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ABSTRACT 
 

In this paper, we apply the PSO method 'Particle Swarm Optimization' to reconstruct a 3d object from a 
3d point cloud using supershapes. Reconstructing a 3d object from a 3d point cloud obtained from different 
devices is very important in many fields. For instance, the use of 3d scanners is very common in the field of 
medicine. Thus, a good reconstruction of the 3d point cloud given by the device can be very helpful. This 
problematic can be summed up in finding the surface that approximate the best the point cloud provided at 
the beginning. The rarity of works applying optimization methods and especially metaheuristics to this kind 
of issues in the literature makes the originality of this work. We have opted in our work to use a population-
based metaheuristic method. The parametric surfaces employed in our work are the recent forms introduced 
recently by Gielis; called supershapes. We have also used the radial Euclidean distance in the definition of 
the fitness function. This function will serve as an indicator of dissimilarities between the original form and 
the reconstructed one. Our approach has been quite successful in providing very satisfactory results compared 
to the existing results in the literature. 
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1. INTRODUCTION  

 
Computer vision is a very rich element of artificial 

intelligence. Its role consists on equipping the 
machine with the necessary abilities to analyze and 
exploit the data present in images or video sequences 
captured by a system of acquisition. There are 
different techniques employed for acquiring 3d 
images in the literature, using various acquisition 
devices such as scanners, stereo cameras ... 
Acquisition techniques produce crude data modeled 
as a 3D point cloud. The exploitation of the data 
present in 3d point cloud remains complex. 

 
Concretely, it is question of finding the 3d 

structure of the environment perceived by the 3d 
sensor employed to model it in the form of 3d point 
cloud. The problematic is then summarized in the 
three-dimensional reconstruction of a scene or a 3d 
object from a 3d point cloud. The information 
obtained by three-dimensional reconstruction is 
crucial for the three-dimensional perception of the 
outside world by the machine. Several researchers 
have studied this issue and have proposed several 
methods to solve it. In the recent years, one approach 
stands out from the different methods proposed by 
researchers to reconstruct a 3d object from a 3d point 

cloud. The approach in question consists of 
considering this problematic as an optimization 
problem. It is then a matter of minimizing carefully 
a chosen error function until obtaining a final 
reconstructed object. This object must have a very 
close resemblance to the reference object. 

 
In our approach, we try to reconstruct a 3d object 

using parametric surfaces and using a good 
optimization method. The literature is rich in terms 
of parametric surfaces. The parametric surfaces that 
we will use have been introduced very recently by 
Gielis [1] and are called supershapes. It is an 
extension of superquadric using rational and 
irrational symmetries [2]. A supershape has six 
parameters. By manipulating these parameters, we 
can obtain a variety of forms. The issue can be then 
interpreted as follow: adjust the six parameters until 
finding the shape that perfectly matches the 3d point 
cloud of the 3d object provided at the beginning. This 
task will be achieved with an optimization function. 
There are several different reconstruction algorithms 
in the literature. 

 
In this paper, 3d reconstruction is perceived as an 

optimization problem. Optimization methods are 
classified into two types: deterministic methods and 
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approximate methods [3]. We will look into the 
approximate methods considering their good 
performance. Metaheuristics [4] belong to the family 
of approximate optimization method and are 
characterized by their iterative generic aspect 
applicable to problems of different domains. They 
are also popular for their simplicity of 
implementation. They stood out from the family of 
approximate optimization methods by their speed of 
convergence and their efficiency. Metaheuristic are 
divided into two groups : single-solution searches 
and population-based solutions searches.  
In recent decades, researchers have found their 
source of inspiration; to define some metaheuristics; 
in animals that usually live in community. 
Researchers were inspired by the social behavior of 
different species in nature to define the principle of 
several optimization algorithms. Among the various 
algorithms defined, we quote few methods : the 
‘Particle Swarm Optimization' PSO method inspired 
by the birds flocking[5], the 'Ant Colony 
Optimization' ACO method inspired by the social 
behavior of the ant colonies[6], the 'Artificial Bee 
Colony' ABC method inspired by the organization a 
colony of bees[7], etc. 

 
The work presented in this paper consists of 

reconstructing a 3D object from a 3D point cloud 
using a well-adapted metaheuristic to the problem 
and using also parametric surfaces. For parametric 
surfaces, our preferred choice would be supershapes 
for their ease of representation. And concerning the 
chosen metaheuristic, we opted for the PSO method 
'Particle Swarm Optimization' to reconstruct our 
shape for the following reasons : its good 
compatibility with continuous values optimization (
which is the case of parametric surfaces) and its good 
performance.  

 
In the next section, we present a literature review 

of common methods in three-dimensional 
reconstruction and also existing parametric surfaces 
used to represent a 3d object. The dilemma of the 
importance degree given to the choice of the 
optimization method and the error function will also 
be discussed. Some works using optimization 
methods for three-dimensional reconstruction will be 
cited. Then, we will expose in the following section 
our proposed approach. We will begin by 
introducing briefly the concepts used: supershapes 
and PSO. Next, we will detail the adaptation of the 
optimization method to our problem and explain the 
choice of the fitness function. After, we will present 
the results obtained by our approach and we will 
compare them with other methods existing in the 

literature. Finally, we will finish our article with a 
conclusion on the performance and effectiveness of 
our method and discuss potential improvements that 
we can apply to our approach in our future research. 

2. LITERATURE REVIEW 
 
To perform the three-dimensional reconstruction, 

we can use very advanced technologies able to 
provide 3D reconstruction such as laser scanners 
which are very efficient but very expensive. For this 
reason, the researchers  were engaged in the 
implementation of algorithms and approaches 
applicable to less expensive technologies that are 
within everyone’s reach. A multitude of three-
dimensional reconstruction methods are proposed in 
the literature and vary according to the nature of the 
input data. The most famous classical method of 3d 
reconstruction in the literature is the Delaunay 
triangulation. Several methods have been introduced 
based on the Delaunay triangulation and the Varonoi 
diagram, for instance the Crust algorithm proposed 
by Amenta [8]. The main drawbacks of this sort of 
algorithms are their vulnerability to the interfering 
elements, their inefficiency when it comes to 
reconstruct an object from a large point cloud and 
also their important execution time. All these 
disadvantages make impossible the implementation 
of this kind of algorithm in real-time applications. 
There is another type of reconstruction algorithms 
defined in the literature, it is the methods Shape from 
X. The user can choose the most adequate method to 
his needs and more specifically to the type of the 
used image. The Shape From X methods are 
numerous, here are the most popular and most 
employed methods: 
 "Shape From Shading" (SFS) : this method is 

based on the information of shadow to 
reconstruct the object [9]. 

 "Shape From Motion" (SFM) : this method is 
based on the information of movement between 
the object and the camera [10][11], it is used 
especially in the mobile robotics domain where 
there is a capital need to reconstruct the scene 
observed by a robot in its navigation[12]. 

 "Shape From Silhouette": this method uses 
different images taken from different views to 
extract the silhouette of the object in order to 
reconstruct it. 

 "Shape From Focus / Defocus": this method is 
based respectively on the information of 
sharpness or the information of optical blur to 
reconstruct the object[13]. 

 "Shape From Texture": this method acts on 
textured objects by exploiting the gradient and 
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the deformations of the object’s textures; caused 
by three-dimensional projection [14]. 

 
The major inconvenience of this family of 

algorithms is the obligation to integrate external 
constraints to the object that we want to reconstruct 
in order to obtain a good reconstruction. 

 
There are several models in the literature for 

representing 3d objects. The polyhedral surfaces 
represent the first basic model created in the 90s [15], 
it has been used and developed by several authors 
[16] [17]. Subdivision models are also proposed in 
the literature to represent 3d objects. They are based 
in their definition on the polyhedral models and 
proceed to the 3d object representation through 
subdivision steps and scheme. The subdivision 
surfaces appeared in 1978 [18], then several works 
of different researchers were proposed to generalize 
the use of these surfaces and also to improve their 
performance in the 3d object representation. 
Therefore, a multitude of subdivision schemes has 
been proposed and enriched the literature. 

 
There is also another type of parametric surfaces 

effective in the 3d object representation, it is 
superquadrics[19]. The supershapes; being the most 
recent extension of the superquadrics; will be the 
surfaces chosen to represent at best our 3d object. It 
is question of finding the supershape that matches 
perfectly the 3d point cloud provided as input in 
order to reconstruct the object in question. In other 
words, we will have to find the six parameters of the 
suitable supershape [20], that is, the closest to the 
shape of the point cloud. The problem will then be 
directed to the optimization of the supershape’s 
parameters. Therefore, it will be necessary to 
establish a judicious choice of an objective function 
to well determine the optimal values of the 
supershape’s parameters. This objective function, 
called also the error function, will act as an error 
indicator by checking the dissimilarities and 
similarities between the object to be reconstructed 
and the point cloud [21] [22] .  

 
The determination of the importance degree of the 

objective function definition and the optimization 
method was and still is a debate for researchers. 
Some researchers admit that the definition of the 
objective function is more important for the purpose 
of having a good rendering, and others believe that 
the choice of the optimization method is capital and 
more important to obtain good results. As far as we 
are concerned, we consider that both have the same 
degree of importance. If the objective function is 

poorly determined, then the problem is ill-defined. 
And if the choice of the optimization method is made 
incorrectly, then the chances of finding the right 
solution diminish. Being the first step in solving an 
optimization problem, does not mean that it is the 
most important step. All steps must be treated with 
the same importance degree. Some works in the 
literature focused either on the good determination 
of objective function or on the use of the appropriate 
optimization method. They obtained very good 
results, but if the same interest was focused on both, 
it is strongly believed that the results would be better. 

 
On one hand, the majority of the researches 

dedicated to the determination of the best performant 
objective function in the representation of 
superquadrics spotlights the objective functions 
based on their definition on Euclidean distance. The 
researchers opted to use the radial Euclidean distance 
instead of working with the real Euclidean distance 
in order to simplify the complexity of the 
computations required and, thus, to minimize the 
computation time. Various comparative studies of 
different objective functions have been carried out. 
We mention for example the works of Gross and 
Boult [23], the works of Solina and Bajcsy [21] and 
the works of Van Dop and Regtien [24]. The two 
functions star providing the best results in the 
experiments achieved in the literature are : the 
function of Gross and Boult, and the function of 
Solina and Bajcsy. According to the study 
established by Zhang [25] comparing the 
performance of these two functions under different 
conditions, it was concluded that the function of 
Gross and Boult shows better results than the 
function of Solina and Bajcsy; given the different 
conditions applied during the experiments.  

 
On the other hand, the most popular optimization 

method used in the superquadric representations is 
the deterministic algorithm Levenberg-Marquardt 
[26]. Given that the supershapes are recent forms, 
rare are the works employing them. There is an 
application of a stochastic algorithm on surface 
reconstruction using supershapes, it is about the 
genetic algorithm [27]. The results were quite 
satisfactory and promising. In general, population-
based methods [28] have encouraging results in 
different domains.  

 
The resolution of our problem will then be 

summarized in the good definition of the objective 
function as well as the good choice of the 
optimization process. To our knowledge, the use of 
population-based metaheuristic methods is not 
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widely used in 3d reconstruction using supershapes. 
Our contribution will then be to propose a 
population-based optimization model to reconstruct 
a 3d object from a given 3d point cloud using 
supershapes.  

3. THE PROPOSED APPROACH 
 
To solve the problematic of 3d object 

reconstruction by supershapes, we propose to use the 
PSO (Particle Swarm Optimization) method, which 
is a population-based metaheuristic. This 
optimization method will have the role of 
minimizing the objective function defined smartly in 
order to reconstruct the 3d object from its 3d point 
cloud. The reconstructed form is supposed to 
approximate the shape of the parametric surface. 
Before detailing our approach, we first define the 
notion of supershapes and the operation mode of the 
PSO algorithm. Then we will continue with the 
explanation of the different steps followed to solve 
our problem. 
 
3.1. Supershapes 
 

Supershapes, also called Gielis surfaces, are 
parametric surfaces based on superquadric 
formulation, introduced in the literature recently by 
Gielis [2]. The distinctive feature of these new 
surfaces is the control that we can have on the 
number of symmetries and, thus, the ability of 
generating an infinity of forms. Contrary to 
superquadrics, supershapes are represented by six 
parameters instead of two. This contributes to the 
diversification of the shapes formed, and increases 
the chances of reconstructing successfully various 3d 
objects. Until today, works using supershapes in 
image processing remains rare. But these two 
characteristics of supershapes were the object of our 
motivation in the use of these new surfaces in the 
three-dimensional reconstruction: 
 Their simplicity in representation and use, 
 Their parametric representation which 

facilitates the approximation of surfaces. The   
parametric representation of supershapes in 3D 
is expressed as follows [29] : 

ቌ
xሺθ, ∅ሻ
yሺθ, ∅ሻ
zሺθ, ∅ሻ

ቍ ൌ  ቌ
rଵሺθሻrଶሺ∅ሻcosθcos∅
rଵሺθሻrଶሺ∅ሻsinθcos∅

rଶሺ∅ሻsin∅
ቍ   ሺ1ሻ                                

With: 
x, y and z are the points on the surface of the 

supershape; 
θ: represents the longitude with -π≤θ≤π ; 
∅: represents the latitude with -π / 2≤∅≤π / 2 ; 

To generate a supershape, we use two generating 
polygons. Each polygon produces 3 different 
coefficients of the supershape. To model this 
mathematically, a supershape is the spherical 
product of two superpolygons; in other words, it is 
the spherical product of the rays of two 
superpolygons represented respectively in polar 
coordinates as follows: 

r1ሺθሻ ൌ
ଵ

ටቚ
భ


ୡ୭ୱቀ
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ొమ
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భ
ౘ

ୱ୧୬ቀ
∅

ర ቁቚ
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         (3) 

With: 
a, b ϵ𝑅ା : These parameters control the 

dimensions of the polygon; 
m, M ϵR∗

ା : These parameters control the number 
of symmetries; 

nଵ, nଶ, nଷ ∈ R: These are the coefficients of the 
supershape (same for N1,N2 and N3). 

The longitude and the latitude are expressed as 
follow : 

⎩
⎪
⎨

⎪
⎧𝜃 ൌ 𝜃ሺ𝑥, 𝑦ሻ ൌ arctan ቀ

௬

௫
ቁ

𝜙 ൌ 𝜙ሺ𝑥, 𝑦, 𝑧, nଵ, nଶ, nଷሻ

ൌ arctan ቀ
௭୰భሺఏሻ ୱ୧୬ሺఏሻ

௬
ቁ

ൌ arctan ቀ
௭୰భሺఏሻ ୡ୭ୱሺఏሻ

௫
ቁ

      (4) 

By adjusting these parameters (refer to Table 1), 
we produce the corresponding supershapes, as 
shown in Figure 1: 

 

     Figure 1:Examples of 3d supershapes 

 
Table 1:Parameters of supershapes represented in 

Figure 1 (a=b=1) 

 
 
 

SUPERSHAPE m  n1  n2  n3  M  N1  N2  N3 

(1) 3 0.5 1.7 1.7 2 10 10 10 

(2) 5.7 0..5 1 2.5 10 3 0.2 1 

(3) 5 0.1 1.7 1.7 1 0.3 0.5 0.5 

(4) 7 0.2 1.7 1.7 7 0.2 1.7 1.7 
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3.2. Particle Swarm Optimization 
 
The Particle Swarm Optimization [30] is an 

optimization algorithm belonging to the family of 
metaheuristics population-based solutions, 
introduced in the literature by Kennedy and Eberhart 
in 1995. They were inspired in its definition by the 
social behavior of migratory birds. These birds 
communicate with each other for two purposes : the 
first one is to optimize their energy while they move, 
and the second one is to find the best path to their 
destination. We qualify this type of metaheuristic as 
a swarm intelligence method. Over the years, the 
PSO has been successfully applied to different 
domains, and has proved its effectiveness in terms of 
cost and quality of the provided solutions. 

 
The PSO algorithm is inspired by migratory birds 

by considering each bird as a particle that moves in 
the search space and transmits information about its 
position to neighboring particles. 

 
The steps of the basic algorithm are described in 

the following flowchart: 
 

 

 

 

 

 

                No 
 

                         

 

 

 Yes 
 

 
Figure 2:Flowchart of PSO method                            

Step1 : Initialization 
The algorithm starts with the initialization of the 

swarm that represents the research space, its 
dimension is n. It initializes also the particles. The 
particles represent the individuals of the swarm. 
These are the candidate solutions. 

Each particle i is characterized by: 

 Its position 𝑋పሬሬሬ⃗ ൌ ሺ𝑥ଵ, 𝑥ଶ, … , 𝑥ሻ ∶  this vector 
determines the location of the particle i in the 
search space; 

 Its velocity 𝑉పሬሬ⃗ ൌ ሺ𝑣ଵ, 𝑣ଶ, … , 𝑣ሻ : this vector 
determines the distance achieved by the particle 
i from its current position. 

The following two values are also initialized when 
launching the algorithm: 
 𝑷𝒃𝒆𝒔𝒕  : represents the best position of the 

particle i 
𝑃௦௧  ൌ ሺ𝑝𝑏𝑒𝑠𝑡ଵ, 𝑝𝑏𝑒𝑠𝑡ଶ, … , 𝑝𝑏𝑒𝑠𝑡ሻ 

 𝑮𝒃𝒆𝒔𝒕: represents the best position of the swarm, 
that is to say the particle having the minimum 
fitness value of the whole swarm. It is the leader 
of the research agents of the swarm. 

𝐺௦௧ ൌ ሺ𝑔𝑏𝑒𝑠𝑡ଵ, 𝑔𝑏𝑒𝑠𝑡ଶ, … , 𝑔𝑏𝑒𝑠𝑡ሻ 
Step2 : Evaluation 

The swarm evaluation stage consists of evaluating 
objective function values for all the particles in the 
swarm in order to determine the best values and the 
value of the global best (𝐺௦௧). 
Step 3 : Update (refer to Figure 3) 

At each iteration the following values are updated: 
  The position of the particle: The new position 

of each particle is defined according to the 
following equation: 

          𝑥ሺ𝑡  1ሻ ൌ  𝑥ሺ𝑡ሻ  𝑣ሺ𝑡  1ሻ        ሺ5ሻ    

 𝑤𝑖𝑡ℎ 1  𝑗  𝑛                 

With :  𝑥ሺ𝑡ሻ representing the position of the 
particle i at time t and 𝑣ሺ𝑡  1ሻ representing 
the velocity of the the particle i at the time 
t+1; it is calculated at each iteration thanks to 
the following formula : 

𝑣ሺ𝑡  1ሻ ൌ 𝜔 𝑣ሺ𝑡ሻ  𝑐ଵ𝑟ଵ ቂ𝑃 ௦௧ ,ሺ𝑡ሻ െ

                  
 
𝑥

ሺ𝑡ሻቃ  𝑐ଶ𝑟ଶൣ𝐺௦௧  ሺ𝑡ሻ െ  𝑥ሺ𝑡ሻ൧      ሺ6ሻ 

With: 
𝜔: coefficient of inertia defined by the user; 
𝑣ሺ𝑡ሻ: the velocity of the particle i at time t; 
𝑐ଵ and 𝑐ଶ : coefficients of acceleration 
defined by the user; 
𝑟ଵ and 𝑟ଶ: values chosen randomly from the 
interval [0,1] at each iteration; 
𝑃 ௦௧ ,ሺ𝑡ሻ: the best position by which the 
particle has passed; 
𝐺௦௧  ሺ𝑡ሻ: the best position defined by the 
swarm; 
The first term of the equation represents the 
current motion; it is also a weighting term that 
controls the direction of particle's motion; the 
second term represents the personal influence 
of the particle, and the third term represents 

Initialization 

Evaluation 

Update 

Stopping 
Criteria 

Result 
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the social influence of the group on the 
particle. 

 The values of the vectors Pୠୣୱ୲ and Gୠୣୱ୲ : 
At each iteration, the comparison of the fitness 

values of each particle with the values of Pୠୣୱ୲ is 
performed to establish the choice of the best value 
between the two.  

 
In our case, we try to minimize our objective 

function, so the best value chosen will be the 
minimum fitness value. This is modeled as follows: 

𝑃 ௦௧ ,ሺ𝑡  1ሻ ൌ

൝
 𝑥ሺ𝑡  1ሻ , 𝑖𝑓 𝑓 ቀ 𝑥ሺ𝑡  1ሻቁ ൏ 𝑃 ௦௧ ,ሺ𝑡ሻ

𝑃 ௦௧ ,ሺ𝑡ሻ, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
      ሺ7ሻ        

  

𝐺 ௦௧ ሺ𝑡ሻ ൌ arg 𝑚𝑖𝑛 ್ೞ 
𝑓൫𝑃 ௦௧ ሺ𝑡  1ሻ൯        

                     𝑤𝑖𝑡ℎ    1  𝑖  𝑛                       (8) 

 

Figure 3:Illustration of Position and Velocity updates 

Step 4 : Stopping criteria 
These steps are repeated until satisfaction of the 

defined stopping criteria which can be either the 
attainment of the convergence or the attainment of a 
maximum number of iterations. Once the stopping 
criteria are satisfied, the final result can be displayed. 

3.3. The Optimization Problem 
 

In this article, our problematic of reconstructing a 
3D object using supershapes from a 3d point cloud is 
considered as an optimization problem. 

 
To solve an optimization problem, we must first 

define an objective function to optimize, then we 
must formulate the constraints or stopping criteria if 
necessary, and finally we must choose the 
appropriate optimization algorithm to optimize the 
defined objective function. All of these factors have 
a primordial role in the program's good performance. 

 
The definition of the objective function in our case 

is based on the projection of the 3d point cloud 
provided initially on the supershape. We seek to find 

the supershape that perfectly matches the shape of 
this point cloud; in other words, we seek to find the 
set of parameters of the supershape which 
corresponds the most to the parameters of the 
supershape that we want to reconstruct. Then the 
objective function represents in our case the distance 
separating each point of the point cloud from the 
supershape along the line passing through the point 
and the center of the supershape (refer to Figure 9). 
This is called radial Euclidean distance. 

 
The choice of the optimization method strongly 

depends on the nature of the defined objective 
function. 

 
We propose to solve our reconstruction problem 

by using the optimization process illustrated in the 
following figure:   

 

Figure 4:The Optimization Procedure 
 

First of all, we must define all the parameters that 
we are trying to optimize. In our case this set of 
parameters is simply the set of parameters defining 
the supershape. Then as indicated, comes the turn of 
the definition of the objective function, it will take 
care of evaluating all the candidate solutions present 
in the research space. It is necessary to correctly 
analyze the problem of optimization, and to take into 
account all the parameters that we will optimize in 
order to perfect the definition of the objective 
function. Finally, a good choice of the optimization 
method is required. We were directed to population-
based metaheuristic methods. The optimization 
process takes as input a 3D point cloud and at the end 
provides the reconstructed image that best fits with 
that point cloud. A 3D point cloud can be defined as 
being the light version of a 3d object, it represents a 
set of multidimensional points, i.e., represented in a 
3D coordinate system: (x, y, z). 
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There are different devices available to obtain 3D 
points cloud such as 3d scanners, stereo cameras, 
LiDARs, etc. They can also be generated by a 
computer software such as meshlab, matlab or 
afanche 3D. 

 
3D points cloud have been used in several fields 

in order to simplify the applied treatments, for 
example: medical imaging, civil engineering, aerial 
imagery, robotics, etc. Sometimes this goal is not 
always reached because the 3D points cloud remains 
voluminous which is consequent for calculation 
operations. In this case, a reduction of the number of 
points contained in the points cloud is necessary until 
a minimum number of points representing the initial 
shape is reached. This operation is called The re-
sampling (refer to Figure 5). 

 

 
(A) 3d Point Cloud  (B) The Re‐Sampling 

 
Figure 5:The Re-Sampling Of 3d Point Cloud 

3.3.1 Parameters to optimize 
The purpose of our approach is to find the 

supershape  which corresponds to the 3d point cloud 
provided at the beginning. So it's all about 
optimizing the set of parameters of the supershape in 
question. Following the definitions given in section 
(3-a), a supershape depends on 10 parameters : [a, b, 
m, n1, n2, n3, M, N1, N2, N3]. 

We can add to the supershape’s parameters a set 
of transformation parameters. Common 
transformations in different applications are affine 
transformations: translation, rotation and scaling. 
There are also other transformations existing in the 
literature that can be associated with affine 
transformations and also added to the parameters of 
the supershape, so as to be able to diversify and 
increase the number of forms. 

We relied on Wyvill's work [31] and studied the 
following set of warping transformations: 

It should be noted that the transformations are 
applied around the z axis, i.e. only the x and y 
components change, and for each point P at the 
coordinates ሺ𝑥, 𝑦, 𝑧ሻ the warping function is applied 
(we note it 𝑤ሺ𝑃ሻ ) to obtain the coordinates of point 
𝑃ᇱ. 

 

 

 Bending :  
 

    𝑃 ቤ
𝑥
𝑦
𝑧

                  𝑃ᇱ ተ
െ sinሺ𝜃ሻ ∗ ቀ𝑦 െ

ଵ


ቁ  𝑥

𝑐𝑜𝑠ሺ𝜃ሻ ∗ ቀ𝑦 െ
ଵ


ቁ 

ଵ


𝑧

   (9)       

with  ቐ

𝜃 ൌ ሺ𝑥 െ 𝑥ሻ ∗ 𝑘  
𝑘 𝑖𝑠 𝑡ℎ𝑒 𝑏𝑒𝑛𝑑𝑖𝑛𝑔 𝑟𝑎𝑡𝑒
ଵ


 𝑖𝑠 𝑡ℎ𝑒 𝑏𝑒𝑛𝑑𝑖𝑛𝑔 𝑎𝑥𝑖𝑠 

 

Before After 

   

Figure 6:Illustration Of Bending Transformation 

 Tapering :  

           𝑃 ቤ
𝑥
𝑦
𝑧

                   𝑃ᇱ อ
𝑥 ∗ ሺ1  𝑧 ∗ 𝑤ሻ

𝑦
𝑧

      (10)

         with  𝑤 the warping factor     

  

Before After 

   

Figure 7:Illustration Of Tapering Transformation 

 Twisting :   
 

  𝑃 ቤ
𝑥
𝑦
𝑧

                 𝑃ᇱ อ
𝑥 ∗ 𝑐𝑜𝑠ሺ𝜃ሻ െ 𝑦 ∗ sinሺ𝜃ሻ
𝑥 ∗ sinሺ𝜃ሻ  𝑦 ∗ 𝑐𝑜𝑠ሺ𝜃ሻ

𝑧
     (11) 

with    𝜃 ൌ 𝑧 ∗ 𝑤 

 

Before After 

   

Figure 8:Illustration Of Twisting Transformation 

Applying all these transformations to the 
supershape, its number of parameters will increase 
and becomes 28 instead of 10 parameters. The 
parameter vector of the supershape will be 
expressed as follows: 
[a,b,m,𝑛ଵ, 𝑛ଶ, 𝑛ଷ,M, 𝑁ଵ, 𝑁ଶ, 𝑁ଷ, 𝑇௫, 𝑇௬, 𝑇௭, 𝑅௫, 𝑅௬, 𝑅௭,
𝑆௫, 𝑆௬, 𝑆௭, 𝑔௫, 𝑔௬, 𝑔௭, 𝑡௫, 𝑡௬, 𝑡௭, 𝑝௫, 𝑝௬, 𝑝௭]           (12) With:  
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𝑇௫, 𝑇௬, 𝑇௭ : the translation factors according the 3 
directions ሺ𝑥, 𝑦, 𝑧ሻ; 

𝑅௫, 𝑅௬, 𝑅௭ : the rotation factors according the 3 
directions ሺ𝑥, 𝑦, 𝑧ሻ; 

𝑆௫, 𝑆௬, 𝑆௭ : the scaling factors according the 3 directions 
ሺ𝑥, 𝑦, 𝑧ሻ; 

𝑔௫, 𝑔௬, 𝑔௭ : the tapering factors according the 3 
directions ሺ𝑥, 𝑦, 𝑧ሻ; 

𝑡௫, 𝑡௬, 𝑡௭ : the twisting factors according the 3 directions 
ሺ𝑥, 𝑦, 𝑧ሻ; 

𝑝௫, 𝑝௬, 𝑝௭ : the bending factors according the 3 
directions ሺ𝑥, 𝑦, 𝑧ሻ. 

3.3.2 Objective function 
The good definition of the objective function will 

help us find the best possible solution for our 
optimization problem. To succeed in this task, we 
must understand very well the problem that we will 
optimize, and also the role of the objective function. 

In our problematic, we seek to approach the 3d 
point cloud by a supershape in order to successfully 
establish the three-dimensional reconstruction of this 
point cloud. It is then question of identifying the 
supershape that coincides the best with the form of 
the point cloud. From the parametric representation 
of supershapes presented in equation (1), the 
potential function can be determined as follows: 

𝐹ሺ𝑥, 𝑦, 𝑧ሻ ൌ 1 െ
௫మା௬మାభ

మሺఏሻ௭మ

ቀమ
మሺ∅ሻ∗భ

మሺఏሻቁ
              (13) 

To demonstrate that a point P belonging to the 
point cloud corresponds to a point on the surface of 
the supershape, we use the radial Euclidean distance. 
The distance separating a point P from the surface of 
the supershape can be defined as follows: 

        𝑑ሺ𝑃ሻ ൌ 1 െ
|หைሬሬሬሬሬ⃗ ห|

|หைூሬሬሬሬ⃗ ห|
            (14) 

O: the center of the supershape; 
I: the intersection between the segment 𝑂𝑃ሬሬሬሬሬ⃗  

(passing through the center O and the point P) and 
the supershape. 

This distance is nothing but the potential function 
defined in the equation (15), it is illustrated in the 
following figure: 

                         

Figure 9:Projection And Position Of A Point With 
Respect To A Supershape 

We can determine the position of any point 
belonging to the point cloud with respect to the 
supershape using to the sign of the potential function, 
we distinguish three cases (refer to Figure 9): 
 The point is positioned on the surface, in this 

case the potential function is null; 
 The point is outside the surface, in this case the 

potential function is negative; 
 The point is inside the surface, in this case the 

potential function is positive. 
We define the objective function as follow [22]: 

           𝐸𝑟𝑟ሺ𝑉ሻ ൌ ∑ 𝐹ଶሺ𝑃ሻ

ୀଵ                    (15) 

So the solution of our problem is then to find the 
vector of the supershape’s parameters which 
minimizes this error function. To model this 
mathematically, it is assumed generally that a 
supershape is expressed as a vector of m parameters: 
𝑆 ൌ ሾ𝑝ଵ, 𝑝ଶ, … , 𝑝ሿ. The error function that we want 
to optimize will therefore be the following function:  

𝐸𝑟𝑟ሺ𝑆ሻ ൌ 𝐸𝑟𝑟(𝑝ଵ, 𝑝ଶ, … , 𝑝ሻ                 (16) 

4. EXPERIMENTATION 
The general structure of de proposed approach is 

illustrated in the flowchart below : 
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Figure 10:Flowchart of the proposed approach 
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To illustrate our approach, we apply it on known 
parametric surfaces as supershapes.  

 
In the PSO algorithm, the parameters ሺ𝜔, 𝑐ଵ, 𝑐ଶሻ 

are defined by the user. The values assigned to these 
parameters can strongly impact the convergence of 
the algorithm. For this, many studies have been 
established to limit the definition interval of these 
parameters. It was concluded that 𝜔 ∈ ሿെ1,1ሾ and 
that 𝑐ଵ  𝑐ଶ ൏ 4ሺ1  𝜔ሻ. Some authors have 
selected a different set of values for these parameters 
displayed in the following table [32]: 

Table 2:Examples of the PSO parameters  
(ω, c1, c2) 

 ω c1 c2

Clerc & Kennedy 0.729 1.494 1.494 
Trelea 0.6 1.7 1.7
Carlisle & Dozier 0.729 2.041 0.948
Jiang & Luo & 
Yang 

0.715 1.7 1.7

 
In our experiment, we chose to test 8 sets of the 

parameters ሺ𝜔, 𝑐ଵ, 𝑐ଶሻ. In addition to the 4 sets 
presented in the table above, we also work with the 
following sets: 

ሺ𝜔, 𝑐ଵ, 𝑐ଶሻ ൌ ሺ0.4, 0.5, 0.3ሻ 
ሺ𝜔, 𝑐ଵ, 𝑐ଶሻ ൌ ሺ0.99, 2, 2ሻ 

ሺ𝜔, 𝑐ଵ, 𝑐ଶሻ ൌ ሺെ0.25, 2,5, 0.5ሻ 
ሺ𝜔, 𝑐ଵ, 𝑐ଶሻ ൌ ሺെ0.3488, െ0.2746, 4.8976ሻ 

We initialize our swarm with a population of 83 
particles and fix the maximum number of iterations 
at 4000. 

The lower and upper bounds and the evolution 
step for each parameter are also fixed. We should be 
careful while defining the lower and upper bounds 
because these bounds can easily influence the results 
positively or negatively; it represents the limits of the 
variables required by the PSO method. The choice of 
the bounds must be wide enough containing a 
satisfactory minimum but not too wide in order to 
avoid a rapid convergence. The evolution step plays 
an important role in the search for absolute extrema.  

For each supershape, we tried to determine 
specific values of the lower and the upper bounds. 
The evolution step value was fixed at : 
Epsillon=0.05. 

We tested our approach on several supershapes to 
illustrate its performance. We chose to present the 
results obtained of the two following supershapes: 

 
 
 
 

4.1.  Supershape 1 
 

The parameters of this supershape are : 
𝑆ଵ ൌ ሺ6,4,1000,390,390,2,2,2ሻ 

Once we get the supershape, we generate its point 
cloud. Then we simplify the complexity of the 
generated point cloud by re-sampling it. Note that 
our method is able to reconstruct the 3d object even 
if the number of points present in the point cloud 
provided is reduced after the re-sampling. 

Supershape1 After Re-sampling 
the point cloud 

Figure 11:The re-sampling of S1's point cloud 

The lower and upper bounds (LB and UB 
respectively) are defined as follows : 

𝐿𝐵 ൌ ሾ3,9. 𝑒ଶ, 3. 𝑒ଶ, 3,1,1,1,5. 𝑒ିଵ, 5. 𝑒ଵሿ 
𝑈𝐵 ൌ ሾ8,1100,450,450,5,4,4,4,2,2ሿ 

The following graphs illustrate the evolution of 
the error value along the 4000 iterations and 
according to the 8 defined PSO parameters. 
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Figure 12 :Graphical representation of the error 
value depending on the number of iterations 

Figure 13:Graphical representation illustrating the 
best option 

As we can see in the figures 12 and 13, the option 
number 3 (parameters defined by Jiang & Luo & 
Yang) shows the best performance. This set of 
parameters helps the algorithm to provide the best 
error value.  

According to the best result obtained in the figure 
13, we present the evolution curve of the error 
according to the number of iterations and the final 
reconstructed form in the following figure : 

a- Curve of the error value according to the number of 
iterations in the case of option 3 

 

b- The reconstructed form 

Figure 14:Results in the case of option 3 

The value of the error stabilizes around the 
iteration 3600. 

 

 

The parameters of the reconstructed form are : 

𝑅_𝑆ଵ
ൌ ሺ5.027,3.01,1098.95,357.38,371.14,2.12,3.94,3.71ሻ 

And the best error value obtained is : 

𝐸𝑟𝑟 ൌ 0.10 

It is noted that the parameters values obtained of 
the reconstructed form 𝑅_𝑆ଵ are very close to the 
supershape's parameters 𝑆ଵ provided at the 
beginning. This observation is confirmed in the 
figure 14-b representing the reconstructed form of 
the point cloud corresponding to the supershape 𝑆ଵ. 
The shape obtained matches very well the point 
cloud and reflects the initial provided shape. 

4.2.  Supershape 2 
 

The parameters of this supershape are : 
𝑆ଶ ൌ ሺ3,6,100,198,100,39,39,39ሻ 

Before applying our approach on the supershape, 
we proceed first to the re-sampling of the point cloud 
to simplify all the following operations, and also to 
demonstrate the effectiveness of our approach with 
limited number of points. 

Supershape2 After Re-sampling

Figure 15:The re-sampling of S2 
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The lower and upper bounds (LB and UB 
respectively) are defined as follows : 

𝐿𝐵
ൌ ሾ2,9. 𝑒ଵ, 1.8𝑒ଶ, 3,9. 𝑒ଵ, 3. 𝑒ଵ, 3. 𝑒ଵ, 1. 𝑒ିଶ, 1. 𝑒ିଶሿ 

𝑈𝐵 ൌ ሾ4.5,110,200,200,7,110,60,60,1.3,1.4ሿ 

The following graphs illustrate the evolution of 
the error value along the 4000 iterations and 
according to the 8 defined PSO parameters. 

 

 

  Figure 16:Graphical Representation Of The Error  
Value Depending On The Number Of Iterations 

 

 

Figure 17:Graphical Representation Illustrating The Best 
Option 

As we can see in the figures 16 and 17, this time 
the option number 6 shows the best performance.  

As we can see here, the fact of changing PSO 
parameters can influence strongly the quality of the 
results. We cannot determine the same set of 
parameters for all the shapes. So, for each shape, a 

specific set of parameters may prove its effectiveness 
and present best results. 

According to the best result obtained, here is the 
evolution curve of the error according to the number 
of iterations and the final reconstructed form. The 
value of the error stabilizes around the iteration 
3900. 

 

a. Curve of the error value according to 
the number of iterations in the case of 

option 6 

 

b. The reconstructed form 

Figure 18:Results In The Case Of Option 6 

The parameters of the reconstructed form are : 

𝑅_𝑆ଶ
ൌ ሺ2.80,6.98,100,189.67,186.89,91.19,58.72,53.52ሻ 

And the best error value obtained is : 

𝑬𝒓𝒓 ൌ 𝟎. 𝟑𝟐 
By comparing the values of the reconstructed form 

𝑅_𝑆ଶ with the parameters of the supershape 𝑆ଶ, we 
note that the algorithm succeeded very well in 
approaching the first part of the parameters and 
succeeded less in approaching the second part. 
Hence the margin of error increases in comparison 
with the first error value obtained corresponding to 
the supershape 𝑆ଵ. On the other hand, we obtained a 
rather good reconstruction of the point cloud as we 
can see in figure 18-b. 

 
4.3.  Discussion 

Our approach consists in performing the 3D 
reconstruction of a 3d object from its point cloud 
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using a population-based method. The goal would be 
to find the shape that perfectly matches the point 
cloud provided at the beginning. To illustrate this, 
we worked with supershapes. We generated the 3d 
point cloud of the supershapes. After that, we 
proceeded to the re-sampling of the point cloud. We 
also tried to make the right choice of the initialization 
parameters of our algorithm by performing several 
tests. Since the compromise between the response 
time and the quality of the solution provided is 
respected, we can admit that the set of choices made 
has been judicious. 

There are little works involved in three-
dimensional reconstruction of a 3d object by 
supershapes using optimization methods. Fougerolle 
[29] carried out works on three-dimensional 
reconstruction of Gielis surfaces using Levenberg-
marquardt (LM) algorithm [26]. The error function 
used by Fougerolle is also based on its definition on 
the Euclidean radial distance. And there is also 
another work of the same author employing the 
genetic algorithm, which is a metaheuristic 
belonging to the family of evolutionary algorithms  
[27].  

In order to determine the effectiveness of our 
approach, we will compare our results with existing 
results in the literature. The following table 
compares the results obtained by our approach and 
those obtained by Fourgerolle's approaches. Note 
that the presented results concern the two 
supershapes presented previously in this section: 

Table 3:Comparative Table 

  Error Value 

  LM 
Algorithm 

Genetic 
Algorithm 

PSO 

Supershape1  3.54  0.24 0.10
Supershape2  1.35  0.76 0.32

 
In the case of the two supershapes, there is a 

considerable difference in the error values. The 
values obtained by our approach are very small 
compared to those obtained by Fougerolle's first 
approach using the LM algorithm which is a 
deterministic method. Fougerolle's second approach 
improved the performance of its 3d reconstruction 
method by using a metaheuristic. The difference 
between the results of his two methods is glaring. 
Our approach offers a better reconstruction than the 
two approaches proposed by Fougerolle given the 
obtained error values. We can conclude that the fact 
of using a metaheuristic method is more judicious 
than using a deterministic method for the resolution 
of this kind of problematics. And the PSO algorithm 

has a better performance in the 3d reconstruction by 
supershapes in comparison with the genetic 
algorithm. 

5. CONCLUSION AND FUTURE WORK 
 
In this paper, we considered the problem of three-

dimensional reconstruction of a 3d object as an 
optimization problem. We choose to employ the 
recent forms of Gielis in our work to illustrate the 3d 
object reconstruction. We proposed then a method of 
reconstruction focused on the use of supershapes and 
also on the PSO method. We give a lot of interest to 
the choice of the optimization method and the error 
function given their importance in the success of the 
approach.  

Our approach has been applied on several models 
of supershapes. The results obtained showed that our 
approach was effective enough to solve this problem. 
The three dimensional reconstruction was successful 
by using an optimization method and more 
specifically by employing metaheuristics methods. 

 The results are very encouraging and leads us to 
further develop our approach in our future research 
work. It can be generalized and adapted to more 
complex shapes. 3d object reconstruction by 
supershapes can be accomplished by dividing the 
object in question into supershapes that we can 
reconstruct easily and regroup them to obtain the 3d 
object. Transformation parameters such as warping 
parameters or others can be added to supershapes. 
There is a wide choice of existing swarm 
optimization methods in the literature. Other 
methods can be applied than the PSO, and a 
comparative study on the performance of each 
method can be achieved to designate the most 
efficient method for three-dimensional 
reconstruction of an object by supershapes from a 3D 
point cloud. We can also work on the best method 
selected and adapt its structure to perfect its 
performance. 
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