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ABSTRACT 
 

The staple food for the Indonesian people is rice because in rice it contains a large number of calories for 
the intake of more than 200 million people. Hyperspectral is the sensors that can be used in a variety of 
applications, one of which is for rice monitoring. Hyperspectral is a sensor that is very well used to support 
precision agriculture because the information obtained is more detailed. One method of monitoring rice is 
to use a classification method. Many classification methods were carried out in previous hyperspectral 
studies such as unsupervised, supervised, statistical-based and so forth. Some methods have their own 
advantages and disadvantages. However, hyperspectral imagery has a large number of bands, requires 
sophisticated analytical methods to analyze it and requires a long process to extract priority information so 
as not to burden computing. In this paper discusses the state-of-the-art framework and step by step 
regarding the classification methods commonly used to rice monitoring. From the results of the review, it 
was found that the RBFN classification technique has the best accuracy compared to other classification 
techniques. 
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1. INTRODUCTION 
1.1. Main Enterprise and Security Rice 

Production Issues 
 

Indonesia is an agricultural country that has 
a very fertile agricultural land and is suitable to 
grow rice. Rice is a staple food for people in 
Indonesia because it contains a large number of 
calories for the intake of more than 200 million 
people [1]. The harvest period in this country is 
short enough for approximately 3 months. The 
problem is that rice production can be affected by 
climate, where in the dry season the farmland 
becomes empty and abandoned [2]. Rice is also a 
potential production in Indonesia which is a leading 
export commodity in its glory era. In 1997-1998, 
Indonesia and many countries in the world 
experienced a monetary crisis. In 1997-1998, 
Indonesia and many countries in the world 
experienced an economic crisis. The economic 
crisis in Indonesia itself has an impact on all sectors 
including the agricultural sector, the government 
has stopped the national program in the field of 
agriculture, which is known as the five farms, 

which is a program in order to increase rice 
production in a sustainable manner [3].  

Rice is also a significant contributor to 
income generation for the country and absorbs a lot 
of manpower [4]. The decline in the number of rice 
fields causes rice stocks in Indonesia to decrease, 
thus importing rice from other countries [5]. The 
stability of rice production definitely increase food 
security in this country. Not only food security, but 
rice prices can also play a major role in shaping 
economic stability [6]. Indonesia needs an increase 
in agricultural productivity, especially rice. One 
way to increase rice production is to use new 
technologies that can sense (sensing) and monitor 
developments in paddy fields [7]. 

 

1.2. Hyperspectral Remote Sensing 
 

The land use is classified into four types 
land cover namely housing, agriculture, 
commercial, and industrial. The type of agriculture 
is the most widespread of the four types. Vegetation 
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changes in agricultural land are essential for human 
survival. Because of changes in the area affects the 
weather, the composition of air, atmosphere, and 
disaster [8]. 

In the early 1980s hyperspectral remote 
sensing was the most superior technology in remote 
sensing. Promising technology in studying the 
material of the earth's surface spectrally and 
spatially. To obtain an inaccessible geochemical 
information from the earth's surface, the remote 

sensing technology developed worked by dividing 
visible and infrared broadband into hundreds of 
spectral parts [9]. Hyperspectral land and air 
sensors are now widely available, but for 
hyperspetral space sensors are available very little. 
In table 1, table 2 and table 3 some space agencies 
develop various types of hyperspectral sensors for 
air and space. 

 

 
 

Table 1: Airborne Hyperspectral Sensors 
 

Sensor Spectral 
coverage 

(nm) 

No. of 
Bands 

Band width 
(nm) 

Spatial 
Resolution 

(m) 

Image tech Country Launched/ 
Developer 

GERIS (Geophysical 
Environment Research 
Imaging Spectrometer II) 

400 - 1000 
1400 - 1800 
2000 - 2500 

24 
7 

32 

25.4 
120.0 
16.5 

 
1-10 

 
Whisk broom 

 
USA 

 
1987/GRE corp. 

AVIRIS (Airborne visible 
infrared imaging 
spectrometer) 

 
380-2500 

 
220 

 
10 

 
5-20 

 
Whisk broom 

 
USA 

 
1987/JPL 

CASI (Compact Airborne 
Imaging Spectrometer) 

 
400-800 

 
288 

 
1.8 

 
30 

 
Pushbroom 

 
Canada 

1988/ITRES 
research Ltd 

DAIS (Digital Airborne 
Imaging Spectrometer) 

400-1200 
1500-1800 
2000-2500 

 
72 

15-30 
45 
20 

 
1-10 

 
Pushbroom 

 
Europe 

 
1995/GRE corp. 

HYDICE (Hyperspectral 
Data Image Collection 
Experiment) 

400 - 2500 10.2 210 3 Whisk broom USA 1996/Naval 
research lab 

HyMAP 400 - 2500 16 125 3-5 Whisk broom Australia HyVista Corp 
AisaEAGLE 400 - 970 5 200 <1   Spectir Corp 

 
 

Table 2: Spaceborne Hyperspectral Sensors 
 

Sensor Spectral 
coverage (nm) 

No. of 
Bands 

Band 
width (nm) 

Spatial 
Resolution (m) 

Swath (km) Launch Year Agency 

Moderate Resolution Imaging 
Spectrometer 
(MODIS)  
– AQUA 
 
– TERA 

 
 
 

400 – 800 
 

800 - 1455 

 
 
 

32 
 

36 

  
 
 

250-1000 
 

250-1000 

 
 
 

1500 
 

2300 

 
 
 

May 2002 
 

Dec 1999 

 
 
 
 

NASA 

MERIS (Medium Resolution 
Imaging Spectrometer) 

410 to 1050 15 10 Ocean: 
1040x1200, 

 
Land & Coast: 

260x300 

1150  ESA 

Hyperion on EO-1 400 - 2500 220 10 3 7.5 Nov 
2000 

NASA 

CHRIS (Compact High 
Resolution Imaging 
Spectrometer on PROBA-1) 

 
438 - 1035 

 
18-64 

 
1.25- 11 

 
18-36 

 
14-18 

 
Oct 2001 

 
ESA 

HySI (Hyperspectral Imager) on 
IMS-1 

400 - 950 64 <15 550 128 Apr 
2008 

ISRO 
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Table 3: Extraterrestrial Hyperspectral Sensors 
 

Sensor Spectral 
coverage 

(nm) 

No. of 
Bands 

Band 
width (nm) 

Spatial 
Resolution (m) 

Swath (km) Launch 
Year 

Agency 

Chandrayaan-1 HySI 400 - 920 64 15 80 20 2008 ISRO 
Chandrayaan-1 M3 (Moon 
Mineralogy Mapper) 

400 - 3000 86 10-40 70-140 40 2008 ISRO 

OMEGA (Observatoire Pour La 
Mineralogie, l’Eau, Le Glace 
El’activite) 

360 to5100  7-20 300-4000 8.8  NASA 

CRISM (Compact Reconnaissance 
Imaging Spectrometer for Mars) 

362-3920 545 6.55 15.7 to 19.7 9.4 – 11.9  NASA 

In table 1, tables 2 and 3 describe various 
information related to sensors, spectral coverage, 
number of bands, bandwidth, spatial resolution, 
image technology, country, plot, year of launch, 
launch/developer and agency. Hyperspectral remote 
sensing technology provides very detailed spectrum 
information for individual pixel images that mostly 
refer to remote (remote) sensing. [10]. 

 

1.3. Hyperspectral and Spatial Remote 
Sensing Spectral Signature Characteritics 
 

Sensor Hyperspectral works by utilizing the 
photoelectric effect to work by collecting free 
electron-hole pairs in the detector element. The 
function of the incident photon is the number of 
electrons collected. In the radiometric calibration 
process, each detector element determines the 
illumination function. [11]. 

Hyperspectral data based on how to get it is 
categorized into two, namely taking from the air 
(for example HySpex) and taking from the ground 
(for example ASD Spectrometer). Measurements 
using the point spectrometer are strongly influenced 
by the angle of the position taken and the intensity 
of the electromagnetic radiation emitted. 
Techniques Taking the hyperspectral data from the 
air can be done based on the push broom line 
principle so that it can be a full spatial domain 
image of the 3-dimensional array. The easy 
principle is also called a scanner. Other retrieval 
techniques can be done by shooting electromagnetic 
radiation at certain angles in one area 2. 

Remote sensing is one way to represent the 
surface of the earth through numeric numbers in the 
form of an array. Each pixel in the array/matrix 
represents the intensity of the electromagnetic wave 
radiation emitted by each band. To create a 
classification map, the image taken by the sensor is 
processed by forming a certain sign that reflects the 
difference between the pixel classes in one image. 
Certain reference pixels are trained to be able to 

guide other pixels so that they get pixels that match 
the class as in the thematic map in Figure 1 [12]. 

 
 

Figure 1: Spectral Signatures of example 10 classes [12] 
 
 

1.4. Hyperspectral Application Into Paddy 
Field 
 
Hyperspectral sensors can be used in a 

variety of applications, one of which is to monitor 
rice growth. Studies have been conducted to 
monitor rice growth by near-ground hyperspectral 
using a spectrometer. The reason used near-ground 
hyperspectral is because it has an excellent spatial 
resolution [13]. Rice canopy that has been studied 
previously that consists of two parts, namely sunlit 
and shaded. The detailed components studied are 
sunlit panicles, shaded panicles, leaves that are 
shaded and sunlit leaves. Shadows due to lighting 
are often a nuisance when the rice assessment 
process is done using hyperspectral [14]. Shadows 
due to lighting are often a nuisance when the rice 
assessment process is done using hyperspectral. 
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At present, the quality of rice is a major 
concern related to nutritional content. Protein is one 
thing that affects the good quality of bad rice. The 
estimated quality of rice based on protein content 
has been studied using near-ground hyperspectral 
technology. This study aims to estimate the protein 
content to assess the quality of rice [15]. 

Another hyperspectral application is 
controlling the growth and health of rice based on 
nitrogen content. Monitoring of nitrogen content 
can assist farmers in knowing the status of rice 
growth as well as monitoring the level of fertility 
[16]. 

Rice health is very influential on rice 
productivity. One application of the near-ground 
based hyperspectral application is to detect the 
leaves of rice plants. Pest attacks such as 
caterpillars that often attack rice leaves can be 
monitored with ASD Spectrometer. Pest-infected 
rice can be identified by the type of disease based 
on spectral characteristics that occur based on 
hyperspectral insect index of rice leaf folder 
(HIIRLF) [17]. 

 
1.5. Hyperspectral Limitation 

 
Hyperspectral imagery has a large number of 

bands, requires sophisticated analytical methods to 
analyze it and requires a long process to extract 
priority information so as not to burden computing. 
The process is complex and requires a very accurate 
classification system in the classification of remote 
sensing images. The hyperspectral image is 
segmented into several homogeneous regions to 
derive class characteristics needed for mixed pixel 
decomposition which allows extracting the spectral 
and spatial features associated with each 
homogeneous region. One pixel from a remote 
sensing image possibly covers more than one object 
on the ground. Furthermore, there is the problem on 
recognizing and classify a particular geographical 
object due to overlapping of two or more associated 
spectral properties. Mixed problem may include 
uncertainty indicated by low classification accuracy 
[14]. 

Multispectral has much fewer bands than 
hyperspectral [18]. The amount of spectra generated 
by multispectral images is between 4 and 11, 
whereas in the hyperspectral image it can have tens 
to hundreds of spectral. 

Some multispectral remote sensing images 
have a different spatial resolution in their spectral 
range, for example, Sentinel-2 and MODIS. The 
underlying issues are design considerations, 
hardware limitations, and further effects such as 
atmospheric absorption, requiring the use of 
different resolutions from multiple multispectral 
channels, so as to achieve satisfactory SNR (Signal 
to Noise Ratio) [19]. 

The use of multispectral can be said to be a 
cheap method for analyzing a land that is not 
reachable from a distance. But the multispectral 
image has its drawbacks, ie we can not order 
images at any instantaneous time associated with 
satellite orbit time. In addition, multispectral 
images often have an insufficient resolution in the 
analysis process. There are several cases that 
require immediate treatment, for example in cases 
of disaster and analysis that require a fast time can 
be done with a hyperspectral image [20]. 

 

2. RELATED WORKS 
 

Research related to rice monitoring in 
hyperspectral imagery has been done using several 
approaches, namely supervised, unsupervised, 
statistical, semi-supervised, knowledge-based and 
feature selection as shown in Table 4. The most 
common method is supervised based method 
because this method has a higher level of accuracy 
compared to other methods. In detail, the 
classification methods that have been studied in 
various sector fields are presented in Table 5. 

 
Table 4: Classification Methods Of Previous Studies In 

Hyperspectral Remote Sensing 
 

Approach Citation 
Supervised [21], [22], [23], [24], [25], [26], [27], 

[28], [29], [30], [31], [32], [33], [34], 
[35], [36], [37], [38], [39], [40], [41], 
[42], [43], [44] 

Unsupervised [45], [34] , [46], [47] 
Statistical [48], [49], [50], [39], [40], [41], [44], 

[16] 
Feature Selection [22], [23], [24], [25], [28], [30], [31], 

[51], [35], [36], [52], [15], [49], [50], 
[53], [41], [42] 

Semisupervised [54], [55] 
Knowledge Based [39] 

 

 
 
 

Table 5: Classification Methods of Previous Studies in Hyperspectral Remote Sensing 
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Cit. Techniques Output 
[45] Nonlocal Total Variation 

Primal-Dual Hybrid Gradient Algorithm 
Stable Simplex Clustering 
K-Means 
Nonnegative Matrix Factorization 
Hierarchical Rank-2 NMF 
Merriman–Bence–Osher 
NLTV2 
NLTV1 

The Total Non-Local Allocation Algorithm is proposed. 
This algorithm can be consistent with high accuracy in a 
collection of synthetic data and urban data sets (SDA, 
Urban, and Salinas-A), both data produce finer results by 
identifying easier visual segmentation, and differentiating 
material classes that fail to distinguish algorithms others and 
can work well in anomalous detection scenarios with proper 
initialisation. 

[21] Nonlinear Support Vector Machines Classifier 
Random Forest Classifier 
Gaussian Maximum Likelihood Classifier 

Results obtained: 
1) Working effectively on the classification of boreal tree 
species with HySpex VNIR 1600 sensor obtained kappa 
accuracy of more than 0.8 (obtained by manufacturer 
accuracy is higher than 95% in Pine and Spruce). 
2) The HySpex-SWIR 320i sensor has a limited role, but the 
band can precisely separate the Spruce and Pine species. 
3) The strong influence possessed by spatial resolution 
affects the level of classification accuracy which results in a 
20% decrease in accuracy at a spatial resolution between 0.4 
m and 1.5 m. 
4) In the SVM or RF classification method there is no 
significant difference. 

[22] Spectral Unmixing 
Support Vector Machines (SMVs) 
Unmixing-Based Feature Extraction 

- 

[23] Support Vector Machine 
Random Forest 
LiDAR Feature Extraction, Feature Selection 

High Kappa accuracy is effectively obtained in 
hyperspectral data for general macro class 93.2%, forest 
type 82.1% and single species 76.5%. Accuracy 
Classification decreases sharply in single tree species and is 
greatly reduced in forest type when applied to multispectral 
data while in general, macro class multispectral data is still 
very accurate reaching 85.8%. Experiments on LiDAR data 
that have high data densities provide more information for 
classification of tree types that have lower data density when 
combined with multispectral data or hyperspectral data. 

[24] Classification And Regression Tree 
Bagging  
Adaboost  
Random Florest 
Principal Component Analysis 
Independent Component Analysis 
Maximum Noise Fraction 
Local Fisher Discriminant Analysis 
Support Vector Machines  
Logistic Regression Via Variable Splitting And Augmented 
Lagrangian 

Experiments were carried out by combining the Rotation 
Forest and PCA, make the results of the classification 
obtained more accurate than the other methods (Random 
Forest and Bagging). Rotation Forests are a promising 
approach to producing classification of ensemble in 
hyperspectral remote sensing. 

[48] Gaussian Blur Radius 
Rolling Ball Radius 
Threshold Value 
Particle Size  

The algorithm parameters are chosen to reduce false 
negative results. Potential quarantine treatment for 
evaluation of the feasibility of important methods is carried 
out, resulting in 1.0% for false error rates, with a false 
positive error rate of 11.1% and for the full sample obtained 
an overall error rate of 6%. The lowest overall error rate in 
the same sample was 2.0% with a false negative rate of 
3.0% and a false positive rate of 1.0%. The error rate is 
much higher in the sample which has a very low infestation 
rate, obtaining the lowest overall error rate of 12.3%. 

[25] Parallelepiped Classification 
Principal Component Analysis 

The results of hyperspectral imaging experiments in 
detecting hidden bruises on the fruit obtained classification 
results of 14.5% for the total error rate. For the acquisition 
of classification rates on positive errors where normal fruit 
is considered as a fruit that is bruised by 16.2% while for the 
classification of false errors where the bruised fruit is 
considered normal fruit at 12.6%. 

[26] Support Vector Machine (SVM) 
Bidirectional Reflectance Distribution (BRDF) 

From the results of the experiment using the SVM 
classification method, it was obtained a high level of 
predictive accuracy for 15 species of species, namely 76%. 
Flight artifacts with a heterogeneous savanna landscape 
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spectrum on-air spectral data can be reduced by applying a 
two-way reflectance distribution model. Crown level data 
and pixel integration, anisotropy reflectance, and depiction 
of crown over a very large area allow ecosystem scales to 
conduct species mapping and important starting points in 
monitoring biodiversity and ecosystem functions are the 
three challenges found. 

[27] Random Forest Classification 
Classification Tree 

The Random Forest Classification Algorithm is applied to 
classify land cover obtained by accurate results, 92% for 
overall accuracy and 0.92 for Kappa index. In training the 
addition of noise value and data reduction greater than 20% 
and 50% due to significant differences in kappa values, the 
Random Forest can be used. From the McNemar test a 
significant level of 0.00001 was obtained, which showed 
that overall performance was better than a random forest 
model in a single decision tree. 

[49] Principal Component Analysis 
Wavelet Transform 
Feature Band Set 
Dimension Reduction 
Feature Selection 
Stepwise-Multilinear Regression 
Minimum Noise Fraction Transform 
Band Ratio, Asymmetric Second Difference Method 
Partial Least Squares Discriminant Analysis 
Partial Least Squares 
Multiple Linear Regression  
Band Difference 
Partial Least Squares Regression 
Integrated Principal Component Analysis With Neural 
Network 
Linear Discriminant Analysis 
Integrated Principal Component Analysis-Fisher’s Linear 
Discriminant 
Principal Components Regression 
Quadratic Discriminant Analysis 
Artificial Neural Network  
Support Vector Machines 
Wavelet 
Ahalanobis 

- 

[50] Principal Component Analysis 
Partial Least Squares Regression 

At wavelengths of 606 and 636nm, different packaging in 
the atmosphere with a variety of spectra can be observed. 
The classification of packaging fillets used was successfully 
achieved with> 80% use of hyperspectral imaging but was 
highly dependent on wavelength 606 and 636nm on spectral 
characteristics, which may occur because in muscle there is 
a difference in haem protein oxidation. 

[28] Spectral-Spatial Classification 
Dimension Reduction 
SVM Classifier 
PCA Based Spectral 

Applications for detecting head and neck cancer using the 
HSI sensor approach are described and create a spectral-
spatial classification model framework. The proposed 
classification algorithm obtains average results in 
differentiating tumours and normal tissue in the animal head 
and neck cancer models, by 93.7% for sensitivity and 91.3% 
for specificity. Non-invasive accurate and quantitative 
cancer detection can be done by combining spectral-spatial 
classification methods with Hyperspectral Imaging. 

[29] Feature Selection 
Hyperspectral Image Classification 
Kernel-Based Feature Selection Method 
Radial Basis Function 
Support Vector Machines  
BAHSICp Method 
FSFS 
RFE 
 

The subset feature in the KFS Method, BAHSICp, RFE, 
FSFS and FS is proposed compared to classification 
performance, for the SVM method to use a multi-class 
strategy for all (OAA). The FSFS, KFS, BAHSICp and RFE 
methods are tested for classification accuracy using specific 
numbers from the PAVIA dataset. Test results The KFS 
method is better than other classification methods in all 
cases. The KFS method has 95 higher classification 
accuracy features than the BAHSICp method with 102 
features, the FSFS method with 100 features, and the RFE 
method with 101 features. In the IPS dataset, the KFS 
classification method using half the features of the 0.937 
classification accuracy level approaches the highest 
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accuracy of 0.947. 
[30] Differential Evolution 

Extreme Learning Machine 
Feature Extraction 
Hyperspectral Images. 

Presented with various comparison method 
learning other, wrong only comparison of DE-ELM and DE- 
SVM. 

[31] Hyperspectral Image 
Multiple Kernels Spectral-Spatial Image Classification 
Superpixel 
Support Vector Machines 

Presented algorithm solving problem and trial SC-MK 
method along with comparison level effectiveness 
with other methods 

[51] Classification, Hyperspectral Imagery 
Sparse Modeling 
3-D Discrete Wavelet Transform 

A method is proposed with some interesting properties 
compared to approaches in the literature. Low-cost 
prediction for linear sparse learning method uses variable 
features and training data rather than using the SVM 
method. Consistently the results of testing on real-world 
data show advantages in the method used primarily in small 
training data sets. 

[32] Extended Multi Attribute Morphological Profiles 
Generalized Composite Kernels 
Hyperspectral Imaging 
Multinomial Logistic Regression 

Presented the SMLR and LORSAL Classification Method, 
SVM is adopted to produce final classification results 

[52] Analysis Of Feature Reduction Methods 
Includes Feature Generation 
Feature Selection 
Feature Extraction 

General Presentation Represents Several Linear and 
Nonlinear Methods Feature Extraction. Explained 
Experiment using two sets of Hyperspectral datasets 
Available to Describe Selected Feature Selection and 
Feature Extraction Methods. 

[33] Spectral Angle Mapper 
Support Vector Machine 

Lighting change conditions such as the complex 
characteristics of the topographic environment and 
variations in incident lighting need to be considered in the 
performance appraisal of the classification method because 
it can influence the classification results so that there is the 
fact that techniques Spectral Angle Mapper not sensitive to 
Albeno. SVMs method it was found to be insignificant 
though, the ongoing classification on spectral training was 
selected from two data of the same population taken using 
the same sensor and in the same condition worked well but 
vice versa when both population data were taken with 
sensors and the conditions of the classification process 
different doesn't work properly. 

[53] Principal Component Analysis 
Particle Swarm Optimization 
The Feature Selection 
Support Vector Machine Classifier. 

PSO is implemented in the classification by using the 
Support Vector Machine Classifier, improve the band 
selection performance which is very influential in terms of 
accuracy compared to using dimension reduction data in the 
PCA or LDA method. Increased accuracy of the Support 
Vector Machine method has a lot of influence on the 
significant increase in classifier functions. 

[54] Sparse Linear Discriminant Analysis 
Support Vector Machine 
 

Support Vector Machine algorithms are applied in several 
classes, the results of high accuracy are obtained. The final 
result of the overall accuracy of the Sparse Linear 
Discrimination Analysis method is 89.3% for Closed Test 
and 79.4% for Open Test with higher accuracy than Support 
Vector Machine method which is only 80.6% for Closed 
Test and 76.3% for Open Test. In the case of generalization 
of the Linear Sparse Discrimination Analysis has sufficient 
potential. 

[34] BPNN Model 
Principal Component Analysis 
 

Experimental results using seven optimal wavelengths in 
spectral in various discriminations of BPNN model the 
accuracy level of classification was 89.19% working better 
than the PCA model, the accuracy level was only 89.18%. 
IBRA model classification accuracy rate on data fusion is 
94.45%, spectral data is 89.91% while image data is 
88.09%. Data fusion is the best result from the IBRA model. 

[35] Wavelet Transform 
K-Nearest Neighbors 
Support Vector Machine 
CNN Models 

Using two different spectral ranges of hyperspectal images 
in the identification of rice seed varieties. CNN, KKN, and 
SVM which are three methods of machine learning are 
tested. CNN and SVM work more than KNN models whose 
accuracy is lower than 60% in spectral accuracy test 1 and 
spectral accuracy test 2. 3000 training samples from spectral 
range 2 are used to test CNN performance and obtained 
training classification accuracy results of 89.6% and set test 
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87.0% works better than the SVM model. 
[36] Partial Least Squares Discriminant Analysis 

Soft Independent Modeling of Class Analogy 
K-Nearest Neighbor Algorithm 
Support Vector Machine 
Random Forest 
 

Support Vector Machine Model, Partial Least Squares 
Discrimination, K-Nearest Neighbor Algorithm, Random 
Forest and Soft Independent Modeling Class Analogy with 
full spectrum get good performance results. In the 
calibration set and prediction level classification set 100% is 
obtained when using the Soft Grain Modeling Class 
Analogy model, Support Vector Machine and Random 
Forest. In optimal wavelength based performance, the partial 
Discrimination Model Detection accuracy is less than 80% 
and is the worst performance. 

[37] Support Vector Machine 
Random Forest 

Rice seeds are classified using two methods, namely RF and 
SVM methods. Rice seed classification by combining 
spectral-based features can improve 84% precision from 
multi-label classification compared to only using visual 
features with a precession rate of only 74%. 

[55] The Least Square SVM 
K-Means Clustering Algorithm 
LS-SVM Algorithm Based On Clustering Combination 
Kernel Function 
RBF Kernel Function 

Identification of rice seeds with high precision utilises 
hyperspectral remote sensing technology and combines two 
classification methods: the Kernel Function method and the 
RBF Kernel method using the addition operation to achieve 
the highest accuracy of 91.95%. 

[15] Principal Component Analysis 
Linear Discriminant Analysis Models 

Leaves were categorised into two infected and healthy 
datasets. Validation sets were classified using the LDA / 
Linear Discriminant Analysis Model obtained an overall 
accuracy of 92%. The classification model by selecting five 
wavelengths: 1188.1339, 1377, 1432 and 1614nm obtained 
comparable results with the full spectrum image database 

[16] Successive Projections Algorithm Vegetation indices are recommended as a potential indicator 
in calculating the estimated amount of arsenic in the soil 
using three bands (R716 - R568) / (R552 - R568) which 
have just been developed using Photochemical Reflectance 
index (PRI) and Red Edge Position (REP) 

[46] SVM Linear 
Naïve Bayes 
Principal Component Analysis 
Kernel PCA 

The accuracy of the classification of rice growth stages 
using PCA / KPCA to reduce the high-dimensional curse in 
hyperspectral images obtained the highest results of 93.33%, 
using linear data kernels and Naïve Bayes as classifiers. 

[38] ELM (Extreme Learning Machine) Accuracy 92% using triangular basis function can produce 
good testing.  
Accuracy using 1000 node.  
In this research use 100 node, the result are 
 Accuracy : 0.84 
 Po : 0.8424 
 Pe : 0.1176 
 Po - Pe : 0.7248 
 1 – Pe : 0.8824 
Kappa: 0.8214 

[39] Feature Band Set 
Object-Oriented Classification 
PCA 
CPS 

The method proposed in the first image to differentiate 
vegetation was 97.84% for overall accuracy and 0.96 for 
kappa coefficient while for distinguishing rice varieties in 
the second figure the highest accuracy was 98.65% and 
0.98% for the highest kappa coefficient. 

[40] Object-Based Spectral Features: Object Spectra Mean, 
Standard Deviaton, Object Texture, After Haralick LCM 
Homogeneity, LCM Dissimilarity, LCM Entropy 
 
Image Segmentation Based On Spectral Reflectance And 
The Scale Factor 
 
Nearest Neighbour Classifier Integrated In eCognition 
Developer 
 
GLCM: Contrast, Homogeneity, Dissimilarity, Energy and 
Entropy 
 
 

Overall accuracy 3ac scenario is 91.3% 

[41] Seven Models Based On Spectral, Combined Spectral And 
Texture, Morphological, Texture, Combined Spectral And 
Morphological, Combined Morphological And Texture And 

91.67% the highest level of accuracy obtained from a 
combination of spectral features, morphology and texture in 
this study, feature combinations have great potential to 
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Combined Spectral, Morphological And Texture Features 
Were Developed For Seeking The Optimal Feature 
Combination. Nine Important Wavelengths Were 
Determined By Principal Component Analysis. 
 
RIO Selection, PCA (PC1-PC4), GLCM, NU-SVC With 
RBF Kernel, SVM,  

improve the level performance of the SVM model to 
identify the origin of rice. 

[42] SVM, PCA, ICSA, HFFS, K-NN, RBF By applying various hard as well as soft classifiers we can 
get good classification results 

[44] Smoothing: Minimum Noise Fraction (MNF). Decision Tree 
(To Classify Canopy Component). Conventional Method: 
NDVI, TCARI, PRI, CIRed-Edge For Assess The Shaded 
Component 

Images can be classified into four classes with an overall 
accuracy of 90.56% in that class including SL, SHL, SP and 
SHP. 

[47] Waveforms, Hierarchical Clustering By Agglomerative And 
Minkowski Metric, Band–Band R2 (BBR2) 

The wavelength of 779,819nm has the potential that can be 
used to distinguish rice species in an effective way on the 
characteristics of reflection. Significant wavelengths 
observed are very sensitive to nitrogen in distinguishing rice 
genotypes. Green spectral range 519,559nm, red spectral 
range 649nm, spectral range red edge 729nm and NIR 
spectral range 779,819nm are significant wavelengths found 
for discrimination. 

[43] K-Mean algorithm Using K-Mean clustering algorithm these variations have 
been tracked and four different classes of paddy crop based 
on its health have been produced. The difference in these 
classes have been plotted graphically in terms of its spectral 
signature and measured by the area in hectares covered in 
these classes and the corresponding yield per hectare. 

3. THE HYPERSPECTRAL 
CONCEPTUAL FRAMEWORK 
ASSOCIATED WITH 
CLASSIFICATION ALGORITHM 

3.1. Hyperspectral Ancillary Data Derived 
from Spectrometer/Field Radiometry 

 
In post-classification processing, ancillary 

data is needed which is an important element that is 
determined by expert rules in the process of 
modifying the classification image. Many factors 
contribute to successful image classification. The 
most important example is the presence of high-
quality ancillary data and the availability of imager 
tools, experience and skills of an analyst, and the 
design of appropriate classification procedures. In 
addition the classification performance is one of the 
factors that able to enhance image classification 
with the combination of ancillary data, such as 
water, topography, road, soil, building, and census 
data with remotely sensed data [56]. 

Usually ancillary data is available in 
Geographical Information System format and able 
to be incorporated before, during, and after 
classification. The conceptual basis for the use of 
ancillary data is that the additional information is 
collected independently from the remote sensed 
data, increase the information available for 
separating the classes and for performing other 
kinds of analysis. For example in some regions 
vegetation patterns are closely related to 
topographic elevation, slope and aspect. The 
combination of elevation data with remote sensing 

data forms a powerful analytical tool because the 
two kinds of data provide separate, mutually 
supporting contributions to the subject being 
interpreted. 

 
3.2. Pixel-Based Vs Object-Based Agricultural 

Classification 
 

The complexity of the high differences of 
spectral reflectance is factor that involve in pixel-
based classification. It may produce the “noise” in 
classification result. This problem can be overcome 
thru object-based classification. The object-based 
classifier analyzes image based on image segments 
and extracts real word objects from those segments. 
Hence it makes more sense to analyze precise area 
or targets on the ground. 

There are two main steps included in object-
oriented classification, namely image segmentation 
and image classification. Steps in segmentation 
image, there are some strategies to generate objects; 
first is the integration of vector and raster data 
which vector data as the thematic layer. It is able to 
split image into segments and classification process 
is carried out based on this segmentation [56]. In 
addition, pixels can be merged into objects 
depending on the homogeneity of pixel values 
within an area, if there is no vector data available 
the classification based on objects will follow. 

Image analysis through object-based 
classification involves the extraction of real-world 
objects based on their properties for example shape 
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and size. It cannot be performed through the pixel-
based classifier. Therefore, to analyze objects and 
to produce better result, some features related to 
objects might be used and clustered as physical 
features, topological feature, and context features. 
The disadvantage of this approach is evidenced in 
dealing with the meaningful image object. It is 
because there are no standard rules for image 
segmentation. 

3.3. Preprocesing of Hyperspectral Data  
 

Hyperspectral sensors have advantages over 
multispectral sensors in their ability to identify 
objects on the ground with more detailed features. 
The higher spectral resolution of hyperspectral data 
is suitable for the detection, identification and 
quantification of surface materials, as well as 
identifying natural, biological and chemical events. 
The resolution of hyperspectral image can also 
affect accuracy of classification. the complexity of 
an area can also be the cause of the problem. 
However, HIS data has a large narrow bands, so 
based on this specification it can be a challenge in 
the classification process [57]. 

 
3.4. Unsupervised and Supervised 

Classification 
3.4.1. Unsupervised Classification 

 
In hyperspectral image classification, one of 

the most widely used and common methods is the 
unsupervised classification methods. W. Zhu et al. 
[45] has researched unsupervised method with 
Primal-Dual Hybrid Gradient Algorithm and 
Nonlocal Total Variation. This study aims to solve 
optimization problems in quadratic and linear 
models. The NLTV algorithm applied in urban data 
sets and synthetic data sets consistently work with 
high accuracy, in both data produces smoother 
results by identifying easier visual segmentation, 
and differentiating material classes that fail to 
distinguish other algorithms and work well in the 
anomaly detection scenario with the correct 
initialization. This method can maintain the edge of 
the image well when minimizing and in the 
iteration, no matrix invasion is involved, but NLTV 
and other unsupervised classification methods in 
datasets with a large number of clusters do not 
satisfy the results achieved. 

Classification of hyperspectral data with low 
resolution can be performed. Villa et al. using K-
means clustering to overcome problems that 
highlight structural detection and classify 
unsupervised hyperspectral data that have a low 

level of spatial resolution. From the experiments 
conducted on the proposed method obtained results 
that are superior to the classical unsupervised 
classification method both from the quantitative 
side and from the perspective of the visual point of 
view when the area with mixed materials is located 
at the scene. It takes a higher number of iterations, 
higher resolution improvement factors and a larger 
pixel count in this study. The advantage of this 
method is that no other source is needed in addition 
to HSI [58]. 

To classify HIS, unsupervised classification 
can be combined with feature extraction methods. 
AVIRIS is used to take hyperspectral images. 
Experiments on real hyperspectral images as many 
as two images obtained the BCFE method is 
superior in simplifying dimensions compared to 
conventional feature extraction techniques such as 
LDA and PCA [59]. 

 
3.4.2. Supervised Classification 

 
In the study of Dalponte et al. classification 

has been carried out on hyperspectral images using 
two sensor data. In the evaluation process uses an 
accuracy method to classify boreal forest. The 
spectral range used ranges from 400 nm to 1700 
nm. The results of this study discuss him spatial 
level namely pixel map versus the tree-level map. 
By using HySpex VNIR images targeted at boreal 
tree species, kappa accuracy is above 0.8, while for 
Pine and Spruce targets the accuracy obtained is 
very good, which is 95%. Classification using 
SWIR bands can be used to separate Pine and 
Spruce plant species even if only using this band 
itself. The use of spatial resolution turns out to have 
a strong effect on the level of accuracy in 
classification. In this study, more than 20% 
decreased accuracy at spatial resolution between 0.4 
m and 1.5 m. While using the SVM or RF method, 
there is no significant difference [21].  

Comparisons of the three satellite data are 
multispectral, hyperspectral, and LiDAR have been 
analyzed by applying different densities points. The 
results show that effective hyperspectral data is 
used for general macro-classes, single plant species, 
and forest types with kappa accuracy values of 
93.2%, 76.5% and 82.1%, respectively. Based on 
observations it can be concluded that hyperspectral 
data is good for general macro-classes. Whereas for 
multispectral and LiDAR data has an accuracy level 
under hyperspectral data [23]. 
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In other ways, Support Vector Machines 
(SVM) is a powerful method that often use in HIS 
classification. Many researchers [26][29][32][33] 
have used the SVM method for the classification 
process on hyperspectral imagery. The results 
showed that by using SVM on hyperspectral 
imagery, good accuracy was obtained for each 
minor classes. SVM is free from distribution 
algorithms that can overcome poor statistical 
estimates. SVM can work very well if the training 
spectra used comes from the same population data 
during the classification process (both data are 
taken using the same sensor and in the same 
conditions). Many problem of hyperspectral 
imaging can be solved by SVM such as, a complex 
area [26], Huges Phenomenon Problem [29][28], 
homogenous area [22], and low densitity data 
problem [23].  

However, SVM also has many 
disadvantages, SVM performance is very sensitive 
to the training samples used. SVM does not have 
important features of the model solution in 
nonlinear cases and only functions as a black box. 
Therefore, various methods to improve accuracy 
have been developed by combining various support 
methods such as, feature selection for enhance the 
accuracy or dimension reduction, and statistical 
improvement method. The combination SVM with 
feature selection method, many researcher 
[22][28][31][53] have proposed to avoid the 
common problem in hyperspectral classification 
such as a large narrow bands.  

Computational complexity in image 
classification can be reduced based on Rotation 
Forest. This method can be used for supervised 
classification for hyperspectral images that have 
low spatial resolution and can be used to detect the 
structure of hyperspectral images. Hyperspectral 
remote sensing can be classified using the Rotation 
Forest method then the results are compared with 
other method approaches such as Bagging, Random 
Forest, SVM and AdaBoost. The Rotation Forest 
method with PCA transformation in the 
experiments carried out obtained more accurate 
results than the Random Forest, AdaBoost and 
Bagging methods. This shows that in hyperspectral 
remote sensing methods that are very promising to 
produce ensemble classifiers are the Rotation 
Forests method [24].  

Land cover classification is a complex area 
that have to explored. Rodriguez et.al. proposed 
Random Forest (RF) method to resolve a complex 
area in HIS. The experimental results on land cover 
classification using RF algorithms obtained an 

overall accuracy of 95% and Kappa index 0.92, this 
shows the RF method is very accurate in the land 
cover classification. In training data reduction and 
noise greater than 50% and 20% due to significant 
differences in kappa values, the Random Forest can 
be used. From the McNemar test, a significant level 
of 0.00001 was obtained, which showed that overall 
performance was better than a random forest model 
in a decision tree. The ability to determine 
important variables is non-parametric high 
classification accuracy properties. In producing the 
final classification, RF has difficulty understanding 
the rules because the same resampling dataset 
produces several classification trees [27].  

In hyperspectral classification, hughes 
phenomenon and dimension problem are common 
problems that to be faced. One of methods is by 
using Principal Component Analysis (PCA) 
[28][53][49][50]. To find the main components in 
the hyperspectral imaging system and the 
classification and quality assessment features used 
by PCA. The large data or number of narrow bands 
and high computational time of HIS can be handled 
by using PCA. PCA will extract the main features 
from the spectral images. 

The same research was carried out [52], 
feature mining is the important rule and commonly 
used as a recommendation method. This research 
proposes a method of reducing advanced and 
conventional features, with details of several 
commonly used techniques for hyperspectral data 
analysis. Developed feature mining techniques that 
include linear and nonlinear, parametric and 
nonparametric methods, supervised and unattended, 
all methods attempt to identify information space.  

Feature mining can be simplification 
measurement including important data and can be 
used to ensure classifiers avoid Hughes problems, 
works well and reliably this process is easy to do if 
there is enough expert knowledge or laboratory 
research. Difficulties in feature mining include 
excessive calculation, overfitting in learning, the 
meaning of curves full of physical interpretation, 
and noise sensitivity has been investigated, and 
spatial information must be incorporated into 3D-
DWT texture features [51]. 

Variations in the spectrum contained in the 
class cause excessive classification of spectral 
homogeneous areas which can result in 
classification of these areas there is noise of salt and 
pepper, this is one of the challenges faced in the 
classification of hyperspectral images [53], but this 
problem is better solved using segmentation 
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method. Segmentation is usually used as a pre-
classification process. 

Extreme learning machine (ELM), 
differential evolution (DE), feature extraction of 
hyperspectral images have been done [30]. DE-
ELM aims to minimize training errors and output 
weight norms. Existing learning methods are used 
for comparison, binary, regression and multiclass 
problems are characteristic of integrated 
formulations in ELM. DE-ELM uses a multi output 
node configuration, where the number of classes 
must equal the number of nodes. In terms of 
classification and computational accuracy time, the 
DE-ELM method is very effective. ELM provides 
better classification accuracy relative to SVM 
which is up-to-date and faster because the solution 
is very simple, only requires kernel matrix 
inversion obtained from the calculation of training 
samples. 

Statistical method in hyperspectral 
classification can be done by using partial least 
squares regression (PLS), Discriminant PLS, 
Stepwise MLR, Gaussian blur radius, and rolling 
ball radius [49][50][48]. The advantages by using 
statistical method are easy computational, but 
limited availability of the number of bands, and 
difficult to be used for on-line inspection. 

 
3.5. Satellite Acquisition in Rice Field 
 

Based on the way of data collection, 
Hyperspectral can be acquired in two ways, namely 
near-ground and airborne-based. One way of 
acquisition of near-ground hyperspectral acquisition 
is by using a tool called ASD field spectrometer or 
HySpex, while hyperspectral data can also be taken 
from space by aircraft (Airborne HyMAP). Table 6 
explains that the spectral range taken for the 
purposes of rice field analysis is varied, for example 
the range between 380-1030 nm in the category of 
Visible / Near-Infrared has been studied to identify 
rice varieties. In the spectral range 874 to 1734 with 
the NIR Region category can also be used to 
explore the feasibility of identification of varieties 
of rice seed and multivariate data analysis. Specific 
spectral can also be used for rice crop and rice 
canopy analysis, such as RGB and NIR. 

4. DISCUSSION 
4.1. Hyperspectral Band Selection for Rice 

Field 
 

The spectral commonly used for 
hyperspectral classification on agricultural land is 

380-1030nm and 874 to 1734. 380-1030nm spectral 
is included in the Visible/Near-Infrared category, 
used for identification of rice varieties while for 
spectral 874 to 1734nm is included in the NIR 
Region category used for exploring the feasibility 
of identifying rice seed varieties and multivariate 
data analysis. Specific spectra can also be used for 
rice and rice canopy analysis, such as RGB and 
NIR. 

Data retrieval in hyperspectral can be done 
in 2 ways, namely near-ground and airborne-based. 
At near-ground, the ASD device can be used. Field 
spectrometers or HySpex are used to monitor the 
stage of the rice growth stage, while the Airborne 
using Aircraft (Airborne HyMAP) is used for 
fertility, detail components, rice canopy, rice 
assessment, rice health. 

Hyperspectral imagery has a large number of 
bands, requires sophisticated analytical methods to 
analyze it and requires a long process to extract 
priority information so as not to overload 
computing. The method commonly used in the pre-
classification hyperspectral data pre-processing 
process includes Wavelet Transform (WT), 
Artificial Neural Network (ANN), Partial Least 
Squares Discriminant Analysis, Principal 
Component Analysis (PCA), Feature Band Set 
(FBS), Dimension Reduction, Feature Selection, 
Stepwise-Multilinear Regression, PLSR, Minimum 
Noise Fraction Transform, Band Ratio, Asymmetric 
Second Difference Method, Partial Least Squares 
(PLS), Multiple linear regression (MLR), Band 
Difference, Integrated PCA With Neural Network, 
Integrated Principal Component Analysis (PCA) - 
Fisher’s linear discriminant (FLD), Principal 
Components Regression (PCR), Wavelet, Quadratic 
Discriminant Analysis, Ahalanobis, Linear 
Discriminant Analysis, Support Vector Machines 
(SVM). 

Weaknesses and strengths in hyperspectral: 
complex processes. One pixel of a remote sensing 
image may include more than one object on the 
ground. Resolution and complexity of the image of 
a hyperspectral area can also affect classification 
accuracy, problems in recognizing and classifying 
certain geographical objects because of the overlap 
of two or more spectrum related properties. 

4.2. Implementation Non-Rice and Rice Field 
Classification 

 
There are many applications of hyperspectral 

classification applied to rice plants, on a spectral 
400 - 1000nm is used to make a combination of 
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spectral information and images to improve rice 
varieties and quality discrimination at HSI. Spectral 
range 380 - 1030nm and 874 - 1734nm is used for 
rice identification to identify rice seed varieties 
using a combination of HSI and convolutional 
neural networks. 

Spectral range 874 - 1734nm and 1039 to 
1612nm are used to examine the feasibility of rice 
seed varieties using HSI and multivariate data 
analysis. 

Spectral range is 900 to 1700 to detect 
explosive rice in the hatchery stage at the initial 
infection stage. Spectral range of 400 to 850 is used 
for classification on rice plants 

The combination of spectral ranges 440-
510nm, 520-590nm, 63- 685nm, 690-730nm, 760-
850nm is used to classify rice plants into certain 
classes starting from the growth stage to the harvest 
period and to determine the level of productivity of 
cultivars. The spectral range of 390 to 1050nm is 
used to provide a fast, precise and non-destructive 
information base identifying the origin of rice in 
real-time system development. 

Spectral range 360 - 1025nm is used to 
check the spectral leaves and panicles of rice in the 
sunlit canopy section and not to evaluate the 
relationship of the spectral index of leaves and 
chlorophyll content in the shadow effect. 

 
4.3. Potential Techniques on Rice 

Classification Using Hyperspectral 
Imagery 

 
The most widely used classification method 

is SVM. This method has several advantages, 
namely: SVM has a regularization parameter, which 
makes users think about avoiding over-fitting; SVM 
can use kernel tricks, so you can build expert 
knowledge about any problem using the kernel; 
SVM is defined by a convex optimization problem 
(no local minima) that has an efficient method (e.g. 
SMO); SVM is an estimate for limits on the level of 
test error, and there is a substantial body of theory 
behind it that shows it must be a good and better 
idea; SVM shows the advantages of handling small, 
non-linear and high-dimensional sample data; SVM 
is based on minimum structural risk (SRM), and 
SVM has a high generalization capacity and can 
provide flexible and easily calculated solutions. 
SVM also has many disadvantages, SVM 
performance is sensitive to training samples. SVM 
functions as a black box and does not have 
important features of the model solution in 

nonlinear cases. High computational computing 
influences hyperspectral large-scale data 
classification. 

In research [29], SVM is a powerful method 
because it can be applied to kernels such as RBF in 
research with 0.947 highest accuracies. In another 
study, the method that began to be developed based 
on artificial neural networks is the Neural RBF 
network. In the study [62] the results of accuracy 
obtained reached 100% using RBFN. The 400-
900nm acquired spectrum range applied to cross-
linked weed, wheat and broad bean plants taken 
under field conditions for four years can be 
classified with varying success using MLP and 
STEPDISC analysis and RBF networks. This model 
selects twelve wavelengths (480, 485, 490, 520, 
565, 585, 590, 595, 690, 720, 725, 730 nm), three 
wavebands (B, G, NIR), and five spectral 
vegetation indices (B/G). G, R/B, R/G, NIR/B, 
RVI) So, this is a potential method that can be used 
in hyperspectral classification. 

The advantage of ELM being able to build 
classifier model classifiers that can produce good 
testing accuracy as we expected, the model can be 
built using data without handling the curse 
dimensions, does not mean that pre-processing is 
not important if we can preprocess the data into 
optimal band choices and use models this, maybe 
we can get improvised results and faster. The lack 
of accuracy in testing the sigmoidal activation 
function, sin function, and radial is still below 70%. 
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Figure 2: The Framework of Rice Classification on Hyperspectral Imagery 
 

The framework in Figure 2 is the basis of 
the process of classifying rice in hyperspectral 
images. Five steps are done, step 1 is very 
important for the continuation of the process in 
the future, for example, the selection of 
AVIS/GVIS sensors, and the band is selected 
based on the objectives to be achieved. 
Supporting data such as ground truth and rice 
outlook are needed as a comparison or can also 
be processed into the material. 

Step 2 discusses pre-processing data 
before entering the core classification process, 
for example, area study selection and mosaicking 
process if needed. Hyperspectral data is data that 
has many bands or high resolution, therefore it is 
necessary to optimize the resolution and feature 
extraction/selection. However, every data in the 
form of images has the opportunity to have noise 
and requires a filtering process to improve image 
quality. 

Step 3 is the core of the rice classification 
process using this hyperspectral data. In this 
process, the information extraction process or 
classification of rice and non-rice can be done by 
means of unattended / supervised classification, 

signature analysis, changing the index threshold 
or combining several data sources, for example 
between hyperspectral data and Economic 
Research Services (ERS) data series. This aims 
to increase the validity of the information 
produced. 

Step 4 is a part that can be done to 
improve the performance of step 3, for example 
by filtering, extracting spatial feature or 
information, object-based voting that can be done 
by experts, and re-learning. 

Step 5 is GIS analysis/presentation, 
including the classification mapping process, 
expert knowledge, rice information related to 
information about the quantity or quality of rice. 
In this step, a performance test is also carried out 
as an ingredient to analyse the durability and 
accuracy of the proposed method. 

5. CONCLUSION & 
RECOMENDATION 

 
Hyperspectral remote sensing is a tool 

that can be used for the classification process in 
all circumstances. Especially in agriculture, 
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hyperspectral is used to assess all rice areas. Rice 
fields or even non-rice fields can be classified 
using a number of recommended methods, 
namely, RBFN, SVM, ELM. However, of the 
many RBFN methods is the most widely used 
method because they have a high level of 
accuracy that is 100% using STEPDISC and can 
be used in hyperspectral data that has mixed 
pixel problems. 

The bottleneck of hyperspectral imagery 
is high resolution and very large number of 
bands. This condition can cause the computing 
process to run slowly. Therefore, to overcome 
this, dimension reduction, resolution 
optimization can be done at the pre-processing 
stage. The filtering process is an important 
process and is usually done at the stage of pre-
processing and post-processing which is used to 
improve the quality of hyperspectral images. 

There are five steps commonly used in 
processing the classification in the rice area, 
namely the GIS combination/selection of data, 
hyperspectral RS Pre-processing, hyperspectral 
RS Processing, hyperspectral post-processing, 
and GIS Analysis/Presentation. In these five 
categories, what distinguishes rice processing 
from non-rice is an additional analysis of rice 
observation. Rice observation can be done to 
calculate rice estimates or improve system 
accuracy and can also function as validation. 
Validation can be done with expert knowledge 
and compared to field conditions.  

Hyperspectral data can be obtained 
through two types based on how they are taken, 
namely AVIS and GVIS. AVIS imagery is 
usually used for the purpose of a very wide land 
cover classification, while GVIS is used as a 
close observation with a limited area. GVIS is 
usually used for more detailed observation of a 
small sphere of rice. 
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