
Journal of Theoretical and Applied Information Technology
15th February 2019. Vol.97. No 3

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

846

DATA ANALYSIS IN SOFTWARE EFFORT ESTIMATION
USING IMPROVED DELPHI METHOD

1ASHISH RAI,, 2G. P. GUPTA, 3PANKAJ KUMAR

1Assistant Professor, Department of Computer Science,
Shia P.G. College, University of Lucknow, Uttar Pradesh, India

2Professor, Department of Computer Science,
Shia P.G. College, University of Lucknow, Uttar Pradesh, India

3Associate Professor, Department of Computer Science & Engineering,
Shri Ramswaroop College of Engineering and Management, Uttar Pradesh, India

E-mail: 1arai1975535@gmail.com, 2prof.gpgupta@gmail.com, 3pk79jan@gmail.com

ABSTRACT

Software Estimation Accuracy is one of the most difficult tasks for the software developers. Defining the
project duration, effort estimation and estimated cost, early in the development phase is greatest challenge
has to be achieved for software projects. Inaccurate effort estimation of software development is one of the
most important reasons of computer and IT major project failures.
Low effort estimates may lead to project management problems, delayed deliveries, budget overruns and
poor software quality, too high effort estimates may lead to loss of business opportunities and improper and
inefficient use of resources. The projects main focus at Simulate Research Laboratory is to improve
judgment-based effort estimation methods, which is most frequently used by the software industries. By
introducing better mental steps in effort estimation, we can achieve significant improvement in software
development estimation processes.
 There are great challenge while studying expert judgment like Delphi Estimation. To understand the use of
multidisciplinary competencies, especially financial resources enables studies in realistic software
development process, psychology and software engineering.
This paper explores the relationship between development effort, team size and software size. The main
objective of this research is to improve the existing Delphi method for the estimation of software
development effort using hybrid approach. Proposed, improved method has been validated by using 15
NASA project dataset and the results show that the improved Delphi method for software effort estimation
resulted in slightly better as compared to results obtained earlier.
Keywords: Effort Estimation, Productivity, Algorithmic Model, Variance, MMRE, Pred.

1. INTRODUCTION

 Proper analysis and Effort Estimation is
necessary for successfully planning for a testing
project. Any flaw in critical estimation phase,
results into the missing of the project deadlines,
and also reduces Return of Investment and loses
of customer's faith. However in my view “Bad
estimation can lead to poor distribution of work”.

 Software metric and especially software
estimation is based on measuring of software
attributes which are typically related to the
product, process and the resources of software
development. This kind of measuring can be
used a parameters in project management models
which provide assessments to software project
managers in managing the software projects to
avoid problems such as cost overrun and delay in
schedule. Underestimating the costs may result
in management approving proposed systems

Journal of Theoretical and Applied Information Technology
15th February 2019. Vol.97. No 3

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

847

which can exceed their budgets, with
underdeveloped functions and poor quality, and
failure to maintain the time factor.
Overestimation may result in too many resources
committed to the project, or, during contract
bidding, result in not winning the contract, and
also lead to loss of jobs. Accurate and reliable
effort estimation is still one of the most
challenging processes in software engineering.
There have been number of attempts to develop
cost estimation models.

 Most of the traditional techniques, such as
function points, regression models, COCOMO
etc. require a long term estimation process.
Effort and schedule overruns are serious
problems in the software industry. In the most
popular software textbooks and also
representative set of software estimation research
papers, the systematic shortcomings in use of
estimation terminology have been found.

 The Delphi Method is Looping process
which is used to collect and filter the judgments
of experts by using a series of questionnaires
with feedback. The questionnaires are prepared
to discuss the problems, opportunities, solutions
or predictions. Each questionnaire is prepared on
the output and the results of the previous
questionnaire. This process continued for
number of times until the research question is
appropriately answered. The Delphi Method can
be used whenever there is incomplete knowledge
about a problem or phenomena to focus the
intelligentsia or expertise on the problems in
hand. Formal software development effort
estimation models have been around for more
than 40 years. In spite of massive effort and
promotion, available formal estimation models
are not in much use, so it is time to focus
industrial estimation process improvement work
and scientific research on Judgment-based effort
estimation methods. There are very good reasons
to claim that future estimation process
improvement and research initiatives should aim
at better judgment-based effort estimation
processes and not at better formal models. The

relation between effort and size in software
development contexts is not stable.

2 DELPHI METHOD

2.1 Existing Delphi Method

The Delphi method has been used in research to
develop, identify, forecast and to validate in a
wide variety of research areas. Three round
Delphi is typical, single and double round Delphi
studies have

also been completed. The number of experts,
vary from 4 to 17. The method can be modified
to suit the circumstances and research question
as well.

Analysis shown in following table reveals the
flexibility of the method. Their focus, number of
rounds and participants are varied from project to
project

Table 1: Delphi Method Diversity

Non IS/IT
Study

Delphi Focus Rounds
No. of

Experts

Gustafson,
Shukla,
Delbeeq &
Walster

Estimate
almanac events
to investigate
Delphi
accuracy

2 4

Kuo & Yu

Identify
national park
selection
criteria

1 28

Nambisan et
al.

Develop a
taxonomy of
organizational

3 6

Journal of Theoretical and Applied Information Technology
15th February 2019. Vol.97. No 3

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

848

mechanisms

Lam, Petri
& Smit

Develop rules
for a ceramic
casting process

3 3

Roberson,
Collins &
Oreg

Examine and
explain how
recruitment
message
specificity
influences job
seeker
attraction to
organizations.

2 171

Niederman,
Brancheau
& Wetherbe

Survey senior
IS executives
to determine
the most

critical IS
issues for the
1990s.

3
114, 126

& 104

Brancheau,
Janz &
Wetherbe

urvey SIM
members to
determine the
most critical IS
issues for the
near future

3
78, 87

& 76

Scott

Rank
technology
management
issues in new
product
development
projects

3 20

Brungs &
Jamieson

Identify and
rank computer
forensics legal
issues

3 11

2.2 IMPROVED DELPHI METHOD

The classical Delphi method by four key features

1. Delphi participants anonymity - to
allow participants to freely express their
opinions without any pressure.
Decisions are evaluated on their merit,
rather than who has proposed the idea.

2. Looping process - to refine their views
in light of the progress of the group’s
response from round to round.

3. Feedback - to clarify or change their
views.

4. Statistical analysis of group response -
for a quantitative analysis and
interpretation of data.

Figure 1 Improved Delphi Method

Journal of Theoretical and Applied Information Technology
15th February 2019. Vol.97. No 3

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

849

3. RELATED WORK

 Estimation by expert [3][4], analogy based
estimation schemes [5], algorithmic methods
including empirical methods [6], rule induction
methods [7], artificial neural network based
approaches [8] [9] [10], Bayesian network
approaches [11], decission tree based methods
[12] and fuzzy logic based Estmation schemes
[13] [14]. Among these diversified models,
empirical estimation models are found to be
possibly accurate compared to other estimation
schemes and COCOMO, SLIM, SEER-SEM and
FP analysis schemes are popular in practice in
the empirical category [15] [16]. In case of
empirical estimation models, the estimation
parameters are commonly derived from
empirical data that are usually collected from
various sources of historical or passed projects.

 Accurate effort and cost estimation of
software applications continues to be a critical
issue for software project managers [17].
Although expert judgment remains widely used,
however, there is also increasing interest in
applying statistics and machine learning
techniques to predict software project effort [18]
[19]. Although, neural networks have shown
their strengths in solving complex problems,
their limitation of being 'black boxes' has
forbidden them to be accepted as a common
practice for cost estimation [20].

Hardware costs, travel and training costs and
effort costs are the three principal components of
cost of which the effort cost is dominant
[21][22]. Although many research papers appear
since 1960 providing numerous models to help
in computing the effort/cost for software
projects, being able to provide accurate
effort/cost estimation is still a challenge for
many reasons. They include:

1) The uncertainty in collected measurement

2) The estimation methods used which might
have many drawbacks.

3) The cost drivers to be considered along
with the development environment which
might not be clearly specified [23].

 The most popular algorithmic estimation
models include Boehm's constructive cost model

(COCOMO) [24]. Thus, accurate estimation
methods, for example, the FP method, have
gained increasing importance [25]. The size is
determined by identifying the components of the
system as seen [25] by the end-user : the inputs,
output, inquiries, interface [26] to other systems
and logical internal files [27]. The components
are classified as simple, average or complex. All
these values are then scored and the total is
expressed in unadjusted FPs (UFPs). Complexity
factors described by 14 general systems
characteristics, such as reusability [28][29],
performance and complexity of processing can
be used to weighed the UFP. Factors are also
weighed on a scale of 0 – not present, 1 – minor
influence, to 5 – strong influence [30][31]. The
result of these computations is a number that
correlates to system size.

 Although the FP metric does not
correspond to any actual physical attribute of a
software system [32,33] it is useful as a relative
measure for comparing projects, measuring
productivity, and estimation the amount a
development effort and time needed for a project
[34,35]. The total number of FPs depends on the
counts of distinct types of following five classes
[36]. It is well documented that the software
industry suffers from frequent cost overruns
[37]. A contributing factor is, we believe, the
imprecise estimation terminology in use. A lack
of clarity and precision [38] in the use of
estimation terms reduces the interpretability of
estimation [39] accuracy results, makes the
communication of estimates difficult and lowers
the learning possibilities [40]. There are several
approaches for estimating such efforts. This
work proposes an improved Delphi method,
using team of experts, by dividing into groups.
By dividing the team of experts into groups, the
developmental effort obtained is very much
nearer to the planned effort and also a
comparative study is done between the existing
and our proposed method. The inputs are the size
of the software development, a constant and a
scaling factor B. The size is in units of thousands
of source lines of code (KSLOC) [41]

4. DATASET DESCRIPTION

Analysis has been performed on the data set
presented by Bailey and Basili [42] to develop
and effort estimation model. There are three
attributes in the data table, which consists of the
Developed Lines of code (DLOC), the

Journal of Theoretical and Applied Information Technology
15th February 2019. Vol.97. No 3

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

850

Methodology (ME) as an element contributing to
the computation of the software development
effort and the measured effort. DLOC is
described in Kilo Lines of Code (KLOC) and the
Effort is in person-months. Attributes along with
dataset is given in Table 2.

Table 2: The Dataset of NASA Software Projects

Project
No.

KDLOC ME Actual
Effort

1 90.2 30 115.8
2 46.2 20 96
3 46.5 19 79
4 54.5 20 90.8
5 31.1 35 39.6
6 67.5 29 98.4
7 12.8 26 18.9
8 10.5 34 10.3
9 21.5 31 28.5

10 3.1 26 7
11 4.2 19 9
12 7.8 31 7.3
13 2.1 28 5
14 5 29 8.4
15 78.6 35 98.7

4. EVALUATION CRITERIA

4.1 LINES OF CODE

Lines of code (LOC) also known as Source Lines
of Code (SLOC) is used for measurement of the
size of computer program in terms of counting
number of lines in the program's source code. It
is typically used to predict the amount of effort
that will be required for the development of the
computer software. According to Vincent Maraia
[43] the SLOC values for different versions of
operating systems of Windows and Linux
product[44][45][46][47] are given in Table 3.

Table 3: Lines of Code for few versions of
Windows and Linux Operating Systems

Year Operating
System

SLOC
(Million)

1993 Windows NT
3.1

4-5

1994 Windows NT
3.5

7-8

1996 Windows NT
4.0

11-12

2000 Windows 2000 more than 29
2001 Windows XP 45
2003 Windows

Server 2003
50

2009 Linux kernel
2.6.32

12.6

2010 Linux kernel
2.6.35

13.5

2012 Linux kernel
3.6

15.9

2015 Linux kernel
pre 4.2

20.2

4.2 SOFTWARE EQUATION

Putnam Model describes the effort and time
required to finish a software project of specified
size. Managing R&D projects Putnam used his
observations about productivity levels to derive
the software equation:

 Size 3
Effort = * B
 Productivity * Time4/3

 where size is the software size in SLOC
 B is a scaling factor and is a function of the

project size.
 Productivity is the Process Productivity, the

ability of a particular software organization
to product software of a given size at a
particular defect rate.

 Effort is the total effort applied to the project
in person years

 Time is the total schedule of the project in
years.

Journal of Theoretical and Applied Information Technology
15th February 2019. Vol.97. No 3

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

851

Figure 2: Plotting effort as a function of time
(Time-effort Curve)

4.3 SKILL FACTOR 'B'

The special skill factor 'B' is related to the size of
the product [50].

Table 4: B Value Against Size Of Software Project

B Value Size of Software
Project

0.16 5-15 K
0.18 20K
0.28 30K
0.34 40K
0.37 50K
0.39 >50K

4.4 PRODUCTIVITY 'P'

Analysis from the collected productivity data
supplies initial values from variable 'P'
determined by the type of software being
developed. Some of the examples of various
types of software’s are following, but the values
do not apply in all situations [44].

Table 5: P Value For Various Types Of Software’s

P Value Description
2,000 Real time embedded software
10,000 Telecommunications software
12,000 Scientific software
28,000 Business system applications

5. RESULTS AND DISCUSSION

10 projects were used from the dataset to
estimate the parameters and remaining 5 projects
were used for testing their performance which is
shown in Table 6.

Table 6: Showing Actual Effort And Estimated Effort

Project
No.

Lines of
Code

(KDLOC)

Actual
Effort

Estimated
Effort

1 90.2 115.80 117.95
2 46.2 96.00 78.56
3 46.5 79.00 73.41
4 54.5 90.80 84.24
5 31.1 39.60 43.03
6 67.5 98.40 93.47
7 12.8 18.90 22.45
8 10.5 10.30 17.19
9 21.5 28.50 35.47

10 3.1 7.00 6.93
11 4.2 9.00 11.80
12 7.8 7.30 12.58
13 2.1 5.00 3.64
14 5 8.40 9.71
15 78.6 98.70 79.84

Figure 3: Plotting Actual And Estimated Effort For
Various Projects

Journal of Theoretical and Applied Information Technology
15th February 2019. Vol.97. No 3

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

852

Figure 2 shows the graph between actual effort
and estimated effort. Modified Delphi method is
used to tune the parameters of software equation
and the estimation capabilities are shown in
Table 7.

Table 7: Models Estimation Capabilities

Model
Name /
Method

Model Input Model
Output

VAF

Proposed
Method

size,
productivity,
time, b and a
new biased
parameter x

Effort

98.832

Model

Proposed
by Sheta

[52]

KDLOC and

ME

Effort

97.565

Table 8 shows Pred. and MMRE, therefore the
proposed model has provided 39% improvement
in performance and gives about 72% of projects
which were predicted with a MRE less that or
equals to 0.33.

Table 8: Models Estimation Capabilities

Model Name MMRE Pred

Proposed Model

0.2297288

72.2

Model Proposed

by Sheta [52]

0.636398

38.89

% improvement

39.0

6. CONCLUSION

 The grouping of the experts into two
different parts has been taken into consideration
to simplify the improved Delphi process and it
also reduces the probability of errors while
selecting competencies during questionnaire and

working on the parameters of software equation.
This modified Delphi method focuses on the
calculation of effort by enhancing the
adjustments made to the various parameters;
hence the proposed improved Delphi method
ensures the quality assurance for the better effort
estimation. The software size, productivity, time
and scaling factors are important factors which
also affects the effort and cost.

 Therefore during preparation of
questionnaire for various groups the parameters
of software equation are taken into consideration.
Because of the enhanced adjustment factor, the
altered rating of the scaling factors, the effort of
the software project in person month is obtained.
It is found that the obtained person month is very
much nearer to the planned effort and that is why
this improved Delphi effort estimation technique
may be recommended for the estimation of
software development effort during software
development process.

REFERENCES:

[1] Sheta, A. F., Estimation of the COCOMO
Model Parameters Using Genetic
Algorithms for NASA Software Projects,
Journal of Computer Science 2 (2):118-
123, 2006

[2] Gregory J. Skulmoski, Francis T. Hartman,

Krahn J., "The Delphi Method for Graduate
Research", Journal of Information
Technology Education, Vol. 6, 2007, pp. 1-
20.

[3] SaleemBasha, Dhavachelvan P. "Analysis

of Empirical Software Effort Estimation
Models" (IJCSIS) International Journal of
Computer Science and Information
Security, Vol. 7, No. 3, 2010.

[4] Jorgen MSjoberg D.I.K., "The Impact of
Customer Expectation on Software
Development Effort Estimates
"International Journal of Project
Management, Elsevier, pp 317-325, 2004.

[5] Chiu NH, Huang SJ, "The Adjusted
Analogy-Based Software Effort Estmation
Based on Similarity Distances", Journal of
Systems and Software, Volume 80, Issue 4,
pp 628-640, 2007.

Journal of Theoretical and Applied Information Technology
15th February 2019. Vol.97. No 3

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

853

[6] Kaczmarek J, Kucharski M, "Size and
Effort Estimation for Applications Written
in Java", Journal of Information and
Software Technology, Volume 46, Issue 9,
pp 589-600, 2004.

[7] Jefferty R, RuheM, Wieczorek I, "Using
Public Domain Metrics to Estimate
Software Development Effort", In
Proceedings of the 7th International
Symposium on Software Metrics, IEEE
Computer Society, Washington DC, pp 16-
27, 2001.

[8] Heiat A, "Comparison of Artificial Neural
Network and Regressing Models for
Estimating Software Development Effort",
Journal of Information and Software
Technology, Volume 44, Issue 15, pp 911-
922, 2002.

[9] K. Srinivasan and D. Fisher, "Machine
learning approaches to estimating software
development effort", IEEE Transactions on
Software Engineering, Vol. 21, pp. 126-
137, 1995.

[10] A. R. Venkatachalam, "Software Cost

Estimation Using Artificial Neural
Networks", Presented at 1993 International
Joint Conference on Neural Networks,
Nagoya, Japan, 1993.

[11] G. H. Subramaniam, P. C. Pendharkar and
M. Wallace, "An Empirical Study of the
Effect of Complexity, Platform and
Program Type on Software Development
Effort of Busness Applications, "Empirical
Software Engineering, Vol. 11, pp. 541-
553, 2006.

[12] R. W. Selby and A. A. Porter, "Learning
from examples : generation and evaluation
of decision trees for software resource
analysis", IEEE Transactions on Software
Engineering, Vol. 14, pp. 1743-1757, 1988.

[13] S.Kumar, B.A. Krishna and P.S. Satsangi,
"Fuzzy systems and neural networks in
software engineering project management",
Journal of Applied Intelligence, Vol. 4, pp.
31-52, 1194.

[14] Huang SJ, Lin CY, Chiu NH, "Fuzzy
Decision Tree Approach for Embedding
Risk Assessment Information into Software
Cost Estimation Model", Journal of
Information Science and Engineering, Vol.
22, No. 2, pp.297-313, 2006.

[15] M.Van Genuchten, H.Koolen "On the use
of Software Cost Models",Information &
Management, Vol. 21, pp.37-44, 1991.

[16] T. K. Abdel-Hamid, "Adapting, Correcting
and Perfecting Software Estimates: A
maintenance metaphor", in Computer, Vol.
26, pp.20-29, 1993.

[17] K. Maxwell, L. Van Wassenhove and S.
Dutta, "Performance Evaluation of General
and Company Specific Models in Software

Development Effort Estimation", Management

Science, Vol.45, pp. 787-803,1999.
[18] H.Azoth and R. S. D. Wahidabanu

"Efficient Effort Estimation System viz.
Function pointsand quality assurance
coverage", IET Softw, Vol. 6, Iss. 4, pp.
335-341, 2012

[19] Deng J. D. Purvis M. K., Purvis M.A.,
"Software Effort Estimation: harmonizing
algorithms and domain knowledge in an
integrated data mining approach", Inf. Sci.
Discuss. Pap. Ser., pp. 1-13, 2009 (5).

[20] Idri A., Khoshgoftaar T.M., Abran A.,
"Can Neural Networks be easily interpreted
in software cost estimation?" 2002 World
Congress on Computational Intelligence,
Honolulu, Huwaii, 12-17 May 2002, pp. 1-
8.

[21] Mittal H., Bhatia P., "A comparative study
of conventional effort estimation and fuzzy
effort estimation based on triangular fuzzy
number", Int. J. Comput. Sci. Secur., 2002,
1, (4), pp. 36-47.

[22] Benton A., Bradly M. "The International
Function Point User Group (IFPUG), in
Funtion point counting practices manual –
release 4.1 (SA. 1999).

[23] Aljahadi S., Sheta A. F., "Software Effort
Estimation by tuning COCOMO model
parameters using differential evolution",
Int. Conf. on Computer Systems and
Applications (AICCSA), 16-19 May 2010,
pp. 1-6.

[24] Boehm B. W., "Software Engineering
Economics", Prentice Hall, Englewood
Cliffs, NJ, 1981.

[25] Peischl B., Nica M., Zanker M., Schmid

W., "Recommending Effort Estimation
Methods for Software Project
Management", Proc. IEEE/WIC/ACM Int.
Conf. on Web Intelligence and Intelligent
Agent Technology, Milano, Italy, 2009,
Vol. 3, pp. 77-80.

[26] B. W. Boehm, "Software Engineering
Economics", Prentice Hall, 1981.

Journal of Theoretical and Applied Information Technology
15th February 2019. Vol.97. No 3

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

854

[27] B. W. Boehm, E. Horowitz, R. Madachy,
D. Reifer, B. K. Clark, B. Steece, A. W.
Brown, S. Chulani and C. Abts, "Software
Cost Estimation with COCOMO II",
Prentice Hall, 2000.

[28] F. J. Heemstra, "Software Cost
Estimation", Information and Software
Technology, Vol. 34, pp. 627-639, 1992.

[29] N. Fenton, "Software Measurement: A
necessary Scientific Basis", IEEE
Transactions on Software Engineering,
Vol. 20, pp. 199-206, 1994.

[30] BarryBoehm, Chris Abtsa and Sunita
Chulani, "Software Development Cost
Estimation Approaches ~ A Survey",
Annals of Software Engineering, pp. 177-
205, 2000.

[31] James Nelson H., Monarchi D. E.,
"Eknsuring the quality of conceptual
representations", Softw. Qual. J., 1997, 15,
(2), pp. 213-233.

[32] Khoshgoftaar T. M., Allen E. B., Naik A.,
Jones W. D., Hudepohl J. P., "Using
Classification trees for software quality
models : Lesssons learned", Int. J. Softw.
Eng.Knowl. Eng., 1999, 9, (2), pp. 217-
231.

[33] Kitchenham B. A., "Cross versus within –
company cost estimation studies: a
Systematic review" IEEE Trans. Software
Eng., 2007, 33, (5), pp. 316-329

[34] Hannay J. E., Sjoberg D. I. K., Dyba T., "A
systematic review of theory use in
Software Engineering Experiments",
Softw. – Pract. Exper., 2007, 33, (2), pp.
87-107.

[35] Jack E. Matson, Bruce E. Barrett and
Joseph M. Mellichamp, "Software
Development Cost Estimation Using
Function Points", IEEE Transactions on
Software Engineering, Vol. 20, No. 4,
April 1994.

[36] Chris F. Kemerer "An Empirical Validation
of Software Cost Estimation Models".

[37] Putnam L. H., "General empirical solution
to the macro software sizing estimating
problem", IEEE Trans. Softw. Eng. SE 4, 4
(July 1978), pp. 345-361.

[38] Putnam L. and Fitzsimmons A.,
"Estimating Software Costs", Datamation
25, lo-12 (Sept. - Nov. 1979)

[39] B. Boehm, C. Abts and S. Chulani,
"Software Development Cost Estimation
Approaches – A Survey", Technical Report

USC-CSE-2000-505, "University of
Souther California – Center for Software
Engineering, USA (2000).

[40] Chulani S., Boehm B. and Steece B.,
"Bayesian Analysis Emperical Software
Engineering Cost Models", IEEE Trans.
Software Eng., vol. 25, no. 4, pp. 573-583,
1999.

[41] Barry Boehm, "COCOMO II Model
Definition Manual", Version 1.4 –
Copyright University of Southern
California.

[42] Bailey, J. W. and V. R. Basili, 1981. A
meta model for software development
resource expenditure. Proc. Intl. Conf.
Software Engineering, pp: 107-115.

[43] "How Many Lines of Code in Windows?".
Knowing.NET. December 6, 2005.
Retrieved 2010-08-30

[44] "What's new in Linux 2.6.32". Archived
from the original on 2013-12-19 Retrieved
2009-12-24

[45] Greg Kroah-Hartman; Jonathan Corbet;
Amanda McPherson (April 2012). "Linux
Kernel Development: How Fast it is Going,
Who is Doing It, What They are Doing,
and Who is Sponsoring It" The Linux
Foundation. Retrieved 2012-04-10

Journal of Theoretical and Applied Information Technology
15th February 2019. Vol.97. No 3

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

855

Figure 1 Improved Delphi Method

