
Journal of Theoretical and Applied Information Technology
31st December 2019. Vol.97. No 24

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

3698

NEW HYBRID METHODOLOGY FOR SECURE SYSTEMS

1MOHAMMAD ZAKARIA, 2ABDALLAH QUSEF, 3ISRAA ALBADARNEH, 4AALAA
ALBADARNEH,

1Student, Princess Sumaya University for Technology, Department of Software Engineering, Amman,

Jordan
2Assistant Professor, Princess Sumaya University for Technology, Department of Software Engineering,

Amman, Jordan
3Student, University of Jordan, King Abdallah II School of Information Technology, Amman, Jordan

4Student, Princess Sumaya University for Technology, Department of Computer Science, Amman, Jordan

E-mail: 1mohdzak89@gmail.com, 2a.qusef@psut.edu.jo, 3eng.i.abdullah25@gmail.com,
4eng.aalaabadarneh@gmail.com,

ABSTRACT

Software security is considered as a time consuming and after-thought activity, this could be because of its
complexity or the lack of enough knowledge. Today`s software development companies are focusing on
high speed software delivery, however, many companies are still using the traditional methodologies. In
this paper, we propose a new secure methodology named NHMSS, which aims to give security its needed
attention by the development team, the proposed methodology mixed Waterfall and Scrum to produce a
hybrid software development approach that will apply the rules of both of them. The methodology will
integrate security activities according to well-known security processes and best-practices.

Keywords: Software development methodology, Security, Secure System, Agile, Waterfall, Scrum.

1. INTRODUCTION

 Software security is a significant and evolving
problem (Ayalew & Kidanem, 2012) that is not
given it`s required attention during software
development (AlAzzazi & ElSheikh, 2007), which
turn out to be worse later on because of the
increased complexity and extensibility in new
software products. The need for secure systems is
increasing and becoming an important factor of
software development. According to Symantec`s
internet security threat report statistics. Figure 1
(Symantec, 2015) presents the total number of
vulnerabilities discovered only after they are
exploited by the attackers.

In order to protect a system against harm,
attention must be given to its requirements, similar
to other system properties and quality attributes
(Romero-Mariona et al, 2009). Most of the software
development companies are considering Security as
an after-thought (Alnatheer et al., 2010; Futcher &
Solms, 2008), they might look at some common
points such as securing passwords, data encryption
and other minor security activities on early phases

of software development, then, security might not
be taken into consideration anymore.

Software development methodologies are
evolving now, some companies are using the
traditional Waterfall approach, others are using
Agile Scrum or Agile Extreme Programming (XP),
and others might use a mixed approach. Each
methodology has its own characteristics,
advantages and disadvantages, there are no perfect
methodology that fits all projects. Traditional
approaches are characterized as plan-driven, slow,
and rigid approaches, Agile approaches are well-
known with their flexibility, change accessibility
and short development increments.

In recent years, there are some numerous studies,
such as: (Baca & Carlsson, 2011; Tetmeyer, 2013;
Alnatheer et al., 2010; Romero-Mariona et al.,
2008; Mead & Stehney, 2005; Flechais et al., 2004;
Romero-Mariona et al., 2009) that were focusing on
integrating security into the software development
process. To satisfy the needs for building secure
software, there is a need to develop a software
development approach that could guarantee security
at each phase of the software life cycle. In this
study, a new hybrid secure software development

Journal of Theoretical and Applied Information Technology
31st December 2019. Vol.97. No 24

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

3699

methodology has been presented, the proposed
methodology will mix Waterfall and Scrum
approaches, and integrates some of the most
compatible Security Engineering (SE) activities to
allow the development team to consider security in
all phases of the development life cycle.

Figure 1: Vulnerabilities report (Symantec, 2015)

The need for building secure software is

increasing, and software development companies
are not giving security the required attention,
especially at early development life cycle phases,
which are the most important phases to have
security in mind, and since software grows up
through its life cycle, software development
methodologies should give special attention to
security aspect of the product (Ayalew & Kidanem,
2012). The main motivation of this paper is to
integrate security engineering activities into the
software development life cycle, there is no way to
apply all the available security standards and best
practices on the development process as they take a
large amount of time and efforts. Several
methodologies had been created, and each one of
them focuses on one or two aspects, without
focusing on the overall security of the software.

The new proposed methodology will combine the
best features of the traditional software
development and Agile software development to
come up with a new hybrid approach that aims to
have the features of both and build secure software.
Security will be integrated into the new
methodology by adding the best well-known and
compatible security activities from different
security standards, process and best practices. It has
been proven that using a methodology to write a
code increases the quality of the code produced
(Grembi, 2008).

Currently, software security is a serious problem
and may become much worse in future due to the
increase in complexity, connectivity and
extensibility; so, there is a need to develop an
approach for software development that could

guarantee security at each phase of software life
cycle (Ayalew & Kidanem, 2012).

 Security activities could be performed according
to the software development approach; each
security activity has its own compatibility with the
phases of software development. Some security
engineering activities are only compatible with
traditional approach and some of them are only
compatible with Agile, therefore, it is hard to stick
to one approach while applying security at the same
time, and that`s why a hybrid approach is proposed
on this paper. Security activities had been chosen
after a deep look at the main and well-known
security engineering processes and identifying what
specific security activities they perform.

 Vulnerabilities in software’s are evolving, and
cyber-attacks are becoming crucial. Security is not
considered in the development life cycle of the
software, mainly because more attention is given to
other activities, or because of the lack of security
knowledge. Applying security activities into the
current software development methodologies could
be difficult and could affect the development
process and require more efforts.

 The problem concerns on how to consider
security in all the development life cycle phases
while maintaining the strength of the selected
development approach.

This paper is organized as follows, section two
presents related work. Section three introduces and
discusses the proposed framework, the evaluation
results are presented in section four, and finally,
section five is a summary of this paper, including
the conclusions and suggested several ideas for
related future work.

2. RELATED WORK

The researchers looked on the topics of
information security and software development
methodologies, some of them had issues that were
relevant to the topics of implementing security
activities into traditional and Agile development
methodologies, where other papers identify,
analyzes and compares different security standards,
procedures and best practices. Some other papers
introduce and describes Waterfall and Agile
approaches.

Hossein Keramati, et al (Keramati, 2008)
research was about identifying and evaluating
security practices and activities in SDL and
CLASP. It represents an algorithm, called agility
degree that was used to rate security activities and
its compatibility with Agile approach. Mikko
Sipnon, et al. (Sipnon, et al, 2005) identified the
problems with integrating security in Agile, in

Journal of Theoretical and Applied Information Technology
31st December 2019. Vol.97. No 24

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

3700

addition to creating a new Agile friendly method
that implement and track security features. Annette
Tetmeyer (Tetmeyer, 2013) proposed an approach
for eliciting, analyzing, prioritizing and developing
security requirements. Gustav Bostorm, et al.
(Bostrom, et al, 2006) proposed a new way to
extend extreme programming practices to support
security requirements engineering. Konstantin
Beznosov and Philippe Kruchten (Beznosov &
kurchten, 2005) examined how conventional
security assurance suits Agile methodologies for
developing software-intensive systems. Ahmed
Alnatheer, et al. (Alnatheer, et al, 2010) presents
and describes an empirical study on the effects of
using security issues with Agile methodologies.
Dejan Barca and Carlsson (Baca & Carlsson, 2011)
proposed a security enhanced development process
which use security activities from already
established security engineering processes. Ayalew
and Kidanem (Ayalew & Kidanem, 2012) research
introduce a way to bridge the gap in Agile model
and security by providing insightful understanding
of the SE process that are used in the current Agile
industry. Fangkun Yang (Yang, 2013) research
explores ways to migrate from Waterfall
developing approach to Agile approach. Juyun Cho
(Cho, 2009) proposed a new hybrid software
development method for large-scale projects, also
this research analyzes characteristics, strengths, and
weaknesses of both conventional and Agile
methods. Nayan B. Ruparelia (Ruparelia, 2010)
identifies and analyzes difference software
development lifecycle models. Most of these
studies were focusing on integrating security
activities into Agile; as these activities are most
compatible with traditional development
approaches, in addition, they have not integrated
these activities on all the development life cycle
phases.

Susan M. Mitchel (Mitchel, et al, 2009)
introduces a systematic review that compares
Waterfall and iterative development methodologies.
CLASP and SDL had been evaluated and compared
by Johan Gregorie (Gregorie, et al, 2007). A
detailed comparison between Agile and traditional
software development methodologies has been
presented by M.A. Awad (Awad, 2005). A
comparative study on Agile software development
methodologies has been introduced by A B M
Moniruzzaman (Moniruzzaman & Hossain, 2013).
Zornitza Bakalova and Daneva (Bakalova &
Daneva, 2011) describes his case study research on
client’s participation in a traditional and in an Agile
software company. Another Agile and traditional
development methodologies comparison has been

made by Irit Hadar on his research (Hadar &
Sherman, 2012). These comparisons were very
useful for the researcher to understand the main
characteristics of both development approaches.

Lynn Futcher (Futcher & Solms, 2008) provides
guidance to software designers and developers by
defining a set of guidelines for secure software
development. Michael Kainerstorfer (Kainerstorfer,
et al, 2011) describes the experiences and lessons
learned by using SDL for the development of a
small real world software project. John Biega
(Viega, 2005) describes how to build security
requirements in a structured manner that is
conductive to iterative refinement. Asim El Sheikh
(AlAzzazi & ElSheikh, 2007) presents a process for
the development of security critical software
projects and an overview of some of the existing
processes, standards, life cycle models.

Gottipalla, A. K., (2013) shows that although
there are many operations and methodologies
which may support secure software development,
very few methods are designed specifically to face
up software security completely. Security
engineering activities was integrated into the agile
software development process (ben Othmane, L.,
2014) this research extended the agile software
development process with secure development
activities, at the end of each iteration this method
enabled ensuring the delivery of secure software.
(Oueslati, H., 2016) study 20 challenges that
reported in 28 publications of developing secure
software using the agile approach, it was founded
that the challenges are related to the software
development life-cycle, incremental development,
security assurance, awareness and collaboration,
and security management. The researchers illustrate
the validity, limitations, and impacts of the
challenges.

Microsoft present a process named SDL
(Howard, 2006) which integrated different security
activities into the development life cycle phases,
Microsoft also introduces SDL-Agile to apply SDL
activities on Agile development methodology
(Howard, 2006). OWASP introduces a process to
develop more secure software under the name
CLASP (OWASP, 2015), it provides a set of
security activities to be integrated into software
development life cycle phases. SSE-CMM
framework (SSE-CMM, 2007), and Common
Criteria (Common Criteria, 2007) represent
methods to evaluate security engineering processes
and activities.

Vähä-Sipilä, A. (2013) proposes a risk-based
approach for developing secure software. The
method is based on managing the product security

Journal of Theoretical and Applied Information Technology
31st December 2019. Vol.97. No 24

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

3701

risks and implementing security solutions. The
Characteristics of next-generation security was
addressed by (Dove, R. 2009). Next-generation
security is an arising property of the system and
involved six characteristics as self-organizing,
adapting to unpredictable situations, and
harmonious with system purpose. (Dove, R., 2016)
Presented an overview article which studied a wide
range of the systems engineering community, it was
concluded that with an agile-attack environment,
agile system-security is necessary.

Security development models that used to secure
web application were investigated in (Shuaibu et.
al, 2015), through 499 publication agile
development models seem to have more attention
due to the multiple stakeholders that are discussing
the security viewpoints. Geogre Grispos and other
researchers (Grispos, et al, 2015) presented the
Security Incident Response Criteria (SIRC) which
can be used to evaluate existing security incident
response solutions, and can be applied to a various
security incident response approaches. Willett and
other researchers (Willett, et al, 2015) applied the
fundamentals of agile systems engineering to show
the application of cybersecurity decision pattern
(CDPs) and the cybersecurity decision pattern
languages (CDPL) in the design of agile
cybersecurity operations.

Rindell, et al. (Rindell, et al, 2015) used an
evaluation framework to show the requirement for
security assurance of agile methods, combining
with Microsoft SDL security framework, against
Finland’s’ established national security regulation
(Vahti). Mohd Nazir supported the idea that agile
methodologies seems to be best for security
development of small software, to implement a
security in agile: developing an iterative approach
with check points in order to analyze the
effectiveness of security capabilities. The study of
Steve Harrison (Harrison, et al, 2016) examined the
software development approaches within the United
Kingdom Government, this study utilize the Open
Web Application Security Project (OWASP) to
allow security and agile working together.

Because of the increasing rate of software
security vulnerabilities, some efforts have been
started to create secure development methodologies
and security standards, these attempts are
mentioned shortly in the following Table:
 Most of the related studies were focusing on a
specific security activity or a specific software
development methodology, others were comparing
security activities or evaluating them. The main
contribution of this research is to propose a new
secure software development methodology, the

proposed methodology will not describe how to
build fully secure software, and it aims to consider
security activities in all phases of the software
development life cycle. Security activities have
been chosen from different well-known security
processes and best practices, these activities will be
achieved using two different development
approaches; Waterfall and Scrum.

3. THE PROPOSED METHODOLOGY

This section will introduce the proposed
methodology, New Hybrid Methodology for Secure
Systems (NHMSS). This methodology is a software
development methodology for creating secure
software; securing the software will be based on
using different security activities that will be
integrated during all phases of the development life
cycle. NHMSS combines two main software
development approaches; traditional Waterfall and
Agile Scrum, it will combine and use the best
features of them and will come up with a new
hybrid approach.

Many researchers have found that security is not
considered at early phases of development, in
addition, they argued that most of the available
security activities are not compatible with fast-
driven methodologies and they slow down the
development process, as they have been build
according to traditional heavy-weight approaches.
The proposed methodology will try to overcome
these obstacles and will introduce a new way to
build secure, traceable, and documented software.
In particular, developing a secure software system
is a complex and time-consuming process that
seeks to accommodate frequently competing
factors, such as functionality, scalability, simplicity,
time-to-market (Flechais, et al, 2007). It has been
said that “Information security should be an integral
part of the development process and should be
taken into account at every stage of the SDLC”
(Futcher & Solms, 2008). NHMSS aims to
introduce security to the development community
as a basic activity, it does not ensure that security
issues will not occur, but it will reduce the chance
of certain types of security issues to happen. An
overview of NHMSS is shown in Figure 2.

NHMSS is defined abstractly as follows:
 High-level requirements, design and analysis
phases will be followed as in traditional Waterfall
approach.
 User requirements, development, testing and
deployment phases will be followed as in Agile
approach.

Journal of Theoretical and Applied Information Technology
31st December 2019. Vol.97. No 24

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

3702

 Security activities will be performed during all
these phases, mainly on early phases, and they are
all extracted from different security engineering
processes, standard and best practices.

More details will be demonstrated in the

following subsections.

3.1 Combining Waterfall with Agile (Hybrid)

There are some aspects of software development
project can benefit from an Agile approach and
others can benefit from a more predictive
traditional approach (Awad, 2005). NHMSS
combines Waterfall traditional approach with Agile
Scrum approach.

The first phases (requirements, analysis and
design) will be carried out using traditional
Waterfall approach, whereas the other phases
(development, testing and maintenance) will be
performed using Agile Scrum. Unfortunately,
the demand of quick release and constant flow of
new products has forced companies to move away
from methodical and Big Design Up Front (BDUF)
Waterfall process which includes most SE
processes (Baca, 2012). NHMSS will meld
traditional and Agile approaches together in a way
that maintains the principles of both; i.e. the team
doesn’t have to stick to traditional or Agile
approach. The proposed methodology will try to
oblige the strong points while suppressing the
shortcomings of both approaches and use a Hybrid
approach. At the end, there is no “one-size-fits-all”
solution (Awad, 2005), so going Hybrid might
satisfy all the needs.

3.2 Security Advisor

The proposed methodology focuses on integrating
security activities into the software development
process, a security expert or security knowledge is
needed in the development team, thus, two
scenarios are proposed:

1) Having a dedicated security engineer/advisor
in the team who is responsible for security
engineering activities and any security related
tasks, in addition to providing the team with
proper security awareness (education) and
support the development process. Having a
security advisor is a common security activity
in both SDL and CLASP processes (Howard,
2006), (OWASP, 2015).

2) If the team does not have a dedicated security
engineer/advisor; the project manager should

enroll some developers into some security
courses in order to improve their security
knowledge, for example: secure coding skills,
secure design, in addition to any
courses/certificates that could help them
understanding main security concepts and the
most common attacks. OWASP has published
a cheat sheet that contains a large number of
vulnerabilities and how to mitigate them
(OWASP, 2015). The team could have one or
two developers only with a good security
knowledge/experience that could help the
team applying security activities. Having a
security expert close by is advantageous to the
team and, more importantly, to the customer
(Davis, 2006). Also, the existence of the
security engineer could help spread the tacit
knowledge of security rather than having to do
the same through documentation with the
same effect (Alnatheer, et al, 2010). In
addition, Alnatheer claimed that Agile team
needs a security engineer onboard.

3.3 Traditional Approach

NHMSS will start with the well-known
traditional Waterfall approach, which is based on
strict planning, detailed requirements elicitation,
expansive design, and heavy documentation. The
traditional Waterfall approach will be used for the
following reasons:

1) To benefit from its advantages; mainly
requirements tracing and documentation.

2) Providing the team time needed to digest the
application properties (requirements, database
definition and goals).

3) To perform security activities at early phases
of software development. Security activities
demand a good planning and detailed
documentation, which is very suitable to traditional
approach.

4) To better understand the system and have a
strong starting point for the team.

5) Waterfall is widely used and preferable by
many software development companies.

3.3.1 Security and Traditional Approach

As mentioned earlier, most of the available
security processes are based on the traditional
development approach as they are somehow rigid
activities. Waterfall model tries to address security
issues before software is released (Ayalew &
Kidanem, 2012), because of the detailed planning
and requirement elicitation. The proposed

Journal of Theoretical and Applied Information Technology
31st December 2019. Vol.97. No 24

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

3703

methodology starts with traditional approach
(which is very suitable for security activities to be
performed) by defining security requirements and
performing other early phases security activities.

3.3.2 High-Level Requirements

Traditional approach is well-known for planning

out a large part of the software process in
comprehensive details for a long time. Clear and
written requirements will help the team in planning
and decision making. These requirements are the
base of the software; they will be considered as
abstract, specific and high-level requirements that
are necessary to build the system, they are very
essential and they could be branched to another
sub-requirement(s) later after moving to Agile`s
Scrum product backlog. These requirements will be
elicited by the stakeholder and analyzed by the
development team. They will be considered as a
(vision) high-level requirements, which are well-
known by some development teams as a “scope”,
while the other detailed requirements will be
elicited in Agile product backlog section. The team
will decide how important is each requirement and
everything will be discussed with the stakeholder.

Several studies argued about that security must be
considered at early development phases such as:
(Ayalew & Kidanem, 2012; Alnatheer, et al., 2010;
AlAzzazi & ElSheikh, 2007; Ruparelia, 2010) and
others. The team might not have a clear idea what
kind of security they really want at the first glance,
but they can define the main abstract requirements,
and add any other requirements later on as
explained.

Figure 3 shows that any requirement could be
branched to sub-requirements when moving to
Agile.

There are two main kinds of requirements,
functional and non-functional. Functional
requirements are concerned with software services
such as the scope and the required data structure for
the software, it specifies what the system should do.
Non-functional requirements are concerned with
software constraints such as performance,
reliability, usability and security, it describes how
the system works and behaves.

Current development practices suffer from
different key problems like, security requirements
tend to be kept separate from other system
requirements, and not integrated into any overall
strategy (AlAzzazi & ElSheikh, 2007). Also, many
studies have found that security activities are based
on traditional approach and not compatible with
Agile such as: (Ruparelia, 2010), (Ayalew &

Kidanem, 2012; Keramati, 2008; Alnatheer et al.,
2010; Bostrom et al., 2006) and others. NHMSS
will integrate security at the early traditional phases
and will suggest some security activities on other
Agile phases.

Security requirements needs to be adequate as
possible, they need to be precise, complete, explicit,
and non-conflicting with other requirements; this
could be accomplished by having dedicated
requirements for security and by considering them
from the beginning.

3.3.3 Design and Analysis Phases

The main objective of these phases is to
determine requirements, understand and analyze
them to develop software that addresses these
requirements. This could be done by examining
each requirement in details, analyzing and studying
the system and characterizing user requirements.
These phases need powerful social, communication
and administrative skills to be performed. The
design phase mainly will identify all inputs, outputs
and the needed process, In addition to full database
creation. The team will start analyzing each
requirement, creating database tables, and outlining
the main screens. The analysis phases answers any
inquiries of who will use the software, what it will
do, when and where. The team will identify
improvement opportunities, and develop ideas for
the new software. The team will also start writing
the required software documentation, documents
such as: (BRS, SRS, High-level design, SDS, and
functional design). “For the security analysis and
security design part of the process, it is important to
ensure that expert knowledge is available in order
to identify threats and countermeasures (AlAzzazi
& ElSheikh, 2007). At this stage identify the
security threats and their potential impact, then for
each threat direct a mitigation strategy. Different
type of threat can be occurred, such as spoof the
user’s identity. In addition an attacker can perform
a denial of service attack against the system
software. Attacker can obtain sensitive information
like user’s password (Matthee, 2014).

The team will perform the following security
activities during these phases:

1) Document the security architecture of the
software.

The team should write a document that specify
the security architecture of the software as the
following example:

1) User access mechanisms.
2) The integrity of the communication.
3) Encryption and Decryption.

Journal of Theoretical and Applied Information Technology
31st December 2019. Vol.97. No 24

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

3704

4) Digital signatures and authorization
mechanisms.
2) Create Abuse cases

Use cases are well-known for the development
team in defining an interaction between an actor
and the system, abuses cases are not very different,
it just looks into the system by the eye of the
illegitimate user, abuse cases could be very useful
in increasing both customer and user understanding
of the security features of the software, they are
also very useful to define the security requirements,
it only needs some brainstorming from the team to
demonstrate abuse cases. (Bostrom, et al, 2006)
recommends the importance of having a security
engineer while defining abuse cases; a fluent up-to-
date knowledge of security vulnerabilities is needed
for threat identification.
3) Analyze the attack surface

Attack surface analysis is about mapping out
what parts of a system need to be reviewed and
tested for security vulnerabilities. The point of
attack surface analysis is to make developers and
security specialists aware of what parts of the
application are open to attacks and to find ways to
minimizing them (OWASP, 2015). This activity
could be done by a security engineer or by the
developers.
4) Security Education

SDL stated that “Acquiring security knowledge
could be as simple as reading appropriate sections
in a book or watching an online training class”
(Davis, 2006). According to the identified security
requirements, the team should have some security
sessions, or at least, selected members from the
team must have security certification. Futcher &
Solms (Futcher & Solms, 2008) mentioned that
building secure software begins with the effective
education of software development teams.
5) Other activities

Many activities could be performed through the
development life cycle of the project. There are a
large number of security-related activities that are
all useful and could produce very secure software;
risk management activity as an example. This
activity is widely used, it can prevent many kinds
of attacks, but it takes a large amount of time and
effort, and it requires an expert knowledge,
therefore, it will not be used on this proposed
methodology, it will be optional to use according
to the security engineer or project manager. Risk
management normally requires a considerable
amount of time, effort and expertise to obtain
optimum results (Futcher & Solms, 2008). Threat
modeling is a very important activity as well, and it
used as an essential activity on SDL and CLASP.

3.3.4 Documentation in Traditional
Approach

Software documentation is one of the main

reasons why the proposed methodology started with
traditional Waterfall approach. It is a highly
important activity in Waterfall approach, it is a
rigid activity that requires the team to document
everything, unlike Agile which demand a “working
software over comprehensive documentation”
(Agile Alliance, 2005). Documentation is also
considered as an advantage when a new member
joins the team at the middle of the project, if there
were some written documents that explains the
project scope and other details, all he/she needs to
do is to read these documents and start working as
fast and easy as possible. Documentation is also
very important in regard to security, as “lack of
documentation is viewed by security experts as a
lack of compliance proof resulting in delays and
possible rejection in submission for operational
certification” (Woody, 2013). Different studies
have mentioned the importance of documentation
in software development process (Awad, 2005;
Wayrynen, et al., 2004; Winston, 1970).

3.4 Agile Approach

The Second part of the proposed methodology
will be followed according to Agile approach; each
of the development, testing, maintenance and
deployment phases will be achieved in Agile. Agile
is based on iterations, or sprints; each iteration adds
business value to the product, Agile is also a
flexible, adaptive, and collaborative approach and
brings innovation to the team.

In this part, the flexibility and freedom of Agile
starts, teams can adapt changing requirements
easily under the abstract requirements that
Waterfall defined earlier. This part might not
adhere to Agile manifesto, but it is build depending
on Agile approach, which indicates communication
between team members instead of heavy
documentation. Security experts often criticize
Agile for having a fundamental lack of an inherent
security mechanism to produce secure software
(Alnatheer et al., 2010). The proposed methodology
will use some security activities extracted from
well-known security processes and standards, it will
suggest some Agile-compatible security activities
based on literature studies that had found the most
compatible security activities with Agile.

Agile approach will be used for the following
reasons:

1) To speed up the development process.

Journal of Theoretical and Applied Information Technology
31st December 2019. Vol.97. No 24

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

3705

2) To improve customer collaboration.
3) To add/edit requirements on Scrum

product backlog.
4) To use Agile-compatible security

activities.
It also has to be mentioned that “Agile alone

cannot be responsible for solving security issues for
a given piece of software in development”
(Alnatheer et al., 2010).

3.4.1 Security and Agile Approach

A key benefit of integrating security into the
Agile methodology is the relative increase in
security awareness in designers and developers, and
managers of the project because in the normal
Agile process developers and architects are not
usually concerned with security issues (Alnatheer et
al., 2010). As mentioned earlier, security and Agile
are barely compatible, however, some activities
have been proposed while maintaining the agility of
the software. After performing the Waterfall
traditional activities, NHMSS will use Scrum as an
Agile method. Scrum is aimed at providing an
Agile approach for managing software projects
while increasing the probability of successful
development of software (Moniruzzaman &
Hossain, 2013).

Scrum has a special flavor in team member’s
roles and responsibilities, the team will be re-
constructed and this can affect the success of the
software development. Scrum also has dedicated
meetings where the collaboration and innovation
happens. These meetings could be very helpful for
security integration, for example, having a security
engineer among the team could spread the security
knowledge by brining security issues to the
forefront of the team discussions, and he/she also
could attach security recommendations and assess
the security implications of security requirements.
The team could extend the iteration planning
meetings to have some time for security issues.

3.4.2 Secure Software Development

Development phase is very important in Scrum;
each software functionality will be developed
according to sprint/feature goals. Everything is
fully-defined and clear from the beginning as
NHMMS starts with a traditional Waterfall
approach which defines everything at the
beginning; this will be considered as a big
advantage to the Scrum team. As been mentioned
earlier, security and Agile are not compatible,
NHMSS focus on security activities that could be

performed on early traditional phases, meanwhile,
some security activities have been found
compatible with Agile, in addition to some light
security activities that could be performed are
suggested.

The following are some security activities that
could be performed during Agile part:

• Adhering to Coding standards: Coding standards
should be shared with the developers by the
security engineer. These standards could guide the
developers in writing secure code. “By adhering to
coding standards, developers can prevent the
introduction of many flaws that can lead to security
vulnerabilities” (Futcher & Solms, 2008).
• Pair Programming: Pair programming is having a
security engineer next to the developer shoulder.
Pair Programming provide an additional security
argument for better assurance (Alnatheer, et al.,
2010) and could help in writing secure code. Even a
programmer’s security experience level plays a
major role in the development of secure software.
• Code Analysis: NHMSS suggests using code
analysis activity to improve the security of the
written code, this could be done using manual or
automated techniques, noting that static code
analysis is a common security activity in SDL and
touch points process Also, (Keramati,2008) has
found that static code analysis activity is
compatible with Agile. Figure 4 demonstrated an
overview of the security activities performed by
NHMSS.

3.4.3 Testing Phase

Scrum is about producing a shippable software
increment at the end of each sprint. After each
sprint, the development team will do all the testing
themselves, and then it can be handled to Quality
Assurance (QA) for detailed testing. There is no
separate testing phase; the test should be performed
during the entire sprint.

Quality Assurance and business analysts can
prepare the test cases during the development time,
these test cases could be very beneficial to address
vulnerabilities and security issues, and once all
cases are completed and accepted the team will
move to the next sprint. Security testing could be
performed here, as mentioned earlier, code analysis
is a very important security activity, and it is
considered as a testing-phase activity. Security
testing should be considered during software
testing; both SDL and CLASP put a lot of focus on
security testing (Futcher & Solms, 2008). In
addition, “Security testing by contrast should bring

Journal of Theoretical and Applied Information Technology
31st December 2019. Vol.97. No 24

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

3706

security assurance to the customer. Integrating
security early on helps with integration because
continues integration is part of the standards model
of behavior in Agile development” (Alnatheer, et
al., 2010).

Penetration testing could be performed here, but
it is not an easy task and it could take time, cost and
effort. But it has to be mentioned that, test results
are not enough to ensure that a system is secure,
tests can only show that the system passed the test,
not that it is safe against future attacks (Wayrynen,
et al., 2004). Fuzz testing is an easy activity that
also could improve the security assurance, it could
be performed by sending random data to the
software as an input and see what the software will
produce, it could help the team finding
implementation bugs.

3.4.4 Sprints

Sprints is what made Agile special, the team can
deliver software features in increments. What can
be really beneficial to security here is having a
sprint that dedicated only to security, the team will
have a chance to solve the security issues and figure
out how to write better, more secure code.

3.4.5 Maintenance and Deployment Phases

These phases will be performed as any

methodology, no specific security activities are
required here, and however the team can integrate
any security activities from the available standards
and best practices.

3.4.6 Customer Collaboration

Customer collaboration is one of the reasons why
the proposed methodology use Agile after starting
with Waterfall. The time has changed, and
technologies are all over the world, most of people
are technology educated and have a good or little
technology knowledge; everything around us are
somehow is using technology, therefore, customer
collaboration is demanded now days in software
development, their involvement is important for the
success of the software, “Since the customer can
see the process move ahead frequently, they would
much more content that what is being done is
worthwhile and they can also provide valuable
feedback for better productivity and security of the
final delivery” (Alnatheer, et al., 2010).

3.4.7 Documentation in Agile

Documentation reduces agility, that`s what we
have been hearing all the time, but as explained
before in the proposed methodology,
documentation will be performed in the early
Waterfall part, where the most important things
needs to be documented.

In Agile part, especially in product backlog,
where requirements are added to the software,
documentation will be minimized or will be set to
an optional activity, however, it is recommended to
keep documenting everything during the software
lifecycle. In Scrum, everyone is responsible for
documentation, not only the QA`s and Business
Analysts (BA), and that`s could be very beneficial
for future needs, for example, the developer doesn’t
need to spend a long time understanding and
remembering the logic that had been written a year
before. The priority will always be to sprint
deadline, if the team did not finish the
documentation, it can be scheduled later. So,
NHMSS recommends writing the most important
documentation rather than not writing any
documents at all. It should be a part of continuous
delivery.

To illustrate further about how to use NHMSS, a
written case study is provided in Appendix A.

4. RESULTS AND DISCUSSION

As real-world experimentation is difficult and
costly, an interview-based evaluation with
practitioners’ method has been chosen to evaluate
the proposed methodology NHMSST. The
evaluation is done by conducting interviews with
well-positioned and experienced project managers
and software development professionals from
different software development companies. The
evaluation process was done by asking them open-
ended questions and having their feedback on this
study.

4.1 Interview Process

Seven intensive interviews have been conducted
in order to evaluate this study; all the participants
were from international private software
development companies. They are all located in
Jordan, but their customers are distributed around
the Middle East, Europe and Africa. The
interviewees had different roles in software
development such as senior consultants, Team

Journal of Theoretical and Applied Information Technology
31st December 2019. Vol.97. No 24

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

3707

leaders and project managers, their experience
varied between nine and sixteen years.

First step for interviews was getting an agreement
of having this interview, then scheduling a time.
After that, each interview started by introducing the
researcher experience in software development and
information security, and how he the information
has been collected, then introducing the proposed
methodology to the interviewee, explaining each
phase and each activity. After that a written cases
study (Appendix A) explained and discussed;
which has been written as a simulation to real-
world experimentation. Then they have been asked
sixteen open-ended questions. All interviews were
face-to-face interviews, only one was done using
online video call because of the global location.
Each interview took between forty-five to ninety
minutes to complete.
Interview questions are categorized as follows:

1) Questions related to software development
methodologies.
2) Questions related to security in software
development.
3) Questions related to the using of Hybrid
approach.

Interview questions and answers are shown in

Appendix B.

4.2 Interview Results

After analyzing the interviews, the following
points are a summary from their answers:

• Software documentation is very important and
it’s highly demanded by software development
professionals.

• The currently used security activities in
software development companies are very basic
and old-fashion, even the security knowledge of
theses software development professionals is very
specific and outdated.

• Traditional Waterfall approach is still used until
now by various software development companies,
and it will be always needed for some projects,
however, other professionals thinks that there is no
need for the proposed approach nowadays.

• It is possible to migrate from traditional to
Agile, but it needs commitment and the ability to
change from the team. In addition, software
development professionals recommend having a
middle ground between Agile and traditional
Waterfall for software development.

• All of the interviewees thinks that security
activities could slow down the development

process, moreover; they haven’t used or tried them
before.

• At the same time, most of them thinks that
using the proposed methodology will build secure
software and they are willing to see a real-world
experimentation of it.

• The interviewed professionals think that the
proposed methodology retains the dependency
tracking and clarity of traditional development
whilst embracing the strength and innovation of
Agile development at the same time, however, only
one of them argued that applying it could be costly.

4.3 Comparison with Previous Works

In this subsection, comparison between the
overall results and previous studies in proposing
secure software development methodologies is
presented in Table 2. The main contributions of
previous studies were integrating security activities
in a specific development approach or a specific
phase of the development life cycle, where the
proposed methodology describes a new way to
consider security in the phases of software
development life cycle.

5. CONCLUSION AND FUTURE QORK

This research proposed a new hybrid
methodology to build secure software’s, it is based
on two software development approaches;
traditional Waterfall, and Agile Scrum. The two
approaches have been combined in order to ensure
a structured planning, flexibility, speed and
compatibility. There is no one approach that fits to
all projects, in addition, it has been found that
security activities are not compatible with all the
development approaches; as some of them was
created using traditional development in mind and
they are only compatible with traditional
approaches, where some of these activities are
Agile compatible.

The proposed methodology has been introduced
to seven highly qualified software development
professionals to evaluate it and to have their
feedback on it, they all approved that it could build
secure software, while most of the negotiations was
about using the hybrid approach as they are
convinced that using one approach might be a
better solution.

As future work, more deep analysis is needed to
discuss the advantages and disadvantages of using a
hybrid approach, in addition to a measurement of
the proposed security activities and their ability to
build secure software. Moreover, Scrum has been

Journal of Theoretical and Applied Information Technology
31st December 2019. Vol.97. No 24

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

3708

chosen as the Agile approach in the proposed
methodology, there are a variety of Agile
approaches that could be integrated while using a
hybrid approach.

REFRENCES:

[1] AlAzzazi, A. & ElSheikh, A. (2007). Security

Software Engineering: Do it the right
way.Arab Academy for Banking and
Financial Sciences, Amman, Jordan.

[2] Alliance, A. (2001). Agile manifesto.
Retrieved September, 2015, from http://www.
Agilemanifesto. Org.

[3] Alnatheer, A. & Gravell, A. & Argles, D.
(2010). Agile Security Issues: A Research
Study.University of
Southampton.Southampton, UK.

[4] Awad, M. (2005). A Comparison between
Agile and Traditional Software Development
Methodologies. The University of Western
Australia, Crawley, Australia.

[5] Ayalew, T. & Kidanem, T. (2012).
Identification and Evaluation of Security
Activities in Agile Projects.Master`s thesis,
Blekinge Institute of Technology, Karlskrona,
Sweden.

[6] Baca, D (2012).Developing Secure Software
in Agile Process. Doctoral Disseration,
Blekinge Institute of Technology, Sweden.

[7] Baca, D. & Carlsson, B. (2011).Agile
Development with security engineering
activities. ICSSP'11,149-158.

[8] Bakalova, Z. & Daneva, M. (2011).A
Comparative case study on clients
participation in a 'traditional' and in Agile
software company. Profes2011, 74-80.New
York, USA.

[9] ben Othmane, L., Angin, P., Weffers, H., &
Bhargava, B. (2014). Extending the agile
development process to develop acceptably
secure software. IEEE Transactions on
Dependable and Secure Computing, 11(6),
497-509.

[10] Beznosov, K. & Kruchten, P. (2005).
Towards Agile Security Assurance.University
of Britich Columbia, Vancouver, Canada.

[11] Bostrom, G. & Wayrynen, J. & Boden, M.
(2006). Extending XP practices to support
security requirements engineering. SESS'06,
11-17, Shanghai, China.

[12] Cho, J. (2009). A Hybrid Software
Development Method for Large-Scale
Projects: Rational Unified Process with

Scrum.Issues in Information System, X (2),
340-348.

[13] Davis, N (2006). Secure Software
Development Life Cycle Processes. Retrieved
June,2015 from https://buildsecurityin.us-
cert.gov/articles/knowledge/sdlc-
process/secure-software-development-life-
cycle-processes

[14] Dove, R. (2009). Embedding Agile Security
in Systems Architecture. Insight, 12(2), 14-
17.

[15] Dove, R. (2016). AGILE
SYSTEM-SECURITY: SUSTAINABLE
SYSTEMS EVOLVE WITH THEIR
ENVIRONMENT. Insight, 19(2), 8-12.

[16] Flechais, I. & Mascolo, C. & Sasse, M.
(2007).Integrating Security and Usability Into
the requirements and design process.
International Journal of Electronic Security
and Digital Forensics, 1(1), 12-26, Geneva,
Switzerland.

[17] Flechais, I. & Sasse, M. & Hailes, S.
(2004).Bringing Security Home: A process
for developing secure and usable systems.
New Security Paradigms Workshop 2003, 49-
57, Ascona, Switzerland.

[18] Futcher, L. & Solms, R. (2008).Guidelines for
secure software development.SAICSIT2008,
56-65, Wildrness, South Africa.

[19] Gottipalla, A. K., Desai, N. M. S., & Reddy,
M. S. (2013). Software Development Life
Cycle Processes with Secure. The
International Journal of Scientific and
Research Publications, 3, 1-3.

[20] Gregorie,J.& Buyens, K.& Win, B.&
Scandarito, R.& Joosen,W.(2007).On the
secure software development process: CLASP
and SDL compared.SESS07,Leuven,Belium.

[21] Grembi, J (2008). Secure Software
Development. USA, 25 Thomson Place
Boston, MA: Cengage learning.

[22] Grispos, G., Glisson, W. B., & Storer, T.
(2015). Security Incident Response Criteria:
A Practitioner's Perspective. arXiv preprint
arXiv:1508.02526.

[23] Hadar, I, & Sherman, S (2012).Agile vs.Plan-
Driven Perceptions of Software Architecture.
CHASE2012 Conference, 50-
55.Zurich.Switzerland.

[24] Harrison, S., Tzounis, A., Maglaras, L. A.,
Siewe, F., Smith, R., & Janicke, H. (2016). A
Security Evaluation Framework for UK E-
Goverment Services Agile Software
Development. arXiv preprint
arXiv:1604.02368.

Journal of Theoretical and Applied Information Technology
31st December 2019. Vol.97. No 24

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

3709

[25] Howard, M. Lipner, S., "The Security
Development Lifecycle - SDL: A process for
Developing Demonstrably More secure
Software", Microsoft Press, 2006.

[26] Kainerstorfer, M. & Sametinger, J. &
Wiesauer, A. (2011).Software Security for
Small Development Teams - A Case Study.
iiWAS2011, 305-310, Ho Chi Minh City,
Vietnam.

[27] Keramati, H. & Hisseinabadi, S. (2008).
Integrating Software Development Security
Activities with Agile Methodologies.Sharif
University of Technology, Tehran.

[28] Matthee, M. H. (2014). SECURE
SOFTWARE DEVELOPMENT
FRAMEWORK: PRINCIPLES AND
PRACTICES. SANS Institute. Retrieved from
https://www.sans.org/reading-
room/whitepapers/securecode/agile-
defensive-perimiters-forming-security-test-
regression-pack-35617.

[29] Mead, N. & Stehney, T. (2005).Security
Requirements Engineering (SQUARE)
Methodology. SESS'05.1-7, MO, USA.

[30] Moniruzzaman, A. & Hossain, S.
(2013).Comparative Study on Agile software
development methodologies. Global Journal
of Computer Science and Technology, 13(7).

[31] Nazir, M. (2015). Agile Model of Software
Security: Risk Perspective. International
Journal, 5(11).

[32] Oueslati, H., Rahman, M. M., ben Othmane,
L., Ghani, I., & Arbain, A. F. B. (2016).
Evaluation of the challenges of developing
secure software using the agile approach.
International Journal of Secure Software
Engineering (IJSSE), 7(1), 17-37.

[33] OWASP, Comprehensive, lightweight
application security process,
http://www.owasp.org, 2015.

[34] Rindell, K., Hyrynsalmi, S., & Leppänen, V.
(2015, June). A comparison of security
assurance support of agile software
development methods. In Proceedings of the
16th International Conference on Computer
Systems and Technologies (pp. 61-68). ACM.

[35] Romero-Mariona, J. & Ziv, H. & Richardson,
D. & Bystritsky. (2009).Towards Usable
Security Requirements. CSIIRW'09, Article
No. 64.

[36] Romero-Mariona, J. & Ziv, H. & Richardson,
D. (2008).SRRS: A Recommendation System
for Security Requirements. RSSE'2008, 50-
52, Georgia, USA.

[37] Ruparelia, N. (2010).Software Development
Lifecycle Models. ACM SIGISOFT Software
Engineering Notes,35(3), 8-13

[38] Shuaibu, B. M., Norwawi, N. M., Selamat, M.
H., & Al-Alwani, A. (2015). Systematic
review of web application security
development model. Artificial Intelligence
Review, 43(2), 259-276.

[39] Sipnon, M. & Baskerville, R.s& Kuivalainen,
T. (2005).Integrating Security Into Agile
Development Methods.Proc of the 38th
Hawaii International Conference on System
Science.

[40] Sonia, & Singhal, A. & Banati, H.
(2014).FISA-XP: An Agile-based Integration
of Security Activities with Extreme
Programming. ACM SIGSIFT Software
Engineering Notes, 39(3), 1-14, Delhi, India.

[41] Tetmeyer, A. (2013). A POS Tagging
Approach to Capture Security Requirements
within and Agile software Development
process.Master`s Thesis, University of
Kansas, Kansas, USA.

[42] Vähä-Sipilä, A. (2013). Product security risk
management in agile product management.

[43] Viega, J. (2005).Building Security
Requirements with CLASP.SESS'05, 1-7,
MO, USA.

[44] Wayrynen, J, & Boden, M, & Bostrom
(2004). Security engineering and extreme
programming an impossible marriage.
Extreme Programming and Agile Methods -
XP/Agile Universe 2004.117-128.

[45] Willett, K. D., Dove, R., & Blackburn, M.
(2015, October). Adaptive Knowledge
Encoding for Agile Cybersecurity Operations.
In INCOSE International Symposium (Vol.
25, No. 1, pp. 770-792).

[46] Woody, C (2013). Agile security-review of
current research and pilot usage. Software
Engineering Institute, Carnegie Mellon
University.

[47] Yang, F. (2013). How to Migrate from
Waterfall development approach to Agile
approach. Master’s Thesis, Chalmers
University of Technology, Gothenburg,
Sweden.

Journal of Theoretical and Applied Information Technology
31st December 2019. Vol.97. No 24

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

3710

Table 1: Related work
Paper Title Authors Publication

Year
Idea and Contribution

A process for developing
secure and usable systems
(AEGIS)

Flechais et al.

(Flechais, et al, 2004)

2004 Developing secure systems. It is based on
risk analysis, asset modeling, security
requirements identification and usability
context.

Security Quality
Requirements Engineering
(SQUARE) Methodology

Nancy R. Mead et al.

Software Engineering
Institutes Networks Systems
Survivability

(NSS) program (Mead &
Stehney, 2005)

2005 A methodology for security requirements
elicitation only.

SRRS: a recommendation
system for security
requirements

Jose Romero-Mariona et al.

(Romero-Mariona, et al,
2009)

2008 Recommends the most appropriate security
requirements elicitation approach for
specific project characteristics.

Towards Usable Cyber
Security Requirements –
SURE

Jose Romero-Mariona et al. 2009 A new approach called SURE (Secure and
Usable Requirements Engineering), it
increases the usability in security
requirements specifications by supporting
the derivation of testing artifacts from
them.

FISA-XP: An Agile-based
Integration of Security
Activities with Extreme
Programming

Sonia et al.

(Sonia, et al, 2014)

2014 A methodology for developing secure
systems. It integrates security activities
with core Extreme programming based on
their degree of agility.

Figure 2: NHMSS

Journal of Theoretical and Applied Information Technology
31st December 2019. Vol.97. No 24

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

3711

Figure 3: The Requirements in NHMSS

Figure 4: NHMSS Security Activities

Journal of Theoretical and Applied Information Technology
31st December 2019. Vol.97. No 24

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

3712

Table 2: Comparison with Previous Works

Paper Title Authors Idea and main
contribution

Differences with the proposed
methodology

A process for
developing secure
and usable systems
(AEGIS)

 Flechais et al. A methodology for
developing secure
systems. It is based on
risk analysis, asset
modeling, security
requirements
identification and
usability context.

This study is based on building secure
software according to risk analysis and
asset modeling activities which are
considered as comprehensive and time
consuming activities, and that could force
the development team to stick with
traditional development approach only. In
addition, the methodology is not
considering security in all the development
life cycle phases.

While the proposed methodology is
considering light-weight security activities
in all the development phases.

Security Quality
Requirements
Engineering
(SQUARE)
Methodology

Nancy R. Mead et al.

Software Engineering
Institutes Networks
Systems Survivability

(NSS) program

A methodology for
security requirements
elicitation only.

This study focuses on the requirements
phase only, while the proposed
methodology is taking security into
consideration in all the development life
cycle phases.

SRRS: a
recommendation
system for security
requirements

Jose Romero-Mariona et al. Recommends the most
appropriate security
requirements elicitation
approach for specific
project characteristics.

This methodology focuses on the
requirements phase only, while the
proposed methodology is taking security
into consideration in all the development
life cycle phases.

Towards Usable
Cyber Security
Requirements

Jose Romero-Mariona et al. A new approach called
SURE (Secure and
Usable Requirements
Engineering), it increases
the usability if security
requirements
specifications by
supporting the derivation
of testing artifacts from
them.

This methodology focuses on the
requirements phase only, while the
proposed methodology is taking security
into consideration in all the development
life cycle phases.

FISA-XP: An
Agile-based
Integration of
Security Activities
with Extreme
Programming

Sonia et al. A methodology for
developing secure
systems. It integrates
security activities with
core Extreme
programming based on
their degree of agility.

This study is proposing a secure
development methodology by integrating
security into Extreme Programming
approach, which is considered an Agile
development approach, while the proposed
methodology is using a hybrid approach by
starting with traditional Waterfall and
moving to Agile Scrum in the middle of the
development life cycle. That will satisfy
both, Waterfall and Agile advocates.

Journal of Theoretical and Applied Information Technology
31st December 2019. Vol.97. No 24

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

3713

Appendix A – Case Study

ABC Tech is a middle size software development (proposed) company that is mainly specialized in web
development, they have multiple web development departments, and each department is specialized in a
specific type of products/programming languages.
One of these departments consists of:

 A department manager.

 A development team leader, who is responsible for all the development process, in addition to a
full supervision on his team members.

 Six developers (two senior developers, three middle experienced developers and one junior
developer); they are specialized in web and database development.

 Two quality assurance employees.

 One Business analyst.

 One designer.

 One deployment and support engineer.

 One Information security engineer.

The department manager, the team leader, the business analyst, in addition to a sales representative from
the company had a meeting with a new customer (a bookshop owner) who is planning to create a website
for his bookshop. The main reason for this initial meeting is to get the main requirements and understand
what he needs.
The bookshop owner wants to build a web application that will be used by his employees and his
customers; the employees will use the website to register member’s information, such as contact and billing
information, in addition to book lending information. The customers will use the website to view books in
stock and lend or buy books. The bookshop owner mentioned that his customer’s information must be
maintained in a very secure manner. He also explained in details how he imagines the web application
would be, he mentioned that he would like to be always updated and have a look at every release, also he
mentioned that it doesn’t matter to have the first releases with minimum features and adding more features
in the next releases.

 The team leader wrote all the Main (High-level) requirements, and informed the customer that the first
release could take some time while all the other releases will be available in a short time. The team could
start on a very rigid step-by-step process. The detailed start-up process will give the team members some
time to get to know one another’s styles and strengths. It also provides some time to digest the application
requirements and database table definitions.
The team leader will be using NHMSS (New Hybrid Methodology for Secure Systems) as a software
development methodology for this project, he need to consider security requirements in his planning and
requirements elicitation process, these requirements are defined by the customer or suggested by the
security engineer, for example:

 How many failed login attempts the user could have.

 How the passwords are going to be encrypted in database; are they going to be hashed and salted
to protect against rainbow attacks?

 How the logs will be written to support forensics.

 How the transactions integrity will be maintained.

 The availability of the system.

 Continuous requirements, for example, validate all HTTP post parameter values against valid
character whitelists.

 Implementing three factor authentications.

Journal of Theoretical and Applied Information Technology
31st December 2019. Vol.97. No 24

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

3714

The team leader had a meeting with the QA, BA and the senior developers; they demonstrate the main
screens and the functionality of the web application in an abstract view as explained by the bookshop
owner. The QA and BA started to write the needed documents (BRS, SRS, High-level design, functional
design) These documents will be written, maintained and updated for the team to understand the work
accordingly.
 They will also create use cases and design the main screens in collaboration with the designer. Meanwhile,
the team leader (or the security engineer) will review the needed security activities that needs to be
implemented, and according to that, he might ask for some security education sessions for the developers if
needed. In order to ensure that no requirements are missed out; a traceability matrix could also be designed
and maintained.
According to NHMSS the team will switch now to Agile Scrum development, all the written documents are
already distributed to the whole team to understand the project and have an overview about it. An already
written development standards documents will be sent to developers as well. This standards document also
contains secure coding standards that must be followed to write a secure code. Standards make products
easier to build because they give direction, and because they are written down as plans and formulas.
The team will be organized to form a Scrum team; they will use an appropriate management/leadership
style to maximize motivation and empowerment. The product backlog will be created by transforming the
main requirements to it and add some sub-requirements accordingly (when needed). Once all the
requirements are listed and agreed by the customer, the next task is to prioritize them in order to pick them
up in sprints.
The product backlog requirements are prioritized queue of business and technical functionality, it is
possible to add/edit any requirement as it is all Agile in here, but the team cannot go back to the main high-
level requirement as they have been elicited during the traditional Waterfall requirements phase; this is not
a big issue since any new requirements could be connected to a one of the high-level requirements as a
subset of it.
The team will identify the requirements and decides what needs to be done for the first release. These
requirements (user stories) will goes under the release backlog, then they will be prioritized with estimation
for each item, the estimation will be in hours or days. Some features might take some time to be completed.
As most of the researchers concluded; Most of the security activities are not compatible with Agile. But
fortunately, they have found that static code analysis is the most compatible security activity that could be
implemented in Agile. The researchers proposed the following security activities (In addition to Static code
analysis) that could be implemented without slowing the development process:

 Pair Programming
Perform a real time security reviews of the system design and code.

 Fuzzy Testing
A software testing technique used to discover coding errors and security loopholes by inputting
massive amounts of random data, called fuzz, to the system in an attempt to make it crash.
(Reference will be added).

 A dedicated sprint for Security review
Sprints will be planned; each sprint could take from two to thirty days.
The release backlog will be spitted into sprints backlogs (subset of release backlog). At the end of
each sprint, the team will have a fully tested product with all the features of that sprint.
QA will test the product in increments by testing the requirements covered in each sprint. But after
all the sprints are complete and the final build is ready and all integrated, the QA should test the
complete system and should perform end-to-end testing. This should be done in a completely new
environment. The burn down chart will be used to monitor the progress of each sprint. It provide
day by day measurement of the amount of work that remains in a given sprint or release. The team
will have a daily Scrum meeting to follow up with everything and stay synced. The documentation
during these phases will be optional, it will be adopted when it is needed only. Finally, the team
will have sprint retrospective meeting where they check what went right, what went wrong and the
areas of improvements. According to Scrum, the team will have the following main meetings:

 Sprint Planning Meeting

Journal of Theoretical and Applied Information Technology
31st December 2019. Vol.97. No 24

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

3715

Negotiate which product backlog items they will attempt to convert to working product during the
sprint

 Daily Scrum Meeting
The Scrum development team members spend a total of fifteen minutes reporting to each other.
Each team member summarizes what he did the previous day, what he will do today, and what
impediments he faces.

 Sprint Review Meeting
After sprint execution, the team holds a sprint review meeting to demonstrate a working product
increment to the product owner and everyone else who is interested.

 Sprint Retrospective Meeting
The team reflects on its own process. They inspect their behavior and take action to adapt it for
future sprints.

The bookshop owner will be involved after every release to take his notes and see how to improve
the system and add more functionality if needed. Sprints will be performed until the software is
fully created and deployed.

Journal of Theoretical and Applied Information Technology
31st December 2019. Vol.97. No 24

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

3716

Appendix B – Interview questions

1. What is your role and responsibility in development team?

2. How many years of experience do you have?

3. What experience do you have from of working with software development with a plan-driven

(traditional Waterfall) approach?

4. What experience do you have from of working with software development with Agile approach?

5. Have you ever considered any security activities in your development process? If not please
mention why, if yes please mention what kind of activities you have been using?

6. Is there still a need for traditional Waterfall approach? Why?

7. Have you experienced migrating from plan-driven approach to Agile? What is the main difficulty
to do that?

8. What about having a middle ground between Agile and traditional Waterfall for companies that
have a balance of control and agility?

9. Do you think that documentation is important? What kinds of documents are necessary?

10. Is there a difference in the project manager`s responsibility in Waterfall development approach as
compared to the Agile approach, for instance in choosing team members, and quality assurance
assistance? Please explain.

11. Do you think that my proposed methodology retains the dependency tracking and clarity of
traditional development whilst embracing the strength and innovation of Agile development at the
same time? Please explain.

12. Do you think that my proposed methodology provides the flexibility and transparency that are
necessary to adapt the fast changing requirements of stakeholders? Please explain.

13. Do you think that the security activities that my methodology proposed are enough to build secure
software?

14. Do you think that these security activities could slow down the development process? Why?

15. Please define what do you mean by “Secure Software”?

16. According to your experience and after reading the case study example, and because your
thoughts will be considered as an evaluation for my thesis, do you think that the proposed
methodology is applicable? Please explain, and please tell me your feedback regarding every
phase of my proposed methodology.

