
Journal of Theoretical and Applied Information Technology
15th February 2019. Vol.97. No 3

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

918

SOFTWARE QUALITY MEASUREMENT IN SOFTWARE
ENGINEERING PROJECT: A SYSTEMATIC LITERATURE

REVIEW

1A.J. SUALI, *2S.S.M.FAUZI, 3M.H.N.M. NASIR, 4W.A.W.M. SOBRI, 5I.K. RAHARJANA
1, 2, 4Faculty of Computer and Mathematical Sciences, Universiti Teknologi MARA,

40450, Shah Alam, Selangor, Malaysia

3Faculty of Computer Science & Information Technology, University of Malaya,

 50603 Kuala Lumpur, Malaysia
5Faculty of Science & Technology, Universitas Airlangga,

 Surabaya, Indonesia

E-mail: *2shukorsanim@perlis.uitm.edu.my,

ABSTRACT

The quality of software satisfies when the requirements are fulfilled. The quality of software need to be
measured to indicate the degree of satisfaction of the software to the users. There are several kinds of
literature on software quality metrics have been published. However, very little research has been
conducted to synthesise the measurement of software quality. The purpose of this paper is to synthesize the
measurement of software quality in software engineering projects published in the literatures. Systematic
Literature Review (SLR) was used to conduct the study. Systematic review in distinct stages was used such
as the development of review protocol, search and keywords criteria, screening, development of inclusion
and exclusion criteria, search for relevant studies, data extraction and synthesis. This study could give
significant figures to measure software quality using different types of measurement such line of code
(LOC), quality attribute, design pattern, the number of failure, fault, software trustworthiness, functional
size, defect, and criteria software quality.

Keywords: Software Quality, Systematic Literature Review, Measurement Type, Software Engineering,
Software Quality Metrics

1. INTRODUCTION

One of the main purpose of a software
engineering project is to deliver high quality
software [1]. The success of the software depends
on whether it is delivered on time and within budget
as well as maintaining a high quality. Focusing on
improving software quality is important to the
software developer who involve in the software
development. Besides that, customer would concern
on the quality software to satisfy their demand. An
Institute of Electrical and Electronics Engineers
(IEEE) standard is a standard used by software
engineering committee to ensure the quality
software could be fulfilled. The IEEE standard
defines software as a set of data that instruct the
computer to operate and avail the function to
operate properly [2]. Meanwhile, quality is defined

as the capability to accommodate the satisfaction of
project needs or requirements.

As software become complex, more

functions, flows and components are introduced to
the software. For example, banking system has few
functions at the early establishment such withdraw
and transfer money, but the demand from customer
to add new features makes the system become
complex. Because of that, the software development
processes becomes critical. This complexity of
software development requires to be understood,
studied and improved the quality product by
measuring the quality to ensure the product
achieved the expectations [3]. Measuring software
quality is a tough task in terms of ensuring the
software meets customers specification and needs

Journal of Theoretical and Applied Information Technology
15th February 2019. Vol.97. No 3

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

919

as every customer has their own definition of
quality for the software [4].

The stakeholder from different division
need to discuss together to reach the agreement
which quality attributed they should achieved based
on referring the software quality model [5].
Software quality model can be the guidelines for the
practitioner to takes an action on improving the
performance by measuring the quality software.
There are several software quality model used in the
software engineering such McCall model, Boehm
model, Dromey model, FURPS model and ISO
9126 model [6] [7] [8] [9]. Each of the models
carries different attributes that reflect to the quality
product. Measuring the quality product becomes an
essential element for the sake of success deliverable
the software to the customer.

Measures the quality product gives
beneficial to the organizational in term of provide
information to support quantitative managerial
decision-making during the systems development
[10]. Prior literature suggest that measuring the
quality of product such code review does deliver
fewer post-release defects because of the frequent
inspection after taken into consideration by the
practitioner in every change [5]. The purpose of
measuring the quality of software from the early
development is to prevent the software fall into high
risk and helps to find a solution to solve the
problem. For instance, poor code review by the
developers to inspect the defect in the codes has a
negative impact to the software quality [11].

 Other than that, prior study suggests poor

designs and implementation methods lead into
maintainability leak which reduces the quality of
the software [12] [13]. Failure in measuring the
quality product not only leaves bugs and errors but
might cause over budgets, mission failure, injury
and even lost a human life [14]. That is why the
developers should prioritize to measure the quality
product without making any mistakes. Other
benefits measuring the quality software is to reach
the predictable of performance and quality
capability for ensuring the requirement achieved by
the developers [15].

The different group of users may have
different perspective of the quality of software [16].
This suggest, there are several ways to measure
software quality [17] [18]. Unfortunately, very few
studies have been conducted to synthesise the
measurement used in software engineering projects.
This paper aims to synthesise the measurement of

software quality from previous studies. This study
give an overall overview of the measurement types
for software quality to the practitioner.

This paper is structured as follows, the
next section discusses the methods used to conduct
the study. Following that, results of the finding are
discussed and software quality measurement is
described. Finally, the conclusion summarises the
whole paper.

2. METHODOLOGY

Systematic Literature Review (SLR) was
employed to serve as a guideline in conducting the
study. SLR supervises gathering of all papers from
previous studies that are related to the topic areas
and prevents repetition in collecting data [19]. SLR
involves several phases which starts with the
research question, search and keywords criteria,
screening that is divided into inclusion and
exclusion and finally the results and discussion.
Figure 2 illustrates the process flow of the SLR.

Figure 1: Flows of Systematic Literature Review

Research Question (RQ)

What software quality
measurement was used in

software engineering project?

Search process

Keywords criteria

Result

Discussion

Start

Inclusion

Exclusion

Journal of Theoretical and Applied Information Technology
15th February 2019. Vol.97. No 3

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

920

2.1 Research Question

The following research question was used
to guide the study:
RQ1: What software quality measurement was used
in software engineering project?

2.2 Search and Keywords Criteria

The literature search used the keywords

identified in Table 1. The keywords software
quality measurement and software engineering
project were combined using “OR” and “AND”
Boolean operator.
The databases used in this study are stated as
below:
- ACM Digital Library (http://dl.acm.org/)
- SciencemDirectnFreedomnCollection

(http://www.sciencedirect.com/)
- IEEE Xplore (http://ieeexplore.ieee.org)
- Springer Online Journal Collection

(http://link.springer.com/)
- Google Scholar (https://scholar.google.com/)

Table 1: Keywords Used In This Study

Category Keywords
Software Quality
Measurement

Software Quality
Measurement/s
Software Quality Metric/s
Software Project Quality
Measurement/s
Software Project Quality
Metric/s
Project Quality Measurement/s
Project Quality Metric/s

Software Engineering
Project

Software Engineering
Software Engineering Project/s
Software Project/s
Software Development
Open Source Project
Open Source Development

This study went back 30 years in time to

distinguish how measurements of software quality
were done throughout those years. The reason for
this was to monitor the changes in measuring
software quality throughout those years.

2.3 Screening Paper

Next, screening was done on the collected

papers using inclusion and exclusion criteria to
answer the research question. The following criteria
of inclusion (I) and exclusion (E) were applied:
I1.Papers published directly mentioning the
software quality measurement in the software
project engineering or open source project.

I2.Papers which discuss software quality
measurement.
E1.Posters, abstracts, article summaries and slide
presentations.

Figure 1 shows the screening phases.
During the first stage, the paper was screened from
the title in which 121 papers were collected. After
reading the abstract, only 76 papers were left out of
121 papers. After the introduction and content
screening, 66 papers were left. Finally, the
screening phase proceeds to reading the whole
content of the paper and only 38 papers discussed
on the software quality measurement in software
engineering project.

Figure 2: Screening Paper Phase

3. RESULT AND DISCUSSION

3.1 Overview of Studies

A total of 38 papers related to software
quality measurement were selected for the study.
Full list of paper can be seen in Appendix A. Table
2 illustrates the frequency of publication from
1984-2015 that is related to software quality
measurement in software engineering project. Year
2014 displays the highest frequency of software
quality measurement publication. This indicates the
importance of software quality research in the
software engineering field.

Table 2: Journal Tendency (By Year)

Years Percentage (%) Frequency
1984 3 1
1985 0 0
1986 0 0
1987 0 0
1988 0 0
1989 0 0
1990 3 1
1991 0 0
1992 0 0

Journal of Theoretical and Applied Information Technology
15th February 2019. Vol.97. No 3

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

921

1993 0 0
1994 5 2
1995 0 0
1996 0 0
1997 0 0
1998 3 1
1999 3 1
2000 0 0
2001 5 2
2002 0 0
2003 3 1
2004 8 3
2005 5 2
2006 3 1
2007 0 0
2008 5 2
2009 8 3
2010 10 4
2011 5 2
2012 5 2
2013 8 3
2014 13 5
2015 5 2

TOTAL 100 38

3.2 Study Classification

Software quality measurement was
classified based on types of measurement. Table III
illustrates several measurement types of software
quality which include line of code (LOC), fault
proneness, number of bug reports, source code,
design pattern, criteria, fault data, and others. LOC
showcases the highest percentage at 23 percent
followed by defect and other measurement types.

Table 3: Types of Software Quality Measurement

Measurement
Types

Percentage
(%)

Frequen
cy

Cite

LOC 32 12 [20] [17]
[21] [22]
[23] [24]
[25] [26]
[27] [28]
[29] [30]

Quality
Attribute

5 2 [31] [32]

Software
Trustworthiness

5 2 [33] [18]

Design pattern 3 1 [34]
Number of
failure

7 3 [35] [36]
[37]

Fault 13 5 [38] [39]
[40] [41]
[42]

Functional size 3 1 [43]
Defect 16 6 [44] [45]

[46] [47]
[48] [49]

Criteria
Software
Quality

16 6 [50] [51]
[52] [53]
[54] [55]

Total 100 38 38

3.3 What Software Quality Measurement was
used in Software Engineering Project
(RQ1)?

The findings show that there were several

kinds of measurement types discovered while
gathering literature from the past 30 years. It
includes Line of Code (LOC), quality attribute,
design pattern, number of failure, fault, software
trustworthiness, functional size, defect and criteria
software quality.

3.3.1 Line of code (LOC)

In 1960, the first method to measure

software quality was introduced and known as Line
of Code (LOC) [27]. In software engineering
projects, LOC can be calculated using Physical
Lines, Logical Lines, Blank Lines, Total Lines of
Code, Executable Physical, Executable Logical,
Comment, Words in Comment, Header Comment,
and Header Words [28].

Another technique to measure software
quality using LOC is by reviewing [17] [22].
Reviewing focuses on analysing the code through
documents, test plans and delivering prototypes to
test the system function because failure could
happen during development progress [22].
Computing LOC manually is a very difficult task
and is time-consuming. Many tools have been
developed to calculate LOC such as (SWMetrics)
tool that uses Microsoft Visual Studio-C# to
compute a metrics of LOC and Complexity based
on the Cyclomatic quality measurement for many
format languages using a source of code. This is
determined by counting the number of basic paths
through a function and calculated using the
equation provided and control flow graph created
from the equation [17]. UML based software is
another tool used which is based on auto collected
component metrics and predefined rules that will
collect metrics automatically from generated
software components that is used in the quality
method [25].

3.3.2 Quality attribute

Quality attribute is divided into internal

quality attribute and external quality attribute.
Internal quality attribute uses quality criteria such
as consistency, accuracy and testability as a result
of quality factor decomposition [32]. Measuring
internal quality involves factor, criteria and
software metric that will form associations using

Journal of Theoretical and Applied Information Technology
15th February 2019. Vol.97. No 3

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

922

binary Boolean to improve quality by seeking
evidence of the correlation between factor and
criterion.

The relationship is the higher the
correlation, the better the quality [32]. While
external quality attribute can be measured
consistently using scale measurement, the
preference relation (such as that observed for a
subjective ordinal scale) to validate expectation
system for the attribute is relied on experts
indicating that value provided by the assumption
system informally agree with the experts intuition
about the attribute [31].

3.3.3 Design pattern

Design pattern is another measurement of

software quality. It has a remarkable impact on
software development, maintenance, and reusability
[34]. System design patterns can be framed as flows
in painting and painters as a developer. Every part
of the body in painting can be pointed as classes,
interface and methods [34].

One method used to measure design
pattern is Design Enhanced Quality Evaluation
(DEQUALITE) method. DEQUALITE is a model
to measure the quality of object-oriented systems
that focus on internal attributes and design. The
design involves five steps, starting with choosing
appropriate characteristics, identifying and listing
the most significant, tangible, internal attributes of
systems implementing design patterns, assessing
system attributes, evaluating the impact of design
patterns on quality and finally carrying out a
validation and a refinement of the resulting quality
model [34].

3.3.4 Number of failure

Measuring number of failures is another

way to measure software quality. Failure can be
reflected in the system itself where the system fails
to operate based on requirements required and
delivers wrong results compared to expected results
[37]. STREW-J metric suite is a method to detect
internal failure at an early stage of development to
improve the quality [35]. STREW-J metric suite
uses test suite to measure failure, but if the test suite
is not applicable, the tester would use historical
data from a comparable project [35].

Test suite is a bunch of test cases that is
compressed into one test suite. A test suite that
contains many test cases needs to be run into

selected programs such as SoapUI to assess
whether the actual result matches the expected
output and test suite might be a fundamental part of
the software design [36]. Test suite can predict the
number of failures once results are obtained.

3.3.5 Fault

Fault is a software defect that causes

failure, and it is another way to measure software
quality by counting the numbers of defects during
software project development [38]. There are a few
techniques that can be used to measure fault. One
of the approaches is to use prediction to predict the
occurrence of faults by applying a technique known
as semi-supervised clustering approach and EM-
based approach [41] [42] [39].

3.3.6 Software trustworthiness

Software trustworthiness evaluation goal is

to help maximize the area of quality. The definition
of software trustworthiness is the degree of
confidence in a set of requirements that include
functional and non-functional requirements [33].
Software trustworthiness alerts on the security of
software products and demands for action and state
to be under control during all stages of
development [18].

Since software trustworthiness covers all
stages of life-cycle, the measurement will start from
requirement procedure trustworthiness through
satisfaction, measurement designing procedure
trustworthiness through internality degree metric of
functions, measurement coding procedure
trustworthiness through validity measurement of
codes, measurement testing procedure through error
risk measurement and every stage will be measured
to identify the degree of satisfaction [18].

3.3.7 Functional Size

Quality software can also be measured

using Functional Size Measurement (FSM)
which is quite important in the current software
development practice. This is because most effort
estimation models rely on evaluation of application
sizes to be developed. Function points, meant to
consider the customer’s point of view in a
technology independent manner, are a measure of
functional requirements that take into account
elements that can be identified by the user [43].

Journal of Theoretical and Applied Information Technology
15th February 2019. Vol.97. No 3

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

923

FPs is based on five Basic Functional
Components (BFCs): External Input , External
Output, External Inquiry , Internal Logical File
and External Interface File.

3.3.8 Defect

Wrong results are obtained when incorrect
action, operation and data happen. Bugs usually
found in codes can be defined as a defect [37].
Finding and fixing the defect during the early stage
of development will save a lot of budget and
development time. Analyzing the defect early on
can improve software quality but increase cost,
which means quality assessments need to be done
often and hence, are elaborate procedures [45].

The most cost-effective early defect

detection technique as suggest in prior literature is
“Fagan Inspection” [44]. Fagan inspection chooses
the number of defects in an element as a response
variable, and (depending on the hypothesis)
measurements of such factors like complexity of
the element, the number of contributors, the
development organization’s social and geographic
structure, as predictor variables. Defect data is
mined and used with machine learning models to
automatically predict likely future loci for defects.
The data frequently suffers from class imbalance.

3.3.9 Criteria of software quality

In a development project, certain criteria

such as reliability, maintainability, usability,
functionality and efficiency are the criteria to be
fulfilled during this project [55]. Every
measurement needs certain preconditions to
measure software quality. In an Object-oriented
(OO) program, prediction of quality is usually
based on values of the criteria. Positive values of
the quality criteria will ensure an OO program of
higher quality [50]. Indirect measurement of an
attribute involves the measurement of one or more
attributes.

Unpredictable behaviour with adverse

effects might happen when there is faulty
implementation of the context-aware features.
Context diversity is to capture the extent of context
changes in serial inputs and to propose three
strategies to study how context diversity may
improve the effectiveness of data-flow testing
criteria. Software measurement is defined as a
system which includes all aspects of software

measurement, evaluation, estimation and
exploration [51].

If criteria were the cause of reported
failure, continuing to use the same criteria will
simply repeat failures of the past. The process
criteria measurement for project management is
measuring efficiency [52]. Criteria are defined as
measuring and interpreting conformance with
quality requirements during inspection and testing
[53]. The overall quality grade depends on the
knowledge-based importance of characteristics
[54].

Table 4: Metrics for Object Oriented Systems

Source Metric OO Construct

Traditional Cyclomatic complexity
(CC)

Method

Lines of Code(LOC) Method
Comment Percentage (CP) Method

CK Object
Oriented
Metric

Weighted Methods per
Class
(WMC)

Class/Method

Response for a Class
(RFC)

Class/Method

Lack of Cohesion of
Methods
(LCOM)

Class/Method

Coupling Between Objects
(CBO)

Coupling

 Depth of Inheritance Tree
(DIT)

Inheritance

Number of Children
(NOC)

Inheritance

Table 4 shows the metric for an object-

oriented system that is used for measuring quality.
Every characteristic of software quality is measured
to ensure the quality meets the standard.

In the first stage of measuring software
quality, components of software measurement will
be considered at different levels of each component
in order to classify different levels of software
measurement. It is important to identify the
measurement obtained at the early phase of the life
circle. Figure 2 shows the evaluation measurement
that happens in all stages of development starting
with early measurement in the analysing phase
which is the documentation observation until the
testing and operation phase, which involves codes
to be executed [53].

Journal of Theoretical and Applied Information Technology
15th February 2019. Vol.97. No 3

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

924

Figure 3: Life cycle measurement attributes [53]

The fundamental process in software
quality measurement is to consider the important
criteria of products before evaluating the quality of
products. In order to measure software quality,
several general criteria must be listed so that
measurement can be carried out. To identify the
general criteria, a survey was conducted among
customers and end users using scale to identify the
quality which demands to be measured [54].

4. CONCLUSION

This paper applies Systematic Literature
Review (SLR) to synthesise the measurement of
software quality that is used in software
engineering projects in previous literature. Nine
software quality measurements in software
engineering projects were identified which includes
line of code (LOC), quality attribute, design
pattern, number of failure, fault, software
trustworthiness, functional size, defect, and criteria
software quality. One of the measures identified
will be used as a measure of software quality in
Socio-Technical Congruence (STC) study.

4. ACKNOWLEDGEMENTS

We are grateful to the Ministry of Higher
Education for supporting this research, through the
Research Acculturation Grant Scheme (RAGS)
grant.

REFERENCES:

[1] C. Seiffert, T. M. Khoshgoftaar, J. Van Hulse,

A. Folleco, "An empirical study of the
classification performance of learners on
imbalanced and noisy software quality data”,
Information Sciences, Vol. 259, 2014, pp. 571–

595
[2] Radatz, Jane, A. Geraci, F. Katki, “IEEE

Standard Glossary of Software Engineering
Terminology”, IEEE Std 610121990.121990,
vol. 12, 1990, pp. 3.

[3] R. Pressman, “Software Process Impediment,”
IEEE software, Vol. 13, No. 5, 1996, pp. 16–17.

[4] M. Khaliq, R. A. Khan, M. H. Khan, “Software
quality measurement : A Revisit, Oriental”,
Journal of Computer Science & Technology,
Vol. 3, No. 1, 2010, pp. 5–11.

[5] S. McIntosh, Y. Kamei, B. Adams, A. E.
Hassan, “The impact of code review coverage
and code review participation on software
quality: a case study of the qt, VTK, and ITK
projects,” Proceedings of the 11th Working
Conference on Mining Software Repositories,
2014, pp. 192–201.

[6] T. Davuluru, J. Medida, V. S. K. Reddy, “A
study of software quality models,” Advances in
Engineering and Technology Research
(ICAETR), 2014 International Conference on,
2014, pp. 1-8.

[7] M. Ortega, M. Pérez, T. Rojas, “Construction of
a systemic quality model for evaluating a
software product,” Software Quality Journal,
Vol. 11, No. 3, 2003, pp. 219–242.

[8] A. B. Al-badareen, M. H. Selamat, M. A. Jabar,
“Software quality models: A comparative
study,” International Conference on Software
Engineering and Computer Systems, 2011,
pp.46-55.

[9] J. P. Miguel, D. Mauricio, G. Rodríguez, “A
Review of Software Quality Models for the
Evaluation of Software Products,” arXiv
preprint arXiv:1412.2977, 2014, pp. 31–53.

[10] L. G. Wallace, S. D. Sheetz, “The adoption of
software measures: A technology acceptance
model (TAM) perspective,” Information &
Management, Vol. 51, No. 2, 2014, pp. 249–
259.

[11] S. McIntosh, Y. Kamei, B. Adams, A. E.
Hassan, “An empirical study of the impact of
modern code review practices on software
quality,” Empirical Software Engineering, Vol.
21, No. 5, 2016, pp. 2146–2189.

[12] M. Tufano, “When and Why Your Code Starts
to Smell Bad.,” Proceedings of the 37th
International Conference on Software
Engineering-Volume 1, 2015, pp. 403–414.

[13] R. Marinescu, “Measurement and quality in
object-oriented design,” in Software
Maintenance, 2005. ICSM’05. Proceedings of

Journal of Theoretical and Applied Information Technology
15th February 2019. Vol.97. No 3

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

925

the 21st IEEE International Conference on,
2005, pp. 701–704.

[14] D. Jamwal, “Analysis of Software Quality
Models for Organizations,” International
Journal of Latest Trends in Computing, Vol. 1,
No. 2, 2010, pp. 19–23.

[15] M. Unterkalmsteiner, T. Gorschek, A. K. M. M.
Islam, C. K. Cheng, R. B. Permadi, R. Feldt,
“Evaluation and measurement of software
process improvement-A systematic literature
review,” IEEE Transactions on Software
Engineering, Vol. 38, No. 2, 2012, pp. 398–424.

[16] D. Chappell, “The Three Aspects of Software
Quality: functional, structural, and process”, in
Retrieved from, 2013.

[17] S. Zakariya, M. Belal, “Software Quality
Management Measured Based Code
Assessments”, International Journal of
Computer Science Trends and Technology
(IJCST), Vol. 3, No. 4, 2015, pp. 263–268.

[18] B. Yu, Q. Wang, Y. Yang, “The
Trustworthiness Metric Model of Software
Process Quality Based-on Life Circle”, in
Management and Service Science, 2009.
MASS’09. International Conference on, 2009,
pp. 1–5.

[19] Kitchenham, B., S. Charters, “issue: EBSE
2007-001.”, ISBN: 1595933751, 2007.

[20] L. Crispin, “Driving software quality: How test-
driven development impacts software quality”,
IEEE Software, Vol. 23, No. 6, 2006, pp. 70–
71.

[21] P. Thongtanunam, R.G. Kula, A. E. C. Cruz, N.
Yoshida, H. Iida, “Improving code review
effectiveness through reviewer
recommendations”, in Proceedings of the 7th
International Workshop on Cooperative and
Human Aspects of Software Engineering -
CHASE 2014, 2014, pp. 119–122.

[22] G.M. Weinberg, D.P. Freedman, “Reviews,
Walkthroughs, and Inspections”, IEEE
Transactions on Software Engineering, Vol. 1,
1984, pp. 68–72.

[23] M. Huo, J. Verner, L. Zhu, M.A. Babar,
“Software quality and agile methods, in
Computer Software and Applications
Conference, 2004. COMPSAC 2004”.
Proceedings of the 28th Annual International,
2004, pp. 520–525.

[24] S. Mcintosh, Y. Kamei, B. Adams, A.E.
Hassan, “The Impact of Code Review Coverage
and Code Review Participation on Software
Quality Categories and Subject Descriptors”, in

Proceedings of the 11th Working Conference on
Mining Software Repositorie (MSR 2014), 2014,
pp. 192–201.

[25] B. Deniz, “Software Component Score:
Measuring Software Component Quality Using
Static Code Analysis”, Computational Science
and Its Applications -ICCSA, Vol. 5, 2015, pp.
63–72.

[26] K. Hotta, Y. Sano, Y. Higo, S. Kusumoto, “Is
Duplicate Code More Frequently Modified
Than Non-duplicate Code in Software
Evolution?: An Empirical Study on Open
Source Software”, in Proceedings of the Joint
ERCIM Workshop on Software Evolution
(EVOL) and International Workshop on
Principles of Software Evolution (IWPSE),
2010, pp. 73–82.

[27] C. Jones, “A Short History of the Lines of Code
(Loc) Metric”, Capers Jones & Associates LLC,
Narragansett, 2008, pp. 1-12.

[28] K. Bhatt, V. Tarey, and P. Patel, “Analysis Of
Source Lines Of Code (SLOC) Metric”,
International Journal of Emerging Technology
and Advanced Engineering, Vol. 2, No. 5, 2012,
pp. 150–154.

[29] M. Beller, A. Bacchelli, A. Zaidman, and E.
Juergens, “Modern code reviews in open-source
projects: which problems do they fix?”, in
Proceedings of the 11th Working Conference on
Mining Software Repositories - MSR 2014,
2014, pp. 202–211.

[30] A. Cockburn, L. Williams, “The costs and
benefits of pair programming, Extreme
programming examined”, Inc., Boston, MA,
2001, pp. 223–243.

[31] J. Moses, M. Farrow, “Tests for consistent
measurement of external subjective software
quality attributes, Empirical Software
Engineering”, Empirical Software Engineering,
Vol. 13, No. 3, 2008, pp. 261–287.

[32] W. Pedryez, J.F. Peters, S. Ramanna, “Software
Quality Measurement: Concepts and Fuzzy
Neural Relational Model”, in Fuzzy Systems
Proceedings, 1998. IEEE World Congress on
Computational Intelligence., The 1998 IEEE
International Conference on, 1998, pp. 1026–
1031.

[33] E. Amoroso, C. Taylor, J. Watson, J. Weiss, “A
Process-Oriented Methodology for Assessing
and Improving Software Trustworthiness”, in
Proceedings of the 2nd ACM Conference on
Computer and communications security, 1994,
pp. 39–50.

Journal of Theoretical and Applied Information Technology
15th February 2019. Vol.97. No 3

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

926

[34] F. Khomh, Y.G. Guéhéneuc, “DEQUALITE :
Building Design-based Software Quality
Models”, in Proceedings of the 15th Conference
on Pattern Languages of Programs, 1994, p. 2.

[35] N. Nagappan, L. Williams, M. Vouk, J.
Osborne, “Early estimation of software quality
using in-process testing metrics”, in
International Conference on Software
Engineering: Software Quality conference
proceedings, 2005, pp. 1-7.

[36] E. Volokh, ”Test Suites : A Tool for Improving
Student Articles”, Journal Legal Education,
Vol. 52, No. 3, 2003, pp. 440-445.

[37] E. E. Ogheneovo, “Software Dysfunction : Why
Do Software Fail?”, Journal of Computer and
Communications, Vol. 2, No. 6, 2014, pp. 25–
35.

[38] N. Seliya, T. M. Khoshgoftaar, S. Zhong,
“Analyzing software quality with limited fault-
proneness defect data”, in Ninth IEEE
International Symposium on High-Assurance
Systems Engineering (HASE’05), 2005, pp. 89–
98.

[39] R. Malhotra, A. Jain, “Fault Prediction Using
Statistical and Machine Learning Methods for
Improving Software Quality”, Journal of
Information Processing Systems, Vol. 8, No. 2,
2012, pp. 241–262.

[40] N. Seliya, Naeem, T.M. Khoshgoftaar, “Semi-
Supervised Learning for Software Quality
Estimation”, in Tools with Artificial
Intelligence, 2004. ICTAI 2004. 16th IEEE
International Conference on, 2004, pp. 183–
190.

[41] S. Zhong, T. M. Khoshgoftaar, N. Seliya,
“Unsupervised Learning for Expert-Based
Software Quality Estimation”, in Proceedings
of the Eighth IEEE International Symposium on
High Assurance Systems Engineering
(HASE’04), 2004, pp. 149–155.

[42] C. Catal, “Software fault prediction: A literature
review and current trends, Expert systems with
applications”, Expert systems with applications,
Vol. 38, No. 4, 2011, pp. 4626–4636.

[43] L. Lavazza, G. Robiolo, “The Role of the
Measure of Functional Complexity in Effort
Estimation”, in Proceedings of the 6th
International Conference on Predictive Models
in Software Engineering, 2010, pp. 1–10.

[44] M. Bush, ”Improving Software Quality: The
Use of Formal Inspections at the Jet Propulsion
Laboratory”, in Software Engineering, 1990.
Proceedings, 12th International Conference on,
1990, pp. 196–199.

[45] S. Wagner, “The Use of Application Scanners
in Software Product Quality Assessment”, in
Proceedings of the 8th international workshop
on Software quality, 2011, pp. 42–49.

[46] J. Li, N. B. Moe, T. Dyba, “Transition from a
Plan-Driven Process to Scrum – A Longitudinal
Case Study on Software Quality”, in
Proceedings of the 2010 ACM-IEEE
international symposium on empirical software
engineering and measurement, 2010, pp. 13.

[47] D. Athanasiou, A. Nugroho, J. Visser, A.
Zaidman, “Test Code Quality and Its Relation
to Issue Handling Performance”, IEEE
Transactions on Software Engineering, Vol. 40,
No. 11, 2014, pp. 1100–1125.

[48] M. Staron, W. Meding, M. Caiman, E. Ab,
“Improving Completeness of Measurement
Systems for Monitoring Software Development
Workflows”, in Systems for Monitoring
Software Development Workflows, 2013, pp.
230–243.

[49] E. Kouroshfar, M. Mirakhorli, H. Bagheri, L.
Xiao, S. Malek, Y. Cai, “A Study on the Role of
Software Architecture in the Evolution and
Quality of Software”, in Proceedings of the
12th Working Conference on Mining Software
Repositories, 2015, pp. 246–257.

 [50]C. Suite, R. Kumar, “Indirect method to
measure software quality using CK-OO suite, in
Intelligent Systems and Signal Processing
(ISSP)”, 2013 International Conference, 2013,
pp. 47–51.

[51] R. Dumke, H. Yazbek, E. Asfoura, K.
Georgieva, “A General Model for Measurement
Improvement”, in Software Process and
Product Measurement, 2009, pp. 48–61.

[52] R. Atkinson, “Project management: cost time
and quality two best guesses and a
phenomenon, it’s time to accept other success
criteria”, International journal of project
management, Vol. 17, No. 6, 1999, pp. 337–
342.

[53] N.F. Schneidewind, “Knowledge Requirements
for Software Quality Measurement”, Empirical
Software Engineering, Vol. 6, No. 3, 2001, pp.
201–205.

[54] R. Hofman, “An Approach to Measuring
Software Quality Perception”, in Innovations in
Computing Sciences and Software Engineering,
2010, pp. 307–312.

[55] A. Abran, R.E. Al-Qutaish, J.M. Desharnais, N.
Habra, “ISO-Based Models To Measure
Software Product Quality”, in Institute of
Chartered Financial Analysts of India (ICFAI)-

Journal of Theoretical and Applied Information Technology
15th February 2019. Vol.97. No 3

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

927

ICFAI Books, 2008, pp. 61–96.
[56] N. Nagappan, L. Williams, M. Vouk, J.

Osborne, “Early estimation of software quality
using in-process testing metrics,” ACM
SIGSOFT Software Engineering Notes, Vol. 30,
No. 4, 2005, pp. 1-7.

Journal of Theoretical and Applied Information Technology
15th February 2019. Vol.97. No 3

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

928

APPENDIX A: LIST OF PAPER

Citation Author Year Title

[20] L. Crispin 2006 Driving software quality: How test-driven development
impacts software quality

[17] S. Zakariya and M. Belal 2015 Software Quality Management Measured Based Code
Assessments

[21] P. Thongtanunam, R. G.
Kula, A. E. C. Cruz, N.

Yoshida, and H. Iida

2014 Improving code review effectiveness through reviewer
recommendations

[22] G. M. Weinberg and D. P.
Freedman

1984 Reviews, Walkthroughs, and Inspections

[23] M. Huo, J. Verner, L. Zhu,
and M. a Babar

2004 Software quality and agile methods

[24] S. Mcintosh, Y. Kamei, B.
Adams, and A. E. Hassan

2014 The Impact of Code Review Coverage and Code Review
Participation on Software Quality Categories and Subject
Descriptors

[25] D. Triantakonstantis and S.
Barr

2009 Computational Science and Its Applications -ICCSA

[26] K. Hotta, Y. Sano, Y. Higo,
and S. Kusumoto

2010 Is Duplicate Code More Frequently Modified Than Non-
duplicate Code in Software Evolution?: An Empirical Study
on Open Source Software

[27] C. Jones 2013 A Short History of the Lines of Code (Loc) Metric
[28] K. Bhatt, V. Tarey, and P.

Patel
2012 Analysis Of Source Lines Of Code (SLOC) Metric

[29] M. Beller, A. Bacchelli, A.
Zaidman, and E. Juergens

2014 Modern code reviews in open-source projects: which
problems do they fix?

[30] A. Cockburn and L. Williams 2001 The costs and benefits of pair programming
[31] J. Moses and M. Farrow 2008 Tests for consistent measurement of external subjective

software quality attributes
[32] S. Ramanna 1998 Software Quality Measurement: Concepts and Fuzzy Neural

Relational
[33] E. Amoroso, C. Taylor, J.

Watson, and J. Weiss
1994 A Process-Oriented Methodology for Assessing and

Improving Software Trustworthiness 2 Definition of Software
Trustworthiness Trust Principles

[18] B. Yu, Q. Wang, and Y. Yang 2009 The Trustworthiness Metric Model of Software Process
Quality Based-on Life Circle

[34] F. Khomh 1994 DEQUALITE : Building Design-based Software Quality
Models

[56] N. Nagappan, L. Williams,
M. Vouk, and J. Osborne

2005 Early estimation of software quality using in-process testing
metrics

[36] E. Volokh 2003 Test Suites : A Tool for Improving Student Articles
[37] E. E. Ogheneovo 2014 Software Dysfunction : Why Do Software Fail?
[38] N. Seliya, T. M.

Khoshgoftaar, and S. Zhong
2005 Analyzing software quality with limited fault-proneness defect

data
[39] R. Malhotra and A. Jain 2012 Fault Prediction Using Statistical and Machine Learning

Methods for Improving Software Quality
[40] N. Seliya 2004 Semi-Supervised Learning for Software Quality Estimation
[41] E. Ieee, I. Symposium, H.

Assurance, and S.
Engineering

2004 Unsupervised Learning for Expert-Based Software Quality
Estimation

[42] C. Catal 2011 Software fault prediction: A literature review and current
trends

[43] L. Lavazza and G. Robiolo 2010 The Role of the Measure of Functional Complexity in Effort
Estimation

[44] M. Bush 1990 Improving Software Quality: The Use of Formal Inspections
at the Jet Propulsion Laboratory

[45] S. Wagner 2011 The Use of Application Scanners in Software Product Quality
Assessment

[46] J. Li, N. B. Moe, and T. Dyba 2010 Transition from a Plan-Driven Process to Scrum - A
Longitudinal Case Study on Software Quality

[47] D. Athanasiou, A. Nugroho,
J. Visser, and A. Zaidman

2014 Test Code Quality and Its Relation to Issue Handling
Performance

[48] M. Staron, W. Meding, M.
Caiman, and E. Ab

2013 Improving Completeness of Measurement Systems for
Monitoring Software Development Workflows

[49] E. Kouroshfar, M. Mirakhorli, 2015 A Study on the Role of Software Architecture in the Evolution

Journal of Theoretical and Applied Information Technology
15th February 2019. Vol.97. No 3

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

929

H. Bagheri, L. Xiao, S.
Malek, and Y. Cai

and Quality of Software

[50] C. Suite and R. Kumar 2013 Indirect Method to Measure Software Quality using
[51] R. Dumke, H. Yazbek, E.

Asfoura, and K. Georgieva
2009 A General Model for Measurement Improvement

[52] R. Atkinson 1999 Project management: cost time and quality two best guesses
and a phenomenon, it’s time to accept other success criteria

[53] N. F. Schneidewind 2001 Knowledge Requirements for Software Quality Measurement
[54] R. Hofman 2010 An Approach to Measuring Software Quality Perception
[55] A. Abran, R. E. Al-Qutaish,

J.-M. Desharnais, and N.
Habra

2008 Iso-Based Models To Measure Software Product Quality

