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ABSTRACT 
 

Vehicle detection is an important subject in intelligent transportation systems. With the development of deep 
learning, many methods for vehicle detection based on deep learning have been proposed and showed better 
performance compared with traditional methods. However, due to difficult conditions such as occlusion or 
truncation of vehicle in image, small size of vehicle, and environment conditions, the performance of deep 
learning-based vehicle detection is still limited. This paper proposes a multi-scale deep learning framework 
for vehicle detection in traffic scene. To improve the performance of small vehicle detection, an enhanced 
multi-scale feature map generation module is designed to fuse different convolution layers at different scales 
of the base network and create the enhanced feature map which improves the resolution of small vehicle and 
simultaneously includes more semantic information. In the detection stage, the information surrounding a 
given object proposal is exploited to enhance the feature representation of proposals. At final stage, a 
classifier including a region of interest pooling layer and fully connected layers is used for classification and 
bounding box regression. For evaluating the proposed framework, the KITTI dataset is adopted. Experimental 
results on the KITTI dataset show that the proposed method achieves nearly as performance as other state-
of-the-art methods on vehicle detection. 

Keywords: Vehicle Detection, Convolutional Neural Network, Intelligent Transportation System, Object 
Detection, Deep Learning 

 
1. INTRODUCTION  
 

Vision-based vehicle detection from images is 
an essential prerequisite for many intelligent 
transportation systems, with a wide range of real-
world applications, such as ADAS and autonomous 
driving, intelligent traffic management systems and 
so on. Many methods for vision-based vehicle 
detection have been proposed. Traditional methods 
are usually based on hand craft features such as 
colour, shape, energy, and so on to locate vehicle in 
image [8]-[15]. Because that vehicle detection 
systems are used in real-world applications, they 
should be robust to illumination variations, partial 
detections, occlusions, camera viewpoint changes, 
scale changes, and so on. In urban driving, frequent 
occlusions, along with a variety of vehicle 
orientations and scales, make vehicle detection 
difficult. Therefore, improvements in the detection 
accuracy of real-world vehicle-detection systems 
have become major issues.  

In recent years, deep convolutional neural 
networks (CNNs) have achieved incredible success 
on vehicle detections as well as various other object 

detection tasks. However, when applying CNNs to 
vehicle detection, real-time vehicle detection in 
driving environment is still very challenging. It is 
observed that the object detection performance of the 
popular CNN detectors including Faster-RCNN [2] 
and SSD [5] without modification is not very good 
over the KITTI benchmark datasets [3]. KITTI is the 
largest public dataset dedicated to ADAS and 
autonomous driving benchmarking. One of the main 
challenges is that traditional CNNs are sensitive to 
scales while it is quite common that in-car videos or 
transportation surveillance videos contain vehicles 
with a large variance of scales. Current methods are 
based on modifying the popular CNN detectors to 
enhance the performance of detection results.  These 
methods focus on making the network fit different 
scales by utilizing input images with multiple 
resolutions. However, these methods introduce 
expensive computational overhead and thus are still 
incapable of fast vehicle detection, which is essential 
for autonomous driving systems, real time 
surveillance and prediction systems.  

In view of the above research challenges, this 
paper proposes a multi-scale deep learning 
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framework to increase the visual vehicle detection 
accuracy. To improve the performance of small 
vehicle detection, an enhanced multi-scale feature 
map generation module is designed to fuse different 
convolution layers at different scales of the base 
network and create the enhanced feature map which 
improves the resolution of small vehicle and 
simultaneously includes more semantic information. 
In the detection stage, the information surrounding a 
given object proposal is exploited to enhance the 
feature representation of proposals. At final stage, a 
classifier including a region of interest pooling layer 
and fully connected layers is used for classification 
and bounding box regression. The proposed 
approach is evaluated over KITTI benchmark 
dataset. With this dataset, the proposed method 
achieves comparable detection results with other 
state-of-the-art methods. 

This paper is organized as follows: an overview 
of previous methods is presented in Section 2. 
Section 3 describes detail the proposed method. 
Section 4 demonstrates experimental results. Finally, 
the conclusion is made in Section 5. 
 
2. RELATED WORK 
 

In this section, this paper introduces previous 
vehicle detection methods, including traditional 
methods and deep learning-based methods.  

Vision-based vehicle detection methods can be 
divided into two groups [23]: Traditional method 
and deep learning-based method. Traditional 
methods are usually based on hand craft feature such 
as colour, shape, energy, and so on to locate vehicle 
in image. Li et al. [8] proposed a method of learning 
reconfigurable hierarchical And-Or models which 
represents the regularities of car-to-car context and 
occlusion patterns at three levels to integrate context 
and occlusion for car detection. In [9], the structure 
of the And-Or model is learned with three 
components, and the model parameters are jointly 
trained using Weak-Label Structural SVM. Chen et 
al. [10] proposed a method based on background 
Gaussian Mixture Model and shadow removal 
method to deal with sudden illumination changes 
and camera vibration. Furthermore, A Kalman filter 
tracks a vehicle to enable classification by majority 
voting over several consecutive frames, and a level 
set method has been used to refine the foreground 
blob. In [11], the authors used Haar and Adaboost 
algorithm to detect the vehicle. In addition, 
simplified Lucas-Kanade algorithm and virtual edge 
were used to remove false positive detection and use 
automatic image matting to do detection refinement. 
In [12], two-dimensional discrete wavelet transform 

is used first for extracting features from the images 
which has a good location property in time and 
frequency domains. Moreover, road detection is 
proposed to determine the zone of interest, this 
technique is used one time at the beginning of the 
processing to solve the problem of unimportant 
movement of the background and also to reduce the 
processing time. To detect vehicles, the Background 
subtraction method is used, followed by the 
connected components method to improve the 
results of the detection. In [13], the features of 
vehicles are learned as a deformable object model 
through the combination of a latent support vector 
machine and histograms of oriented gradients. The 
detection algorithm combines both global and local 
features of the vehicle as a deformable object model. 
Hsieh et al. [14] proposed a new symmetrical SURF 
descriptor to enrich the power of SURF to detect all 
possible symmetrical matching pairs through a 
mirroring transformation. A vehicle-make and 
model recognition application are then adopted to 
prove the practicability and feasibility of the method. 
Yebes et al. [15] carried out a discussion on the 
supervised learning of a car detector built as a 
Discriminative Part-based Model from images in the 
KITTI benchmark suite as part of the object 
detection and orientation estimation challenge. In 
[22], the authors proposed a general active-learning 
framework for robust on-road vehicle recognition 
and tracking. This framework takes a novel active-
learning approach to building vehicle-recognition 
and tracking systems. Makris et al. [24] proposed a 
method that uses local image features and follows 
the part-based detection approach. The method fuses 
intensity and depth information in a probabilistic 
framework. The depth of each local feature is used 
to weigh the probability of finding the object at a 
given distance. In [25], the authors used active 
learning to train independent-part detectors. A 
semisupervised approach is used for training part-
matching classification, which forms sideview 
vehicles from independently detected parts. In [26], 
strategies for occlusion and orientation handling are 
explored by learning an ensemble of detection 
models from visual and geometrical clusters of 
object instances. An AdaBoost detection scheme is 
employed with pixel lookup features for fast 
detection. 

Recently, deep learning-based methods have 
become the leading method for high quality general 
object detection. Faster region-based convolutional 
neural network (Faster R-CNN) [2] defined a region 
proposal network (RPN) for generating region 
proposals and a network using these proposals to 
detect objects. RPN shares full-image convolutional 
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features with the detection network, thus enabling 
nearly cost-free region proposals. This method has 
achieved state-of-the-art detection performance and 
become a commonly employed paradigm for general 
object detection. SSD framework [5] predicted 
category scores and box offsets for a fixed set of 
default bounding boxes using small convolutional 
filters applied to different scales from feature maps 
of different scales, and explicitly separate 
predictions by aspect ratio. This framework showed 
much faster and comparably performance with other 
methods. R-FCN [16] proposed region-based 
detector which is a fully convolutional with almost 
all computation shared on the entire image. To 
achieve this goal, the position-sensitive score maps 
is designed to address a dilemma between 
translation-invariance in image classification and 
translation-variance in object detection. The MS-
CNN [6] consists of a proposal sub-network and a 
detection sub-network. In the proposal sub-network, 
detection is performed at multiple output layers, so 
that receptive fields match objects of different 
scales. Another interesting work is YOLO [17], 
which outputs object detections within a 7x7 grid. 
This network runs at 40 fps, but with some 
compromise of detection accuracy. Most of these 
deep learning models target general object detection 
including vehicle. To better handle the detection 
problem of vehicles in complex conditions, Zhou et 
al. [18] proposed a fast vehicle proposal network 
(FVPN) for vehicle-like objects extraction and an 
attribute learning network (ALN) aiming to verify 
each proposal and infer each vehicle’s pose, color 
and type simultaneously. These two nets are jointly 
optimized so that abundant latent knowledge learned 
from the ALN can be exploited to guide FVPN 
training. Dong et al. [19] proposed a vehicle type 
classification method using a semi-supervised 
convolutional neural network from vehicle frontal-
view images. In addition, in order to capture rich and 
discriminative information of vehicles, sparse 
Laplacian filter learning is introduced to obtain the 
filters of the network with large amounts of 
unlabeled data. In [20], the authors proposed two 
context-aware structural descriptors, termed as a 
context-aware difference sign transform feature and 
context-aware difference magnitude transform 
feature. Hu et al. [21] proposed a scale-insensitive 
convolutional neural network for fast detecting 
vehicles with a large variance of scales. Context-
aware RoI pooling is designed to maintain the 
contextual information and original structure of 
small-scale objects, and a multi-branch decision 
network is introduced to minimize the intra-class 
distance of features. 

3. PROPOSED APPROACH 
 

Figure 1 illustrates the overall framework of the 
proposed approach. As shown in Figure 1, VGG-16 
architecture is first adopted to generate base 
convolution layers from input image. The enhanced 
multi-scale feature map generation module is then 
designed to create the enhanced feature map which 
improves the resolution of small vehicle and 
simultaneously includes more semantic information. 
The region proposal network is adopted to generate 
object proposals from enhanced feature map. RoI 
pooling layer is used to transfer each proposal and 
contextual regions of each object proposal to fixed 
size feature map. Due to the different scales of the 
feature representations generated by the RoI pooling 
layer, this paper concatenates these feature 
representations along the channel axis to form a 
concatenated feature representation. Finally, the 
final fused feature vector is fed into the classifier to 
classify proposals into vehicle and background class 
and adjust the bounding box for each of detected 
vehicle. Details of proposed framework are 
explained at the following sections. 
 
3.1 Enhanced Multi-Scale Feature Map 

Generation 
First, this study extracts convolutional features 

based on VGG-16 network [1]. VGG-16 network 
has 16 weight layers in its original form. VGG-16 is 
a simpler architecture model, since it is not using 
much hyper parameters. It always uses 3 x 3 filters 
with stride of 1 in convolution layer and uses same 
padding in pooling layers 2 x 2 with stride of 2. 
Figure 2 shows the architecture of the enhanced 
feature map generation module. The first number in 
the labels such as 1 and 2 represents the associated 
hidden layer in VGG-16 architecture, and the second 
number represents the ID of the convolution layer in 
a hidden layer. 

In deep learning-based object detection, the 
higher resolution feature maps in lower convolution 
layers could better describe the characteristics of the 
small-scale objects, and the lower resolution feature 
maps in higher convolution layers could better 
describe the characteristics of the large-scale objects. 
To detect vehicle at different sizes, this paper 
conducts several experiments to compare the 
performance of different convolution layers. 
According to results from extensive experiments, it 
is found that the output of convolution layer Conv3-
3 is the most suitable for localization of small vehicle 
because it possesses smaller receptive fields and 
higher resolution compared with Conv4 and Conv5. 
However, when used as a feature map, Conv3-3 
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leads to poor detection performance because it 
contains less semantic information. Thus, this paper 
designs an enhanced multi-scale feature map 
generation module that improves the resolution of 
small vehicle and simultaneously includes more 
semantic information, which improves the 
performance of the region proposals. 

As shown in Figure 2, this paper first uses the 
multi-scale deconvolution operation to up-sample 
the output feature map of the deeper convolution 
layers, including Conv4-3 and Conv5-3 layers. 
Notably, this deconvolution operation is different 
from the original up-sampling operation as it 
provides a set of parameters by which to learn a 
nonlinear up-sampling of the features in the deep 
layers. Then, the output features of different layers, 
including the output feature at Conv3-3, the output 
feature after the first deconvolution layer and the 
output feature after the second deconvolution layer 
are assembled to create the concatenated feature. 
The feature maps of different convolution layers 
have a different scale of value, and feature values 
from the shallower layer are generally larger than 
them from the deeper layer. Directly concatenating 
them easily leads to the smaller values being 
dominated by the larger values. Thus, this paper adds 
L2 normalization before the concatenation 
operation. L2 normalization can effectively keep the 
feature values from the different convolution layer 
on the same scale. For each pixel vector  𝑖 ൌ
ሺ𝑖ଵ, 𝑖ଶ, 𝑖ଷ, … , 𝑖௞ሻ  in the concatenated feature map, L2 
normalization is defined as follow: 

 

𝚤̂ ൌ
௜

‖௜‖మ
ൌ

௜

ሺ∑ |௜೗|మೖ
೗సభ ሻభ/మ   (1) 

 
where 𝚤̂ represents the normalized vector; ‖𝑖‖ଶ 
represents the L2 normalization of 𝑖; 𝑘 represents the 
number of channels. 
Finally, a 1x1 pointwise convolution is used to 
compress the number of channels within the 
concatenated feature and create the final fused 
feature map. 
 
3.2 Enhanced Region Proposal Network (RPN) 

and Detection Network 
The RPN [2] takes the fused convolution 

feature map generated by the multi-scale feature map 
generation module as input to create a set of anchor 
boxes. An anchor is centered at the sliding window, 
and is associated with a scale and aspect ratio. Based 
on the size of vehicle in images, this paper uses three 
scales and three aspect ratios for each anchor, 
yielding 9 anchors at each sliding position. More 
specific, the scales are set at 64, 128, 256 and the 
aspect ratios are set at 0.5, 1, 2. The RPN then takes 

all the anchor boxes and outputs two different 
outputs for each of the anchors. The first one is 
objectness score, which means the probability that 
an anchor is an object. The second output is the 
bounding box regression for adjusting the anchors to 
better fit the object. The RPN is implemented 
efficiently in a fully convolutional way, using the 
fused convolutional feature map returned by multi-
scale feature map generation module as an input. 
First, a convolutional layer with 512 channels and 
3x3 kernel size is used and then two parallel 
convolutional layers using a 1x1 kernel size are used, 
whose number of channels depends on the number 
of anchors per point. Since anchors usually overlap, 
proposals end up also overlapping over the same 
object. Non-Maximum Suppression (NMS) is used 
to solve the issue of duplicate proposals. The 
proposal whose region overlaps a ground truth 
region more than 70% is regarded as a positive 
proposal. Otherwise, it is regarded as a negative 
proposal. After applying NMS, the top 256 proposals 
sorted by score are keep for next stage. 

The fused feature map in the RPN is intended 
to improve the resolution and semantic information 
for small vehicle detection. The contextual 
information drawn from the neighborhood of the 
object proposal can provide important cues for 
object classification. Thus, this paper proposes an 
enhanced method to leverage contextual information 
for the object proposals. Let 𝑝௜ is an object proposal 
at ሺ𝑥௜, 𝑦௜ሻ in the fused convolution feature map. Let 
𝑤௜, ℎ௜ represents the width and the height of this 
proposal. This paper defines two contextual regions 
for each object proposal, which are cropped from the 
fused feature map at two different scales. The two 
contextual regions for proposal 𝑝௜ are defined as 
follows: 

 
𝑝௜ଵ

ᇱ ൌ ሺ𝑥௜, 𝑦௜,1.2𝑤௜, 1.2ℎ௜ ሻ   (2) 
 

𝑝௜ଶ
ᇱ ൌ ሺ𝑥௜, 𝑦௜,1.5𝑤௜, 1.5ℎ௜ ሻ   (3) 

 
 
Then, the object proposal 𝑝௜ and its contextual 
regions, including 𝑝௜ଵ

ᇱ , 𝑝௜ଶ
ᇱ , are fed into the RoI 

pooling layer. RoI pooling layer takes a list of 
regions with different sizes to create a list of 
corresponding feature maps with a fixed size by 
using max pooling operation. Fixed size feature 
maps are needed for the classifier in order to classify 
them into a fixed number of classes. In this paper, 
each feature representation has a fixed size of 
7x7x256. 

In addition, due to the different scales of the 
three feature representations generated by the RoI 
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pooling layer, this paper adopts the L2 normalization 
after each representation. Then, the three feature 
representations after L2 normalization are 
concatenated along the channel axis to form a 
concatenated feature representation. Finally, a 1x1 
convolution is employed to compress the number of 
channels within the concatenated feature from 
7x7x3x256 to 7x7x256. 

At the final stage, the final fused feature vector 
is fed into the classifier. The classifier has two 
different goals: Classify proposals into vehicle and 
background class and adjust the bounding box for 
each of detected vehicle. The proposed classifier has 
two fully connected layers, a box classification layer 
and a box regression layer. The first fully connected 
layer has two outputs, which are fed into the softmax 
layer to compute the confidence probabilities of 
being vehicle and background. The second fully 
connected layer with linear activation functions 
regresses the bounding boxes of vehicle. All 
convolutional layers are followed by a batch 
normalization layer and a ReLU layer. 
 
4. EXPERIMENTAL RESULTS 
 
 In order to compare the effectiveness of the 
proposed method with other methods on vehicle 
detection, this paper conducts experiments on the 
KITTI dataset [3]. KITTI dataset is the most used 
dataset for evaluating vehicle detection method. The 
proposed method is implemented on a Window 
system machine with Intel Core i7 8700 CPU, 
NVIDIA GTX 1080 GPU and 8 GB of RAM. 
TensorFlow is adopted for implementing deep CNN 
frameworks, and OPENCV library is used for real-
time processing. 
 
4.1 Dataset and Evaluation Metrics 

KITTI dataset [3] is the most widely used 
dataset for evaluating vehicle detection approaches. 
The KITTI dataset includes 7481 images for training 
with available ground-truth and 7518 images for 
testing with no available ground-truth. Images in this 
dataset include various scales of vehicles in different 
scenes and conditions and were divided into three 
difficulty-level groups: easy, moderate, and hard. If 
the bounding boxes size was larger than 40 pixels, a 
completely unshielded vehicle was considered to be 
an easy object, if the bounding boxes size was larger 
than 25 pixels but smaller than 40 pixels, a partially 
shielded vehicle was considered as a moderate 
object, and a vehicle with the bounding boxes size 
smaller than 25 pixels and an invisible vehicle that 
was difficult to see with the naked eye were 

considered as hard objects. Figure 3 shows example 
images in the KITTI dataset. 

For evaluation metrics, this paper uses the 
average precision (AP) and intersection over union 
(IoU) metrics [4] to evaluate the performance of the 
proposed method in all three difficulty level groups 
of the KITTI dataset. These criteria have been used 
to assess various object detection algorithms. The 
IoU are defined as follow: 

 

𝐼𝑜𝑈ሺ𝑏ଵ, 𝑏ଶሻ ൌ
௔௥௘௔ሺ௕భ∩ ௕మሻ

௔௥௘௔ሺ௕భ∪ ௕మሻ
   (4) 

 
where 𝑏ଵ represents the bounding box of the 
proposal, 𝑏ଶ represents the bounding box of the 
ground truth. The IoU is set to 0.7 in this paper, 
which means only the overlap between the detected 
bounding box and the ground truth bounding box 
greater than or equal to 70% is considered as a 
correct detection. Average precision evaluates the 
accuracy of detection from the perspective of recall 
rate and precision rate. It can be used to analyze the 
detection performance of a single category. 
 
4.2 Detection Results 

To evaluate the effectiveness of the proposed 
method, this paper compares the detection results of 
the proposed method with the results of recent state-
of-the-art object detection methods on the KITTI 
dataset, including Faster R-CNN [2], Single Shot 
MultiBox Detector [5] (SSD), and MS-CNN [6]. 
Faster R-CNN framework contains two stages: 
region proposal network and object detection 
network. While Fast R-CNN algorithm [7] is based 
on the selective search algorithm, the Faster R-CNN 
introduces the region proposal network, which has 
improved over the traditional methods. The SSD 
framework combines region proposals and region 
classifications in a single stage. The core of SSD is 
predicting category scores and box offsets for a fixed 
set of default bounding boxes using small 
convolutional filters applied to different scales from 
feature maps of different scales, and explicitly 
separate predictions by aspect ratio. MS-CNN 
extends the detection over multiple scales of feature 
layers, which produces good detection performance 
improvement.  

Figure 4 shows examples of detection results of 
the proposed method on the KITTI test dataset. As 
shown in Figure 4, the proposed approach can detect 
vehicle in difficult environments effectively. 
Furthermore, the proposed method can detect small 
vehicle and avoid producing multiple bounding 
boxes for one vehicle. Figure 5 presents example 
images in which some vehicles are not correctly 
detected. The main challenges of the vehicle 
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detection in KITTI dataset come from the heavy 
occlusion or truncation of the vehicles. Moreover, 
other external factors such as illumination change 
and cluttered background can affect the accuracy of 
the proposed method.  

Table 1 shows the detection results of the 
proposed method and other state-of-the-art deep 
CNN-based object detectors on the KITTI test 
dataset. As shown in Table 1, the performance of the 
proposed method outperforms both Faster R-CNN 
and SSD framework in Easy and Moderate group. 
More specific, compared with Faster R-CNN, the 
performance of the proposed method is improved by 
1.74% in Easy group and 5.21% in Moderate group. 
Compared with SSD, the performance of the 
proposed method is improved by 5.75% in Easy 
group and 17.15% in Moderate group. With Hard 
group, the proposed method achieves nearly as 
performance as Faster R-CNN. For the inference 
speed, the proposed framework takes 0.16 second to 
process an image while Faster R-CNN takes up to 
1.7 second. SSD is the fastest framework with only 
0.03 second, but SSD shows worse performance than 
other methods. Thus, the proposed approach meets 
the real-time detection standard and can be applied 
to the road driving environment of actual vehicles. 
Results in Table 1 show that MS-CNN achieves the 
best detection results. However, MS-CNN is slower 
than the proposed method. The proposed method 
achieves nearly as performance as MS-CNN while 
being faster and simpler. 
 
5. CONCLUSIONS 
 

This paper proposes a multi-scale deep learning 
framework that employs the two-stage fusion 
strategy for vehicle detection. The proposed 
framework integrates multiple levels of convolution 
feature and multiple levels of contextual 
information. At the detection stage, the region 
proposals are generated from the fused feature map 
with sufficient information. This paper designs the 
enhanced module that fuses different convolution 
layers by using deconvolution and normalization 
operations. At the classification stage, a fused 
feature map is created for the fully connected layer 
and the multi-scale contextual regions is designed to 
exploit the surrounding information for a given 
object proposal. Experimental results on the KITTI 
dataset show the proposed method's superiority for 
detecting small vehicle, and it achieved nearly as 
performance as other state-of-the-art methods. In 
future work, this paper focus on other deep learning 
architecture for improving detection accuracy. 
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Figure 1: The Overall Framework of The Proposed Approach. 

 
 
 

 
Figure 2: The Architecture of The Enhanced Feature Map Generation Module.
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Figure 3: Example Images in The KITTI Dataset. 
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Figure 4: Detection Results of The Proposed Method on The KITTI Test Dataset.
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Figure 5: Undetected Vehicle Due to Small Size, Heavy Occlusion or Truncation of The Vehicles.
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Table 1: Detection Results of The Proposed Method and Other Methods. 

Method Difficulty-level groups Inference time 
(second) 

 Easy (%) Moderate (%) Hard (%)  

SSD [5] 83.89 67.17 59.09 0.03 

Faster R-CNN [2] 87.90  79.11 79.19 1.7 

MS-CNN [6] 90.46 88.83 74.76 0.3 

Proposed method 89.64 84.32 79.03 0.16 

 


