors for the selection of
component are maintainability and reusability.
Cohesion metrics such as COVC, COMC and
TCCC are to be used to find out the best
component. These metrics are employed on GA
Algorithm for selection of optimized component.

4.1 COVC(Cohesion of variables within a

component) [14]

COVC refers to the frequency of variables usage
by the component. In the component, when the
associated variables focuses on a accomplishing
a single task then a component is said to be
cohesive [14]. Critical, moderate and standard

are the three categories for instance variables.
The instance variables are classified on the basis
of data types. Critical includes class type, user
defined component, pointers and references.
Moderate includes string, arrays, vector, list and
standard includes integer, float, double, Boolean
etc. [14] Suppose a component C such as a class
has a set of methods M(C)={m c1 , m c2 ,m c3 ,
...........,m cn) and a set of instance variables v in
V(C) ={v c1 ,v c2 ,v c3 , V cn }. Fv(C) is
the set of pairs (v c ,m c) for each instance
variables v in V(C) that is used by methods m in
M(C). Fv(C) is further divided into three i.e. a
set of pairs (vsi ,mci) and a set of pairs (vmi
,mci) and a set of pairs(vci ,mci) for each
instance variable v in V(C) that is used by
methods m in M(C). [14]

COVC=∑
ிூ௏

்௏

௡
௜ୀ଴ (1)

FIV= ∑ {[𝑓(𝑣𝑠𝑖) ∗ 𝑊𝑠] + [𝑓(௡
௜ୀ଴ 𝑣𝑚𝑖) ∗ 𝑊𝑚] +

[𝑓(𝑣𝑐𝑖) ∗ 𝑊𝑐]} (2)

Here

FIV = frequency of the instance variables within
a component

TV= total no of Instance Variable in a
component

F(vsi)= Frequency of standard variables

F(vmi)= Frequency of moderate variables

F(vci)= Frequency of critical variables

Ws, Wm, Wc are the weight factor of the
standard, moderate and critical type of variables
respectively.

4.2 COMC (Cohesion of Methods within a
component) [14]

Cohesion of Methods in a component refers to
the relatedness of methods and instance variables
of a component. This metrics considers the
interaction between the methods with in a
component. Here, the sum of methods is found
that uses the same type of variables i.e standard,
moderate, critical. [14]

COMC= ∑
஼ைெ

்ெ

௡
௜ୀ଴ (3)

COM= ∑ {(𝑀𝑠𝑖 ∗ 𝑊𝑠) + (𝑀𝑚𝑖 ∗ 𝑊𝑚) +௡
௜ୀ଴

(𝑀𝐶𝑖 ∗ 𝑊𝑐)} (4)

Journal of Theoretical and Applied Information Technology
28th February 2019. Vol.97. No 4

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

1209

COM = count of methods that use same type of
variables

TM= total no of methods

Msi= sum of methods that use Standard type of
variables.

Mmi= sum of methods that use Moderate type of
variables.

Mci= sum of methods that use critical type of
variables.

Ws, Wm, Wc are weight factor for standard,
moderate and critical type of variables.

4.3 TCCC(Total Cohesion Complexity of a
Component) [14]

Total cohesion complexity of a component is the
combination of cohesion of variables in a
component and cohesion of methods in a
component. As the metric name suggests, this is
the combination of both cohesion of methods
and cohesion of variables. [14]

TCCC= COVC + COMC (5)

COVC= cohesion of variables within a
component matrices

COMC= cohesion of methods within a
component matrices

5. GENETIC ALGORITHM

Genetic algorithm is found to be an effective
way of using the evolution techniques in
computer science. In technical terms, genetic
algorithm is used to obtain the optimal solution
from a large and complex input set. To apply
genetic algorithm, the solution should be
encoded in terms of solutions namely
chromosomes, an initial population cross over
mutation, fitness function and an optimal factor
for the next generation. For fitness function
evaluation a fitness function metrics is proposed
to get the fitness value. The output of this metric
is input for the fitness equation.

In genetic algorithm the initial population
which is also called as chromosomes are the
input metrics which are generated randomly.
Then fitness value is evaluated for each
chromosome according to the fitness function.
After fitness value the best chromosomes are

selected for reproduction using random or
roulette wheel method. GA operators such as
crossover and mutation are applied on selected
chromosomes. Crossover has three methods one
point, two point and three points. One of these
methods is applied on selected chromosomes.
After crossover mutation operator is applied.
Mutation has two methods, method of
elimination and method of addition.

After applying all genetic algorithm operators
each offspring is evaluated. Low fitness valued
offspring is to be eliminated and a new
generation of population is generated. This
process is repeated until condition is met and the
fittest chromosomes found.

The overall process of the genetic algorithm is as
follows,

Initialize(input population)

Analysis (Population) // Pre-processing

If (Stopping criteria is not satisfied)

{

Do

{

Selection (Population set)

Crossover (Population set)

Mutation (Population set)

Analyze (Population set)

}

}

The above algorithm process continues until
an optimal solution is obtained for the input
problem criteria or to a maximum number of
iterations till the condition is met. The steps
involved in deploying genetic algorithm are as
follows,

5.1 Fitness function evaluation

Fitness Function Metrics

The fitness function metric approach provides
several advantages to the metric research through

Journal of Theoretical and Applied Information Technology
28th February 2019. Vol.97. No 4

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

1210

effective metric set and provides additional
mechanism support for software analysis.
Equation 6 is considered to evaluate the fitness
function. The value from this function is
considered as input to find the fitness value and
it is given by

,Predict Fitness (a) = c ,x y a y
y

c f  (6)

Where, a is defined with number of
chromosomes in the software component feature
set fa

A training set comprising example variables is
considered in learning global co-efficient Cy. , Cx
is the global intercept used to compute the fitness
function of each individual chromosome a.

The individual string in the initial population is
assigned with a fitness value on the basis of
objective function. The function maximization is
obtained through the fitness value which is equal
to the objective function value of the string. The
equation for the optimal minimum fitness is
given by the equation 7, f(x) in the fitness
equation is the fitness function.

FA =
ଵ

(ଵା௙(௫)
 (7)

5.2 Selection and Reproduction

Reproduction is used to extract the selective
strings from the population and processed to
calculate the fitness function. Two chromosomes
are selected randomly and crossover and
mutation operators are applied on selected
strings.

5.2.1 Crossover Operator

Some chromosomes from population are
randomly selected for crossover to produce new
offspring. Crossover has three methods. Out of
these methods two point method is applied on
chromosome. In two point crossover two
component from one metric and two component
from another metric is exchanged.

5.2.2 Mutation Operator

After crossover mutation operation is performed
on newly produced chromosome. Mutation
operation is performed to eliminate invalid
component which produces bad result and add

new component with best fitness value is to be
kept.[18] The main theme is to extract the strings
which are above the average fitness value in the
current population and apply genetic functions to
new strings to obtain the successive population.
The chances of strings being selected to the
reproduction phase are proportional to its fitness
parameter. Furthermore, on the basis of the
evaluation criteria, individual genomes are
selected from a set of chromosomes.

5. EXPERIMENTAL EVALUATION AND
RESULTS

The experiments are done through the

utilization of with and without genetic algorithm
for software architecture. The implementation is
carried out by considering input component
metrics namely FF, COVC, COMC and TCCC
which is proposed by Rana and Chhiller [14] and
the same is modeled in JAVA based platform.
This experiment is performed on a JAVA based
project on online hospital management system.
This software contains ten components on which
theses metrics are applied The test cases are
extracted from input component metrics and the
same is optimized through number of iterations
and the derived classes. The analysis is more
concerned with factors namely reusability and
computational time.

The input parameter component metrics is
selected on the basis of fitness value and
processed to calculate the required and optimized
metric parameter. For effective processing, the
parameter with high fitness value is selected and
processed through the number of chromosomes.
The evaluation is carried with and without
genetic algorithm to calculate the effectiveness
of the system. The iteration value is increased for
every step and process is repeated to obtain the
fitness value. The results obtained will be
tabulated and it is shown below,

Table 1 Component Complexity Metrics without
Genetic Algorithm

Gener
ations

FF
Metric

COVC COMC TCCC

10 0.45 0.23 0.13 0.46

20 0.47 0.42 0.21 0.52

40 0.56 0.15 0.32 0.4

60 0.59 0.35 0.17 0.37

80 0.67 0.41 0.24 0.48

100 0.71 0.19 0.31 0.51

Journal of Theoretical and Applied Information Technology
28th February 2019. Vol.97. No 4

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

1211

Table 1 and 2 represents the components
software metrics obtained from several
software’s with and without genetic algorithm
and the same is processed through number of
chromosomes to validate the performance
analysis of the developed system. Table 1 shows
metrics values of different metrics on different
iterations without applying GA. Table 2 shows
application of GA on different complexity
metrics. A comparison can be drawn from the
result of the different metrics.

Table 2 Component Complexity Metrics with

Genetic Algorithm

Table 1 and table 2 contain four metrics FF,
COVC, COMC and TCC which are cohesion
metrics proposed by Rana and Singh et.al [14].
These metrics are basically extension of
cohesion metrics the author categorize the
metrics according to data types. These metrics
help the software developer to make the
component independent and also showcase
which part of the program should be more
focused.

For FF metrics in table 1(without GA) the value
at 100th generation is 0.71 and in table 2 (with
GA) the value at 100th generation is 0.87 which
is comparative high the fitness function value
should be high to get the optimal result which
can be achieved by application of GA. COVC
(cohesion of variables within a component) in
table 1 at 100th iteration is showing 0.19 metrics
value which is without applying GA and in table
2 at 100th iteration is showing 0.32 which is with
applying GA. From this result a conclusion can
be drawn that by application of GA an effective
and optimal solution can be reached. In table 1 at
100th iteration the value of COMC(Cohesion of
methods within a component) without GA is
0.31 and 0.43 is with GA and for TCC at 100th

iteration without GA the metrics value is 0.51
and with GA the value of metrics is 0.68. From
the results, it is evident that the proposed
optimized approach delivers improved metric
value when compared to the existing approach
and it can be seen in the following graph.

Figure 1 Representation of FF metric

Figure 1 is the graph plotted with metric values
obtained from FF metric with and without
genetic algorithm. It is observed from the graph
that better result is achieved with genetic
algorithm compared to without genetic
algorithm.

Figure 2 Representation of COVC metric

Figure 2 represent the values obtained from
cohesion of variables within a component
(COVC) metric through number of generations
and with and without genetic algorithm. X- axis
represents the number of generations and Y axis
represents the metric value. From the graph, it is
observed that better metric co-efficient is
obtained through the application of genetic
algorithm.

Gener
ations

FF
Metric

COVC COMC TCCC

10 0.71 0.32 0.25 0.54

20 0.74 0.41 0.31 0.61

40 0.76 0.4 0.49 0.35

60 0.73 0.37 0.29 0.42

80 0.82 0.48 0.34 0.57

100 0.87 0.32 0.43 0.68

Journal of Theoretical and Applied Information Technology
28th February 2019. Vol.97. No 4

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

1212

Cohesion of variables within a component
(COVC) metric also forms a sub metric to
cohesion and from the obtained results it is clear
that the proposed approach achieves improved
metrics utilizing GA.

Figure 3 Representation of Cohesion of Methods
within a component

 Figure 3 represents the graph plotted with metric
values obtained from cohesion of methods within
a component (COMC) with and without genetic
algorithm. It is observed from the graph that
better result is achieved with genetic algorithm
compared to without genetic algorithm.

As per the results, enhanced metric values are
achieved using the proposed approach.

Figure 4 Represent Total Cohesion Complexity of a

component

Cohesion is defined as the degree to which all
elements of a module, class, or component work
together as a functional unit. High cohesion is
good, and low cohesion is bad. The ideal
situation is one where a module, class, or
component provides only one function or, at
most, a very closely related set of functions.
Coupling is defined as the degree of
interdependence between two or more classes,
modules, or components. Tight coupling is bad,
and loose coupling is good. Coupling is usually
contrasted with cohesion. Low coupling often
correlates with high cohesion, and vice versa.
Low coupling is often a sign of a well structured
computer system and a good design, and when
combined with high cohesion, supports the
general goals of high readability and
maintainability

Table 3 Represent comparative chart of different

cohesion metrics

Figure 4 represent the graph with metric values
total cohesion complexity metric (TCCC) with or
without genetic algorithm. The graph shows that

result with genetic algorithm is better than the
result without genetic algorithm

Ge
ner
atio
ns

FF Metric COVC COMC TCCC
With
out
GA

With
GA

With
out
GA

With
GA

With
out
GA

With
GA

With
out
GA

With
GA

10 0.45 0.71 0.23 0.32 0.13 0.25 0.46 0.54

20 0.47 0.74 0.42 0.41 0.21 0.31 0.52 0.61

40 0.56 0.76 0.15 0.4 0.32 0.49 0.4 0.35

60 0.59 0.73 0.35 0.37 0.17 0.29 0.37 0.42

80 0.67 0.82 0.41 0.48 0.24 0.34 0.48 0.57

100 0.71 0.87 0.19 0.32 0.31 0.43 0.51 0.68

Journal of Theoretical and Applied Information Technology
28th February 2019. Vol.97. No 4

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

1213

Figure 5 Represent Comparative Analysis Of Different Metrics.

Table 3 contains four metrics FF, COVC,
COMC and TCC which are cohesion metrics
proposed by Rana and Chhiller et.al [14]. This
table shows the comparison between the metrics
with GA and without GA. From the Table 3,
Figure 4 is drawn, that compares graphically at
each iteration the difference between the results.
These metrics are basically extension of
cohesion metrics the author categorize the
metrics according to data types. These metrics
helps software developer to make the component
independent and reusable and also reflect which
part of the program should be more focused.

Figure 4 represents the values obtained from
Fitness Function (FF) metric, cohesion of
variables within a component(COVC) metric,
cohesion of methods within a
component(COMC) metric and total cohesion
complexity metric through number of
generations and with and without application of
genetic algorithm. X- axis represents the number
of generations and Y axis represents the metric
value. For each generation six bars represented
for each metrics with and without genetic
algorithm. From the graph, it is observed that
better metric co-efficient is obtained through the
application of genetic algorithm.

After comparing table 1 and table 2 results with
graphical method by using bar graph which
shows that FF, COVC, COMC and TCCC
proposed by Rana and Singh et.el. [14] give an
optimal and best result. To check the
significance of the results of COVC with GA and
COVC without GA , COMC with GA and
COMC without GA, TCCC with GA and TCCC
without GA (Table3) a paired sample t test is to
be applied. Paired sample t-test is suitable test
for judging the significance of the difference

between the means of two samples which are
related to each other. Paired sample t-test is
applied in case of small sample size.

Paired sample t-test is applied on variables
COVC without GA and COVC with GA data are
shown in table 5. The result shows that the mean
value of COVC with GA (0.3833) (Table 4) is
higher than the mean value of COVC without
GA. The paired sample t-test value is -2.436
(Table 5) and same is significant at 90% level of
confidence which means that the COVC with the
application of GA is higher and
significant(10%).

Table 4 Mean And Std Deviation Of COVC With And

Without GA

 Mean N Std.
Deviation

Std.
Error
Mean

COVC
without

GA

0.2917 6 .11669 0.04764

COVC
with
GA

0.3833 6 .06088 0.02486

Table 5 Paired Sample T-Test

 T DF Sig.(2-

tailed)
Pair 1
COVC

without GA
And

COVC with
GA

-2.436 5 0.059

Journal of Theoretical and Applied Information Technology
28th February 2019. Vol.97. No 4

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

1214

Paired sample t-test is applied on variables
COMC without GA and COMC with GA data
are shown in table 3. The result shows that the
mean value of COMC with GA (0.3517) (Table
6) is higher than the mean value of COMC
without GA. The paired sample t-test value is -
11.630 (Table 7) and same is significant at 99%
level of confidence which means that by
applying GA on COMC will give higher and
significant value and provide best and optimal
solution.

Table 6 Mean And Std Deviation Of COMC With And

Without GA

 Mean N Std.
Deviation

Std.
Error
Mean

COMC
without

GA

0.2300 6 .07563 0.03088

COMC
with
GA

0.3517 6 .09087 0.03710

Table 7 Paired Sample T-Test

 T DF Sig.(2-

tailed)
Pair 2

COMC without
GA
And

COMC with GA

-11.630 5 .000

Paired sample t-test is applied on variables
TCCC without GA and TCCC with GA data are
shown in table 3. The result shows that the mean
value of TCCC with GA (0.5283) (Table 8) is
higher than the mean value of COMC without
GA. The paired sample t-test value is -2.449
(Table 9) and same is significant at 90% level of
confidence which means that by applying GA on
TCCC will give higher and significant value and
provide best and optimal solution.

Table 8 Mean And Std Deviation Of TCCC With And
Without GA

 Mean N Std.

Deviation
Std.

Error
Mean

TCCC
without

GA

0.4567 6 .06022 0.02459

TCCC
with
GA

0.5283 6 .12254 0.05003

Table 9 Paired Sample T-Test

 T DF Sig.(2-

tailed)
Pair 3

TCCC without
GA
And

TCCC with GA

-2.449 5 .058

This analysis concludes that the application of
Genetic Algorithm on cohesion metrics COVC,
COMC and TCCC proposed by Rana and Singh
et.al [14] are significant and GA provides the
optimized result. The change in the result by
applying GA is significant and acceptable.

6. RELATED WORK

The selection of component depends on many
factors. One of the main factors is reusability and
independent component. There are many authors
which worked on selection of component.
Various type of techniques are used for selection
of component like graph partitioning, clustering,
FCA methods. Here soft computing is to be
applied for selection of a component.

Graph based Approach Albani et.al. [23] had
taken process, objects and actors as vertices and
their relationship as edges of a graph. In the
graph partitioning approach weights are assigned
to each edge to show the relationship among
elements of domain model. After assigning the
weights, a graph is partitioned into components
by applying heuristic technique of graph theory.
Authors by using graph partitioning approach
identify component which is high in cohesion
and low in coupling. One disadvantage of this
approach is weight assignment is done manually.

Journal of Theoretical and Applied Information Technology
28th February 2019. Vol.97. No 4

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

1215

Clustering Technique Lee et.al [24] used the
technique of clustering classes for identifying
logical component. In this process key classes
are identified and some more classes also
identified which are fully dependent on the key
classes. Key class identification is performed
manually. No automatic process is used to
identify Key classes. This part of the process is
most critical. Different authors used different
type of clustering technique like Jain et. al [25]
used agglomerative clustering technique,
Shahmohammadi et.al [26] used feature based
clustering method to identify logical component.
There are various clustering techniques like k-
means, Hierarchical, Graph based, Fuzzy C-
mean etc.

FCA-Based approach Hamza et.al [27] used
FCA-based technique to identify classes and
component. FCA is formal concept analysis
technique which is used for identification of
class. The author proposed a frame work by
taking FCA base theory to partition a class
diagram into logical component. CAI et.al.[28]
also develop a novel approach to identify
component. They used fuzzy FCA technique.
They also used dispersion and distance concept
to measure cohesion and coupling. The
performance of their methods can be measured
manually. They have many limitations because
they used simple clustering method.

Evolutionary Method now a day evolutionary
method is applied on software for optimization
of the result. A new concept in software
engineering had come i.e. search based software
engineering. In this field the design of the
software take module clustering and also take
into consideration that cohesion of a module will
be high and coupling among module should be
low. In this paper GA is applied on components
to optimized the result the aim is to identify a
component with high degree of cohesion and low
degree of coupling.

Various search based clustering techniques are
used like Hill Climbing, Simulating annealing,
Meta Heuristic Genetic algorithm etc. if the
proposed technique is compared with other
authors approach like Doval et.al [29] used same
objective Fitness Function for coupling and
cohesion whereas Praditwong et.al [30] use
Pareto optimality by using multi objective
approach and Simons et.al [31] use iterative
multi objective genetic algorithm to identify

classes at design level. The difference between
proposed genetic algorithm and existing search
based algorithm is that there aim is to optimized
clustering criteria and proposed GA and fitness
function aim is to maximize cohesion and
minimize coupling.

7. CONCLUSION

The advancement in the application of machine
learning algorithms and evolution in the field of
software engineering has led to automatically
design and identify the logical and effective
software components through an effective search
optimization algorithm. In this paper, a novel
approach has been presented to determine the
software component metric using a genetic
algorithm. The genetic algorithm based
component metric approach is found to be
beneficial in optimising the software metrics and
provides more accurate results compared to other
existing techniques.

 Rana and Singh et.at. [15] already compared
there proposed metrics with existing metrics and
found that the proposed metrics are more
significant than existing cohesion metrics. In
that research paper authors Rana and Singh et.at
[15] conclude that the complexity of a software
or component depends on the frequency of the
variables and also conclude that by using the
moderate type of variables, the strength of the
component will increased.

 In this paper author take the field into new
direction by using Genetic algorithm. Cohesion
metrics which helps the developer to find a
component which is suitable for reuse and easy
to maintain is taken for analysis which is further
divided into three metrics COVC, COMC and
TCC. The components obtained are processed
through a system of chromosomes. The
evaluation is done by varying the number of
chromosomes and fitness value is obtained with
and without a genetic algorithm.

GA takes components as chromosomes and these
chromosomes are encoded. The efficiency of GA
was evaluated by applying GA on online
software online Hospital Management System.
This software contains ten components on which
theses metrics are applied. The test cases are
extracted from input component metrics and the
same is optimized through number of iterations
and the derived classes.

Journal of Theoretical and Applied Information Technology
28th February 2019. Vol.97. No 4

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

1216

Findings from this research is that by applying
genetic algorithm on cohesion of variables
within component(COVC), cohesion of methods
within a component (COMC) and total cohesion
complexity metrics (TCCC) metrics provides an
optimized result. Evaluation results revealed that
the developed approach provides better fitness
value with optimization compared to without
genetic algorithm.

The comparative analysis also performed
between cohesion metrics(COVC, COMC,
TCCC) without GA with Cohesion Metrics
(COVC, COMC, TCCC) with GA. Paired
sample t-test is applied on the data and the
finding of this result is that by applying genetic
algorithm on cohesion metrics will always give a
significant result and the same is acceptable. It’s
a good change which helps to provide optimized
and efficient results.

In future, different machine learning algorithms
can be deployed to improve the optimization and
enhance the performance of the software
cohesion metrics.

REFERENCES

[1] A. Battou, O. Baz, & D. Mammass (2017).
Toward a Framework for Designing
Adaptive Educational Hypermedia System
Based on Agile Learning Design
Approach, Europe and MENA
Cooperation Advances in Information and
Communication Technologies (pp. 113-
123). Springer, Cham.

[2] A.Q. Gill, B. Henderson-Sellers, & M.
Niazi(2018). Scaling for agility: A
reference model for hybrid traditional-agile
software development methodologies,
Information Systems Frontiers, 20(2), 315-
341.

[3] A. Sillitti & G. Succi, (2005).
Requirements engineering for agile
methods, Engineering and Managing
Software Requirements (pp. 309-326).
Springer, Berlin, Heidelberg.

[4] B. Zachariah & R.N. Rattihalli (2007). A
multi criteria optimization model for
quality of modular software systems, Asia-
Pacific Journal of Operational
Research, 24(06), 797-811.

[5] C. Ghezzi, M. Jazayeri & D.
Mandrioli(2002). Fundamentals of
software engineering, Prentice Hall PTR.

[6] C.K. Kwong, L.F. Mu, L. J.F. Tang & X.G
Luo(2010). Optimization of software
components selection for component-based
software system development, Computers
& Industrial Engineering, 58(4), 618-624.

[7] CMMI Institute, Maturity Profile Reports,
March 2013.
http://cmmiinstitute.com/assets/presentatio
ns/2013MarCMMI.pdf (accessed March
2014).

[8] F.B. Abreu & M. Goulão(2001). Coupling
and cohesion as modularization drivers:
Are we being over-persuaded?, Software
Maintenance and Reengineering, 2001.
Fifth European Conference on (pp. 47-57).
IEEE.

[9] F.S. Silva, F.S.F Soares, A.L. Peres, I.M.
de Azevedo, A.P. L. Vasconcelos, F.K.
Kamei & S.R. de LemosMeira, (2015).
Using CMMI together with agile software
development: A systematic
review, Information and Software
Technology, 58, 20-43

[10] J.G Borade & V.R. Khalkar (2013).
Software project effort and cost estimation
techniques, International Journal of
Advanced Research in Computer Science
and Software Engineering, 3(8).

[11] K. Tian & K.Cooper (2006, August).
Agile and software product line methods:
are they so different , 1st international
workshop on agile product line
engineering.

[12] M. Dixon(2018). Generating Embedded
Systems Software using a Component
Based Development Approach. GSTF
Journal on Computing (JoC), 2(3).

[13] M. Derakhshanmanesh, J. Ebert, M.
Grieger & G. Engels(2018). Model-
integrating development of software
systems: a flexible component-based
approach, Software & Systems Modeling,
1-30.

[14] Pooja Rana, Rajender Singh (2016), “A
Design of Cohesion and Coupling
Metrics for Component based Software
Systems”, International Journal of
Computer Applications, (0975 – 8887)
Volume 146 – No.4, July 2016, PP- 23-
27

[15] Pooja Rana, Rajender Singh (2018),
“Comparative Analysis of Cohesion

Journal of Theoretical and Applied Information Technology
28th February 2019. Vol.97. No 4

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

1217

Metrics For Component Based Software
Systems”, Journal of Theoretical and
Applied Information Technology , (1992
– 8645) Volume 96 – No.14, July 2018,
PP- 4369-4378

[16] P.C. Jha, V. Bali, S. Narula, & M.
Kalra(2014). Optimal component
selection based on cohesion & coupling
for component based software system
under build-or-buy scheme, Journal of
Computational Science, 5(2), 233-242.

[17] R. Seker, Der Merwe Van, A. J., P.
Kotze, M.M, Tanik, & R. Paul(2004).
Assessment of coupling and cohesion for
component-based software by using
Shannon languages, Journal of
Integrated Design and Process
Science, 8(4), 33-43.

[18] Seyed Mohammad Hossein
Hasheminejad, Saeed Jalili, Software
Component Identification using Genetic
Algorithm, Journal of Obect Technology,
Vol 12, No 2, 2013, pages 3: 1-34.

[19] S. Dragicevic, S. Celar, & M.
Turic(2017). Bayesian network model
for task effort estimation in agile
software development, Journal of
Systems and Software, 127, 109-119.

[20] Standish Group, 2009. Project Smart,
http://www.projectsmart.co.uk/thecuriou
s-case-of-the-chaos-report-2009.html,
(viewed October 2014).

[21] S. Parsa & O. Bushehrian(2004, June).
A framework to investigate and evaluate
genetic clustering algorithms for
automatic modularization of software
system, International conference on
computational science (pp. 699-702).
Springer, Berlin, Heidelberg.

[22] W. Zhiqiao, C.K. Kwong, J. Tang, &
J.W.K. Chan(2012). Integrated model for
software component selection with
simultaneous consideration of
implementation and verification,
Computers & Operations
Research, 39(12), 3376-3393..

[23] A Albani, S Overhage, and D Birkmeier.
Towards a systematic method for
identifying business components. In
Proceedings of CBSE, LNCS 5282, pages
262–277, 2008. doi: 10.1007/978-3-540-
87891-9_17.

[24] JK Lee, SJ Jung, SD Kim, WH Jang, and
DH Ham. Component Identification
Method with Coupling and Cohesion. In

Proceedings of the 8th Asia-Pacific
Software Engineering Conference, pages
79-86, 2001. doi:
10.1109/APSEC.2001.991462.

[25] H Jain, N Chalimeda, N Ivaturi, and B
Reddy. Business Component
Identification a Formal Approach. In
Proceedings of the 5th IEEE Int.
Enterprise Distributed Object Computing
Conf., pages 183-187, 2001. doi:
10.1109/EDOC.2001.950437.

[26] GR Shahmohammadi, S Jalili, and SMH
Hasheminejad: Identification of System
Software Components Using Clustering
Approach. Journal of Object Technology
(JOT). 9(6):77-98, 2010. doi:
10.5381/jot.2010.9.6.a4.

[27] HS Hamza. A Framework for Identifying
Reusable Software Components Using
Formal Concept Analysis. In
Proceedings of the 6th International
Conference on Information Technology:
New Generations, pages 813-818, 2009.
doi: 10.1109/ITNG.2009.276.

[28] Z-g Cai, X-h Yang, X-y Wang, and A
Kavs: A Fuzzy-based Approach for
Business Component identification.
Journal of Zhejiang University-
SCIENCE C (Computers & Electronics).
12(9):707-720, 2011. doi:
10.1631/jzus.C1000337.

[29] D Doval, S Mancoridis, and BS Mitchell:
Automatic Clustering of Software
Systems Using a Genetic Algorithm. In
Proceedings of Int’l Conf. Software
Tools and Eng. Practice. 1999. doi:
10.1109/STEP.1999.798481.

[30] K Praditwong, M Harman, and X Yao:
Software Module Clustering as a Multi-
Objective Search Problem. IEEE Trans.
Software Eng. 37(2):264-282, 2011. doi:
10.1109/TSE.2010.26.

[31] CL Simons, IC Parmee, and R
Gwynllyw: Interactive, Evolutionary
Search in Upstream Object-Oriented
Class Design. IEEE Transactions on
Software Engineering. 36(6):798-816,
2010. doi: 10.1109/TSE.2010.34.

