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ABSTRACT 

 
     In this paper we introduced new model of Turing machine, and represented the  Turing Machine in  
the  space of  matrices  size 𝛼 ∗ 𝜆, is called Turing Matrices Space (TMS), denoted by M(𝛼 , 𝜆),and 
construct  the formulate which  translate the Turing machine to Turing Matrices Space  Then the space is  
called Standard Turing Matrices Space  (Standard TMS). In the second phase of the work we using the 
Turing Machines with crossover operators to accelerated the work of the genetic algorithms   then we 
have provided many of theorems and lemma to use as a mathematical form in this   new model of Turing 
machine  
Key-Words: - Genetic Algorithms, Crossover Method, Turing Machine, Multidimensional Turing 

Machines 
 
1. INTRODUCTION  
 
     A Turing machine is a mathematical model of 
computation that we can used a predefined set 
ofrules, which to determine the result on a strip of 
tape according to a table of rules .In 1936 the 
notion of Turing machines appeared introduced by 
Alan M. Turing [1]. Claude Shannon was studied 
the problem which called now the discretional 
complexity of Turing machines in the 1950s [2].  
Philipp K. Hooper first studied The immortality 
problem, by consists from finding an initial infinite 
configuration on which the Turing machine never 
halts, whatever the initial state during 1966,[5]. 
Yurii Rogozhin’s introduced in 1982 the smallest 
Turing machine, nothing changed during the next 
10 years. In 1992, only improved universal machine 
by Rogozhin[6].Stephen Wolfram in 2002 
introduced  very small weakly universal Turing 
machines [3]. Pavlotskaya in 2003 proved that a 
Turing machine instructions has a decidable halting 
problem even coupled with a finite automaton 
[4].In 2007, by Wolfram the tape of the Turing 
machine is initially fixed. Its initial configuration is 
not exactly periodic, but it is “regular” in the sense 
that the infinite word written on the tape [2] 
2.  Multidimensional Turing Machines [7, 8] 
Multidimensional Turing machine, the Turing 
machine tape is viewed as having the ability to 
extend infinitely in more than one dimension [9]. A 
two–dimensional machine has a transition defined 
as 7–tuple (S, Σ, Γ, δ, S0, B, F) where, 
 S is a set of finite states. 
 Σ is the set of input symbols (alphabet). 
 Γ is the tape alphabet. 

    The blank symbol. 
 δ is The transition function for an t–tape 
Turing machine can be defined  δ: S × Γt → S × Γt 
× {L,R,U,D}t where L ,R ,U, and D are left, right , 
up, and down respectively which indicates the 
direction to move the read/write head. 
   is the start state. 
  F is the set of final (accepting) states 

 
Figure (1) 

 
Definition: HALT  
In computability theory, During analysis a Turing 
Machine halts if there is no leaving arc from the 
current state for the character read from the tape 1 
and the character read from tape 2 or if a ‘HALT’ 
state is reached. A sentence is accepted if a machine 
ends in the ‘HALT’ state. [10, 11] 
 
3. 2-2: Example  
This example about one-domination Turing 
machine, where t=2 tapes, the direction to move the 
read/write head is denoted by R (Right),  L (Left), 
and N (Null),  S={S0,S1,HALT}, Σ ={a,b}, and 
Γ={a,b,B}, for example the sentence input is 
“aabb” placed in the tape one , see figure(3), the 
head position  initial “a” , with each the position of 
tape two are blank, the current position of the head 
to two tapes its bold. 
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                                       Figure (2) 
Table 1 shows the analysis of a sentence (‘aabb’) 
for the Turing machine acceptor existing in Figure 
(3). Initially the sentence ‘aabb’ is placed on Tape 
(1) with the head pointing to the initial ‘a’ in the 
sentence. Blank symbols are placed to the right and 
left of the sentence. Tape( 2). Since the input 
characters are ‘a’ and ‘B’ from Tape 1 and Tape 2 
respectively, the Turing machine follows the 
change with the corresponding input characters. 
The change followed is shown in Figure 3. The 
head moves right on Tape 1. The character ‘a’ is 
written to Tape 2 and the head moves right. Table 1 
shows each change made, and the contents of the 
tape after each change. The arrows indicate the 
characters read from the tapes. The machine ends in 
the ‘HALT’ state which involves that the sentence 
is accepted 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
                        
 
 

Figure (3) 
 
 
 
 

Table  (1) 

 
 
2-4 :( N-dimensional) Turing Machines  
 N-dimensional Turing machine. The Turing 
machine tape is viewed as having the ability to 
extend infinitely in more than one dimension [9]. A 
N–dimensional machine has a transition defined as 
7–tuple (S, Σ , Γ, δ, S0,B, F) where, 
 S is a set of finite states. 
 Σ is the set of input symbols (alphabet). 
 Γ is the tape alphabet. 
    The blank symbol. 
 δ is The transition function for an t–tape 
Turing machine can be defined  δ: S × Γt→ S × Γt × 
{d0,d1,d2,…dN-1}t where d0,d1,d2,…dN-1  which 
indicates the direction to move the read/write head. 
   is the start state. 
  F is the set of final (accepting) states. 

2-5:Example  
  Suppose dh=         h=0,1,2 …  -1 for 

example if h=0,1  then d0= 0 ,direction right  ( R ) 
and d1=  ,direction left   ( L ) if h=0,1,2,3  then 
d0= 0 ,direction right ( R ) , d1=  ,direction up ( U ) 

a/R , B/a/R 

b/R , a/L 
b/N , B/L 

S0 S1 

HALT 
 

B/N , B/N 
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, d2=  direction left ( L ) and d3=  ,direction 

down ( D ) 
2-6: Definition  
 The space of each matrices of size 𝛼 ∗ 𝜆, it's 
representation of Turing Machine, is called Turing 
Matrices Space (TMS), denoted by M(𝛼 , 𝜆),  
Where 𝛼=|Γ| (|S|-1), 𝜆= t |S|, and t denoted to the 
number of tapes. 
2-7: Example 
From the example (2-2), |Γ| =3, |S|=3, and t=2, then 
from definition (2-6) 𝛼=6, and 𝜆=6. 
Also from the example (2-3), |Γ| =3, |S|=4, and t=2, 
then 𝛼=9, and 𝜆=8. 
2-8: Definition (Label Read/Write/Diction) 
The label X/Y/d (Read/Write/Diction) in tape τ 
from state qi to qj , X is represent of the read XΓ 
from tape τ , Y is represent of the write YΓ in 
tape τ , and d move the head in direction d, we have 
a transition defined by  δ(qi,X)=(qj,,Y,d) which 
replaces X with Y, transitions from qi to qj state , 
and moves the "read head" in direction d (left, right, 
up, …) to read the next input.  
2-9: Definition  
Tape set of integer numbers , is define the 
function ω to convert  the elements of tape alphabet 
symbols Γ to integer numbers from 3 to |Γ|+2. 

 
If Γ={α1,α2,…, α|Γ|-1,B}, and B is a blank element, 
then , where  

corresponding  , and B 
corresponding to ω (B)=|Γ|+2. 
2-10: Example  
From example (2-2) and (2-3)  , Γ={a, b, B}, then 

 
2-11:Definition: Standard Turing Matrices Space( 
Standard TMS). 
If , where A=[aij],  and 
δ(k1,x)=(k2,,u,d), for the label x/u/d 
(read/write/direction) between the states Sk1, and 
Sk2 , such that 

, 

 , 
Where S is a set of finite states, and Γ is the tape 

alphabet Γ={B} ∪ Σ, Then when read  xΓ in τ 

tape 
x=ω-1( y ), where  y=((i-1) mod | Γ |)+3, with 
the following 

1. aij=0 if there no transition between the 
state Sk1, and state Sk2 . 
2. aij=+1 if doesn’t write on  tape ( that mean 
null (N) ), and doesn’t move head on  tape between 
state Sk1, and state Sk2. 

3. aij=+2 if doesn’t write on  tape, and  right 
move head on  tape 
4. aij=-2 if doesn’t write on  tape, and  left  
move head on  tape. 

5. aij ≥ +3 if to write x=ω-1( aij ) on  tape, and  
right move head on  tape where (Tape integer 
numbers). 
6. aij ≤ -3 if to write x=ω-1(-aij ) on  tape, and  
left move head on  tape where  (Tape integer 
numbers). 
Then the space TMS is called Standard Turing 
Matrices Space (Standard TMS). 
2-12:Example  
Suppose the graph of Standard TMS with S= {S0, 
HALT}, Γ= {0,1,B},and t=2,  see figure (4) 
 
 
 
 
 
 
 
 
 
 

 
Figure (4) 

Then , 
 

  

 
2-13: Definition (6): The rows of a matrix   

, and corresponding to the specific 
states Si (state of index i) is called state rows 
denoted by (SRi). 
2-14: Example  

In the figure (4) the state rows of index 0 denoted 
by SR0, it’s corresponding to the state S0 such that:  

 

SR0=  

Where S= {S0,S1,HALT}, Σ ={a,b}, and Γ={a,b,B}, 
 
 
 
 
 
 

B/N, B/0/L 

1/R, B/1/R 
0/R, 1/N 

S0 HALT 
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Figure (5) 
 
 
2-15: Lemma :If , represent the space 
of Multidimensional Turing machine of Standard 
TMS , then for each transition between Sk1 and SK2 
with x/y/z in tape τ , where 1≤τ≤t, and τN, it’s 
correspond to    , such that 
i=| Γ| K1 + ( ω(x)-2)      ………(1) 
j=(τ-1)|S| + (K2+1)    …………..(2) 
 where ‘x’ is the symbol read from the tape τ, and 
‘y’ is  the symbol to be written to the tape τ, and ‘z’ 
denoted to the movement of  the head in the 
direction z of tape τ. 
proof: 

Since     from definition (2-7) and the 

reminder of  is (i-1) mod   , and r= (i-1) mod 

  , then 

    

 (i-1) –r = k1       
i= k1+r+1   
 From definition (4), y= ω(x) = ((i-1) mod |  |) +3,  
Then r=y-3 
i=| Γ| K1 + (ω(x)-2). 
also from definition (5) ,   
j-1=  +     ,  ,  

j=  +  +1  
the value    is a number of multiple of tapes, 
because the number of columns in standard Turing 
matrix is a multiple of tapes (=t |S|),  in the first 
tape q=0, in the second tape q=1, then in the τ’th 
tape q=τ-1, then  
j=  +  +1 
j=(τ-1)|S| + (K2+1)   ■ 
2-16:remark (1) : case  τ =1 then j=(K2+1)  from 
lemma ( 2-15 ) 
2-17: Example (7): 

Suppose S={ S0, S1, S2,S3,S4,S5,HALT}, Γ={a ,b ,c 
,B}, and t=2, then  α= |Γ| (|S|-1)=24, and =t |S|=14. 
 
 
 

                              
 
Figure (6) 
From above for first tape τ=1: (a/L), and by using 
lemma (1) 
 Then i=| Γ| K1 + (ω(x)-2) =4 * 2 + (ω (a)-2) = 8+ 
(3-2) =9 
         j= (t-1) |S| + (K2+1) = (1-1) * 7+ (4+1) =5 
then from definition(5),  a95=-2. 
2-18: Example 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure (7) 

From figure (7) S= {S0, S1, HALT} 
Γ= {a, b, B}, t=2, 𝛼=|Γ| (|S|-1) =3 (3-1) =6, and 𝜆= t 
|S|=2×3=6, 
 , If , then by definition 
 (2-7)   

A=  For example if a55=-

3, i=5, and j=5 then   

k1= , 

K2=  
From state S1 to same state S1, then 

a/R , B/a/R 

b/R , b/a/L b/N , B/L S0 S1 

HALT 

B/N , B/N 

a/ L , b / c /R 
S2 S4 

a/R , B/a/R 

 

b/R , b/a/L 
b/N , B/L 

S0 S1 

H
AL

B/N , B/N 
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 The first tape read x  , when x=ω-1( y ), 
and y=(i-1) mod | Γ |)+3,  

     y= ((5-1) mod 3) +3=4, then x= ω-1(4) =b, 
 from definition(5) if a55≤ -3, the head in 
the second tape write  
x=ω-1(-a55) = ω-1(3) =a, and move left in the first 
tape. That mean is b/a/L. 
 
2-19: Definition (7):( Elect vector) 
The vector X=(x1,x2,…,x| S |-1) of zero-one, and the 
size  | S |-1, where x1,x2,…,x| S |-1 corresponding to 
states S0,S1, … , S| S |-2,  x1=0, and the number of 

ones in X is less than,  called Elect vector. 

2-20: Definition (8):(The Norm of Elect vector) 
The number of ones in the elect vector called norm 
of Elect vector, denoted by || X|| , where x is Elect 
vector, and  

 
2-21: Remark(2):  From definition (2-19) and 
definition (2-20) the norm of Elect vector is  

 

 
2-22: Definition (9): (Shave Matrix) 

The matrix of size α×α, denoted by I(X), where X 
is Elect vector, then  

 
The matrix I(X) called shave matrix. 
2-23:Example(9): 
Let S={S0,S1,S2,H}, Γ={a, b,B}, t=3, and 
X=(0,0,1), then α=9, =12, and k=2 by definition of 
the Shave Matrix  I(X), the nonzero element is  I77= 
I88= I99=1, because  7  , then  
= diag((1,1,…,1)-( x1,x2,…,x| S |-1)) 
                = diag(1,1,…,1)- diag(x1,x2,…,x| S |-1) 
                = I-I(X)   ■ 
 
2-28:Example(11): 
From example (2-23) the complement of shave 
matrix I(X) is  
I(X′)=diag(1,1,1,1,1,1,0,0,0,1,1,1). 
3. Genetic Programming Operators. 
  Genetic operators are used to transform the 
population of the individuals from one generation 
to another.  Genetic operator consists of three types 
of operator's mutation, crossover and selection 
which must work in conjunction with one another 
in order for the algorithm to be successful. Genetic 
operators are used to transform the population of 
the individuals from one generation to another 
[12].now we use Turing machine with Genetic 

operators to acceleration   the work of Genetic 
algorithms 
3-1: Crossover [13]  
 Crossover is the process of taking more than one 
parent solutions and producing a child solution 
from them. After the selection (reproduction) 
process, the population is supplemented with better 
individuals. By recombining operator that proceeds 
in three steps  
1. The selection operator choosing at random a pair 
of two individual strings for the mating. 
 2. A cross location is selected at random along the 
string length. 
3. The position values are swapped between the two 
strings following the Cross location. 
3-2:Definition (11) (Transformation Row Echelon) 
If Iα=diag(I1,I2,…,I|S|-1) is Identity matrix of size α, 
and Ij identity matrix of size |Γ| (where j=1,2,…, 
|S|-1), and Iα=(SR1,SR2,…SR|S|-1), where SRj is |Γ| 
rows that include Ij, then the definition of 
transformation row echelon T(X,Y), where ||X||=1 
with one nonzero element of  X at position h, and 
||Y||=1 with one nonzero element  of Y at position 
k, where   

1- if h=k, then T(X,Y)=Iα 
2- if h≠k, then  

T(X, Y) = (SR1,…, SRk-1, SRh, SRk+1,…, SRh-1, 
SRk, SRh+1,…,SR|S|-1), k<h 

or  
T(X, Y) = (SR1… SRh-1, SRk, SRh+1,… SRk-1, SRh, 
SRk+1,….,SR|S|-1), h<k 
 

3-3: Remark (3): From definition (3-2), suppose 
a=|S|-1, then 

 
3-4: Example (12):  
Suppose S={ S0,S1,S2 ,H} ,|S|=4 , Γ={a,b.B} ,and 
|Γ|=3  
Let X=(0,1,0) and Y=(0,0.1)  ,h= 2 ,k=3 , a=|S|-1=3 
 

T(X,Y)=  
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3-5:Definition(12) : the parent matrices  
represented  of Turing Machine  of  size 𝛼 ∗ 𝜆, it’s 
belong  to M(𝛼 , 𝜆),( Turing Matrices Space 
(TMS)),  
 
3-6: Definition(13) : the child  matrices  which 
introduce from exchanging segments in the parents 
matrices 
3-7: Theorem (1): 
Let  and , are 
Standard TMS, and  the parent matrices 
,  ,  =  =  ,X ǂ Y (where X, 
and Y are Elect vectors for A, and B respectively), 
and ||X||=||Y||=1,then child  matrices C, and D are   
C=I (X′) A+ T(X, Y) I(Y) B                              (3) 
 and 
D= I (Y′) B+ T(Y, X) I(X) A                             (4) 
Proof : 
Suppose the Elect vector X from graph T1 
corresponding to matrix A where 

X=(00,01,….0k-1,1k,0k+1,..,0 ) and A=   and 

Elect vector Y from graph T2 corresponding to 
matrix B where Y=(00,01,…. 0h-1,1h,0h+1,..,0 ) , 

B=  , 

From the left side of (3), then 

C=    C=   +    

 
 

C=I(X′)   + T(X,Y)       ( because  

T(X,Y) swap between  and ) 
 
 

C=I(X′)   + T(X,Y) I(Y)  

C=I(X′) A+ T(X,Y) I(Y)B 
 
By the same way we can prove  D= I(Y′)B+ 
T(Y,X)(I(X)A  ■ 

3-8: Example (13)  
in this example choose state S2  as Elect vector  
from graph (p1) and choose state S1  

 from graph (p2) as Elect vector  and swap  him 
such that insert  S2 to graph (p2), 
insert  S1 to graph (p1)  
 

P1=  

P2=  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

b/R , B/a/R 

b/R , B/N S0 S1 

H 

B/N , B/N 

S2 

a/R , B/b/R 

a/R , 
B/a/R 
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                             Graph (p1) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

                      
        
 
Graph (p2) 

By  proposition (2-24)  , I(X)= diag 
(0,0,0,0,0,0,1,1,1) , 
 I(Y)= diag (0,0,0,1,1,1,0,0,0)  and I(X′)= diag 
(1,1,1,1,1,1,0,0,0)  then 
C=I(X′) A+ T(X,Y) I(Y)B ,and  
D= I(Y′)B+ T(Y,X)(I(X)A  

 
 

,  

 

 
 

     then A=  

 
 

,  

 

 
 

  then B=  

C=I(X′) A+ T(X,Y) I(Y)B  

   =diag(1,1,1,1,1,1,0,0,0)  + T(X,Y)  

(diag (0,0,0,1,1,1,0,0,0))  

 

   =  + T(X,Y)  

  =  + =  

C==  

 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
Figure (C) 
3-9:lemma (2): 
Let  and , are 
Standard TMS, and parent 

B/N, B/N 

b/R , a/L 

b/N , B/L 

a/R , B/a /R 

a/N , B/a/R 
S0 S1 

HAL
T 

 

S2 
 

B/N , B/N 

a/R , B/b/R 

b/R , B/a/R 

b/R , 
B/N 

S0 S1 

H 

B/N , B/N 

S2 

b/R , a/L 
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matrices,  ,  =  =  , X = Y, 
and ||X||=||Y||=1,then child  matrices  are   
C=I(X′) A+ I(Y)B          ( 5) 
and    
D= I(Y′)B+ I(X)A           (6) 
 
 
Proof : 
By then definition (3-2)  if h=k, then T(X,Y)=Iα and  
by  theorem (3-7)  
C=I(X′) A+ T(X,Y) I(Y) B                               
D= I(Y′) B+ T(Y,X) I(X) A   
This impels C=I(X′) A+ I(Y) B                     
and 
D= I(Y′) B+ I(X) A ■ 
3-10:Example (14)  
From example (3-4) and suppose choose S1from 
graph T1 and from graph T2,  
I(X)= diag (0,0,0,1,1,1,0,0,0) , I(Y)= diag 
(0,0,0,1,1,1,0,0,0)  and I(X′)= diag 
(1,1,1,0,0,0,1,1,1)  and from example (3-8) 

A=  B=  

Then C=I(X′) A+ I(Y)B 

C= diag (1,1,1,0,0,0,1,1,1)  + diag 

(0,0,0,1,1,1,0,0,0)   

   =  +  =   by the same way to 

fined D= I(Y′)B+ I(X)A  . 
 
3-11:Definition (12) (Echelon block) 
if X=(0,0,0,…,1h ,0,..0) and Y=(0,0,0,…,1k ,0,..0)  
are elect vectors ,||X||=||Y||=1 then  
Tblock (X,Y)=(b1,b2,…br) where (r=|S|-1)  such that 
 bh=k ,bk=h and h ǂ k  
3-12:Remark(4): If h = k then Tblock (X,Y)= I 
3-13:Example (15):  
Suppose S={ S0,S1,S2,S3 ,H} ,|S|=5 , Γ={a,b.B} 
,and |Γ|=3  
Let X=(0,1,0,0) 
and Y=(0,0,1,0) 
h= 2 ,k=3 , a=|S|-1=4 
Tblock (X,Y)=( 1,3,2,4) 
 
3-14:Remark:The AND operator is a Boolean 
operator denoted by (˄) used to implement a logical 
conjunction on two logical expressions, where 

the AND operator choose a value of one  if both 
its operands are ones, otherwise the value is zero 
[9]. 
 
3-15:Definition (14) :  If X,Y are elect vectors and 
||X˄Y||=0, X=X1+X2 ,Y=Y1+Y2  
, ||X1˄Y1||=0 , ||X1˄Y1||=0 , Tblock (X,Y)=(c1,c2,…cr)  
, Tblock (X1,Y1)=(a1,a2,…ar) ,  
Tblock (X2,Y2)=(b1,b2,…br) Where r= =|S|-1, and 
ai,bi, ci=1,2, …, r , and 1≤i≤r then 
 

ci  

 
Tblock (X,Y)= Tblock (X1,Y1)+ Tblock (X2,Y2) 
 
Note: the case aiǂi and  biǂ i   there are not exist 
because  ||X˄Y||=0 
 
3-17:Example (16):  
Suppose S={ S0,S1,S2,S3 ,S4,S5 ,H} ,|S|=7 , Γ={a, b, 
B} ,and |Γ|=3  
Let X1=(0,0,1,0,0,0) , X2=(0,0,0,0,1,0) 
and Y1=(0,1,0,0,0,0) , Y2=(0,0,0,1,0,0) 
Tblock (X1,Y1)=( 1,3,2,4,5,6) 
Tblock (X2,Y2)=( 1,2,3,5,4,6) 
  
If X=X1+X2, Y=Y1+Y2, then by definition (3-11) 
then Tblock (X,Y) =( 1,3,2,5,4,6) 
3-18: Theorem (2): 
If Iα=diag(I1,I2,…,I|S|-1) is Identity matrix of size α, 
and Ij identity matrix of size |Γ| (where j=1,2,…, 
|S|-1), Iα=(SR1,SR2,…SR|S|-1), where SRj is |Γ| rows 
that include Ij, and  ||X||=||Y|| >1,||X˄Y||=0 
X=X1+X2+…+Xn, Y=Y1+Y2+…+Yn,( where  
n=||X||), and   ||Xi||=||Yi||=1 , 

 Xi  Xj, Yi Yj ,where  i  j,   ∀ i, j =1,2,….n 

then  

 
proof: 
Since X, and Y are elect vectors , such that 
||X||=||Y|| >1and ||X˄Y||=0, 
Suppose  

,  
where 

, ||Xi˄Yi||=0 , ∀ i=1,2,….n 

 Let Tblock (X,Y)=(c1,c2,…cr)  , and Tblock 
(Xi,Yi)=(ai1,ai2,…air) , where r=|S|-1, and i= 
1,2,…,|S|-1, see definition (3-15), by induction 
proof, let the base case n=2, is true see definition 
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(2-4), now suppose for n=z is true, it’s easy proof 
for n=z+1.   ■ 
3-19:Remark(5):  there is no case ||X|| ||Y|| 
3-20:Lemma (3): 
Let  and , are 
Standard TMS, and parent 
matrices,  ,  =  =  ,X = Y, and 
||X||=||Y|| >1,then child  matrices  are  
C=I(X′) A+ Tblock (X,Y) I(Y) B                                
(7) 
and    
D= I(Y′)B+ Tblock (Y,X) I(X)A                                 
(8) 
 
Proof: 
Suppose the Elect vector X from graph T1 
corresponding to matrix A where 

 and A=   and Elect vector Y 

from graph T2 corresponding to matrix B where 

,  B=  then I( Xi 

)=diag(0,0,0,1i,…,0), i=1,2,….,n 
I(Yi) =diag(0,0,0,1i,…,0), i=1,2,….,n ,then 
X′=   ,and  

   =    C=   +   

 

C=( + +…+ )+(  

  +   +…+  ) 

 

C=(I(X1′) +I(X2′) +…+I(Xn′)

)+(Tblock (X1 ,Y1)   +Tblock (X2 ,Y2)   

+…+Tblock (Xn ,Yn)  

C=(I(X1′)+I(X2′)+…+I(Xn′)) + Tblock  
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(X1 ,Y1)I(Y1)  + Tblock (X2 ,Y2)I(Y2)  

+…+ Tblock (Xn ,Yn)I(Yn)   

C=(I(X1′)+I(X2′)+…+I(Xn′)) +  

(Tblock (X1 ,Y1)I(Y1) + Tblock (X2 ,Y2)I(Y2)  

+…+ Tblock (Xn ,Yn)I(Yn))   

 
C=

 

  

Suppose [  block (Xi, Yi) I(Yi)]= Tblock 
(X,Y)I(Y) then  
Then C= I(X′)A+ Tblock (X,Y)I(Y) B 
By the same way we can prove   D= I(Y′)B+ 
T(Y,X)(I(X)A  ■ 
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