
Journal of Theoretical and Applied Information Technology
15th December 2019. Vol.97. No 23

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

3520

A DATA CONFIDENTIALITY SYSTEM BASED ON
TRUSTED PLATFORM MODULE IN CLOUD STORAGE

ENVIRONMENT

1IGARRAMEN ZAKARIA, 2HEDABOU MUSTAPHA, 3BENTAJER AHMED
1,2ENSA School of Safi, Cadi Ayyad University, MTI Lab, Morocco

2Mohammed VI Polytechnic University, Ben Guerir, Morocco
3ENSA School of Tetouan, Abdelmalek Essaadi University, Morocco

E-mail: 1zakaria.igarramen@ced.uca.ma, 2mhedabou@gmail.com, 3a.bentajer@gmail.com

ABSTRACT

Data confidentiality is a major concern in cloud storage environment security. A number of methodologies
and algorithms are available to prevent privacy vulnerabilities and achieve data security. Existing solutions
to protect the data mainly rely on cryptographic techniques. However, these cryptographic techniques add
computational overhead, in particular when the data is distributed among multiple Cloud Service Provider
(CSP) servers and more precisely Key Management Servers (KMS). File Assured Deletion (FADE) is a
promising solution for addressing this issue. FADE achieves assured deletion of files by making them
unrecoverable to anybody, including those who manage the cloud storage. The system is built by
encrypting all data files before outsourcing, and then using a trusted party to outsource the cryptographic
keys. But, this methodology remains weak since its security relies completely on the security of the key
manager. In this paper, we propose a new scheme that aims to improve the security of FADE by using the
Trusted Platform Module (TPM) and the Encrypted File System (EFS). A prototype implementation of the
proposed scheme shows unique results, it provides a value-added security layer compared to FADE with a
less overhead computational time.

Keywords: Cloud Computing, FADE, TPM, VANISH, SSP, Ephemeriser. Cloud Storage, Secure Deletion,
Confidentiality, Reliability, Integrity, Trusted Storage.

1. INTRODUCTION

Cloud Computing is the on-demand delivery of
compute power, applications, database, storage and
other IT resources using the Internet. Cloud storage
refers, commonly, to online space that we can use
to store our data, as well as to keep a backup of our
files. The most typical examples of cloud storage
environments are Dropbox[1], Google Drive,
Microsoft OneDrive and Amazon Drive. These
services are proposed by Cloud Service Providers
(CSPs) that offer obvious advantages, such as cost,
accessibility, recovery and syncing.

However, clients wonder if these services are
secure as the traditional ones based on in-house
solutions. The concern is about the three key
security objectives of any information system:
confidentiality, integrity and availability, also
known as the CIA triad [2,3]. These properties
ensure that client’s data is always secure and cannot
be modified by unauthorized users and the data is

always available at the latest versions when being
retrieved by the user [4]. In general, the public
perception is that, when some data is deleted, it no
longer exists. Careful users take great precautions in
protecting their data, by using strong passwords,
two-factor authentication and encrypting their files.
Unfortunately, they don’t have any guaranty that
there are no other copies of their deleted data. These
concerns have prevented many consumers and
enterprises from using widely the cloud despite its
benefits [5]. The practical approach to render the
data inaccessible on a cloud storage environment is
to encrypt all the data before uploading them. The
FADE system [6,32], is based on encrypting each
message with a data key. It introduces a trusted
third party to help managing the keys. This data key
will be encrypted by an ephemeral public key witch
is key managed by one or more trusted third parties,
named the ephemerizers [7]. It should also be noted
that risks arise when the third parties are
compromised or down. In that case, certain
operations will become not available. If we cannot

Journal of Theoretical and Applied Information Technology
15th December 2019. Vol.97. No 23

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

3521

trust the cloud storage, it must be the same for the
key manager. To that end, instead of relying on
centralized third parties to manage the keys, our
proposed solution, design a decentralized approach,
by using FADE system in conjunction with TPM
and EFS, to protect data privacy.

The remainder of this paper is organized as
follows: Section 2 presents the true meaning of a
trusted cloud storage environment. Section 3
presents how FADE system provides a policy-based
file assured deletion. In section 4, we discuss the
limitations of FADE. In section 5, we review some
related works on protecting outsourced data storage.
Section 6, provides a brief description of our novel
approach FADE-TPM-EFS to ensure privacy of
deleted data. Finally, we come to end with our
conclusions.

2. TRUSTED CLOUD STORAGE
ENVIRONMENT

The main task of a “Trusted Cloud Storage
Environment” is not only storing the data as well as
it needs confidential storing and also integrity of
the data would be maintained.

To achieve confidentiality and integrity of
the data, cryptographic techniques can be used to
encrypt data. For example, we can use the
Encrypted File System (EFS) [8,9] to encrypt the
client’s data within the cloud. It is used to encrypt
the user’s data, manage and create keys which are
used for data encryption and decryption [10].

EFS meant for encrypting stored files.
Encryption procedures are transparent to the user
and occurs at the file system level not at the
application level. Diagram below illustrates the
flow of the encryption process using EFS:

Figure 1: Flow of EFS in an Encrypting File System

(Microsoft Windows)

3. FILE ASSURED DELETION

File Assured Deletion (FADE) was
discussed in many research articles [6,11,12,13]. It
consists of encrypting the file with a DK (Data
Key) which in its turn encrypted by a CK (Control
Key) that is maintained by a separate third party
KM (Key Manager) and when the predefined
period expire the Key Manager remove the Control
Key. This design was later prototyped in Vanish.

In order to make the deletion operation
more flexible, File Assured Deletion system,
combines several atomic boolean combination. The
data owner will get the decryption key, if and only
if his attributes satisfy the policy of the respective
file. We can define policies over attributes using
disjunctions, conjunctions and (k,n) threshold gates.
As an example, in the figure below, the decryption
key for the File X will be deleted if the date is the
beginning of the year 2020 and when the applicant
is an employee or a trainee in the Subsidiary A or
B. The policy based deletion follows the same logic
of Attribute Based Encryption (ABE) [14] where
owner can get data only if several attributes are
satisfied.

 Figure 2: Example of Policy Based Deletion Scenario

3.1 Upload Scenario
 For each policy, Pi the Key Manager

generates large RSA prime number pi and
qi.

 Calculate

Pi × qi = ni , (1)
 Then the Key Manager choose RSA

Private/Public pair control key
(ei,di)/(ni,ei)

 Key Manager sends its public key (ni,ei) to
client

 Data owner generates a data key K and Si
(Secret Key) of the policy

 Client sends to cloud Enc{K}Si – Siei
Enc{F}k and drop K and Si

Journal of Theoretical and Applied Information Technology
15th December 2019. Vol.97. No 23

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

3522

Figure 3: File Upload Architecture

3.2 Download Scenario
The data owner fetches Enc{K}Si ,Siei and

Enc{F}k from the storage cloud. Then the data
owner generates a secret random number R,
computes Rei, and sends Siei.Rei=(SiR)ei to the key
manager to request for decryption. The key man-
ager then computes and returns ((SiR)ei)di = SiR to
the data owner. The data owner can now remove
and obtain Si, and decrypt Enc{K}Si and hence re-
covers Enc{F}k.

Figure 4: File Download Architecture

4. FADE’S LIMITATIONS

In the design of FADE, the encrypted files
remain on the untrusted cloud storage and
encryption keys are maintained by, a trusted key
manager, which may be the subject of some side
channel leakage [15,16]. Ranjan and Kumar [17]
have shown, in their network security study of
FADE, that some sensitive informations (policy,
public and private key) can be leaked by sniffing
the network flow between file owner and KM.
Habib, Khanam and Palit [18] stated that FADEs
design has a complex system architecture for
storing keys at the KM, and this can lead to a leak
of cryptographic key due to authentication
mechanism and a heavy key infrastructure.

Also, if the key manager colludes with
cloud storage, then cloud storage can decrypt the
files of the data owner.

To avoid these limitations, we propose to
add an additional layer of encryption to the data
owner. The idea is that the data owner first encrypts
a file with a long-term secret key, then encrypts this
key with another secret key generated by the TPM
(example AES key [19]). The entire process is
conducted without involving any key manager. The
overhead cost of time for the proposed scheme time
for upload and download is reduced.

Journal of Theoretical and Applied Information Technology
15th December 2019. Vol.97. No 23

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

3523

5. RELATED WORKS

The most relevant example of time-based
scheme is the Firefox plugin for Gmail, which is an
application prototyped on Vanish [20] system. It
ensures that all copies of specific data become
unreachable after a particular time without any
action on the part of a user. This challenge is meets
through a novel integration of cryptographic
techniques with global-scale, P2P [21], DHTs [22].
This experience also reveals some limitations of
existing DHTs, and the authors aimed to release the
current Vanish system to provide further valuable
experience to inform future DHT designs for
privacy applications.

On the other side, there is also FADE
System, as cited above in detail. That briefly,
encrypts the data before storing in the cloud
storage, using a third party key manager to store the
keys which involves a relatively complex and
unsafe system architecture.

6. OUR CONTRIBUTION: FADE-TPM-EFS
SYSTEM

Nowadays, the search for confidentiality
and data integrity in could environments, is more
and more accentuated. Caeser proposed an
algorithm to encrypt messages
(En(x)=(x+n)mod26). In 1976 Diffie and Hellman
proposed their solution to communicate on secure
channel without the need of exchanging a common
secret key. In 1984 Shamir [23] proposed the idea
of identity-based cryptosystems. Also TPM was
conceived to secure hardware through integrated
cryptographic keys.

As well, the use of EFS (Encrypted File
Systems) in Cloud Storage side, allows our system
to grow and shrink automatically as we add and
remove data. They can grow to petabytes in size,
distributing data across an unconstrained number of
storage servers in multiple Availability Zones.

That way, parallel to our FADE-TPM
system that uses TPM in client side, for
cryptographic operations, EFS in cloud storage side
will bring us a new layer of security by encrypting
encrypted data in the cloud storage.

6.1 TPM
A TPM [24] is a microchip designed to

provide basic security-related functions, primarily
involving encryption keys. The TPM is usually
installed on the mother- board of a computer or
laptop, and communicates with the rest of the
system using a hardware bus.

Computers that incorporate a TPM have
the ability to create cryptographic keys and encrypt
them so that they can be decrypted only by the
TPM. This process, often called ”wrapping” or
”binding” a key, can help protect the key from
disclosure. Each TPM has a root ”wrapping” key,
called the Storage Root Key (SRK) [25], which is
stored within the TPM itself. The private portion of
a key created in a TPM is never exposed to any
other component, software, process, or person.

TPMs should support preventing attackers
from being able to find information on a
compromised client that can be used to compromise
another system for which the client or its user has
access. The information on clients could include
encryption or signing keys, password, and personal
or proprietary information. The TPM is designed to
protect sensitive information on PC clients as well
as the servers and networks they may connect to, in
addition, some private RSA [26] keys never leave
the TPM, so it is impossible to obtain them directly
by software means.

Keys and other sensitive information may
be stored outside the TPM. For data stored outside
the TPM, the protection of the sensitive information
is only as strong as the encryption algorithm by
which it is protected. The TPM cannot increase the
strength of an algorithm with respect to algorithmic
attacks. For example, if a large file is encrypted
with DES and the DES Key is encrypted with a
2048-bit RSA Key and stored in the TPM, the
encrypted file is still subject to attacks on the DES
encryption [27], which should be much easier than
attacking the 2048-bit RSA Key. Here under the
main cryptographic features that must be
implemented in all TPMs:

• Random number generation (RNG)
• Asymmetric Key (RSA) and nonce generation
• Asymmetric encryption/decryption (RSA)
• Signing (RSA)
• Hashing (SHA-1)
• Keyed-Hash Message Authentication Code
(HMAC)

There are two versions of trusted platform module:

• TPM 1.2
• TPM

Both TPM1.2 and TPM 2 offers same uses
and functionality but only the com- ponents are
different. TPM1.2 uses cryptographic algorithms
like RSA, SHA1, and HMAC.
A TPM can take one of the following states:
• Without owner and disabled

Journal of Theoretical and Applied Information Technology
15th December 2019. Vol.97. No 23

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

3524

• Without owner and activated
• Owner but disabled
• Owner and activated

The TPM must be enabled and have an
owner to be used for securing your com- puter. To
do this, the TPM must be initialized. During
initialization, the TPM creates new root keys used
by the TPM.

Computers manufactured to meet the
requirements of this version of Windows include
pre-boot BIOS functionality that makes it easy
TPM computer to boot via the TPM initialization
wizard. Normally, initialization of the TPM
requires physical access to the computer to enable
the module. This requirement helps protect the
computer against malware threats able to initialize a
TPM.

6.2 EFS

As we use Amazon as a cloud storage, we
can easily create an encrypted file system so all our
data and metadata is encrypted at rest using an
industry-standard AES-256 encryption algorithm.
That choice was made based on the study presented
in [28] because AES-256 needs more level effort to
be discovered

Encryption and decryption is handled
automatically and transparently, so we don’t have to
modify our applications.

For Managing Keys, Amazon EFS is
integrated with AWS KMS, which manages the
encryption keys. AWS KMS also supports
encryption by other AWS services such as Amazon
Elastic Block Store (Amazon EBS), Amazon
Simple Storage Service (Amazon S3), Amazon
Relational Database Service (Amazon RDS),
Amazon Aurora, Amazon WorkMail, Amazon
Redshift, Amazon WorkSpaces, etc.

It should be noted that, to create an
encrypted file system we can use the AWS
Management Console and the AWS CLI. For the
later case, In the CreateFileSystem operation, the --
encrypted parameter is a Boolean and is required
for creating encrypted file systems. The --kms-
keyid is required only when we use a customer-
managed CMK and we include the key’s alias or
ARN:

$ aws efs create-file-system \

 --creation-token $(uuidgen) \

 --performance-mode generalPurpose \

 --encrypted \

 --kms-key-id user/customer-managedCMKalias

6.3.1 Proposed Design
In our prototype, we based our work on

the java development language. As for the physical
environment, it was a computer with i5-2500 CPU,
3,30 GHz (4 CPUs) and 16 Go of RAM. And the
version of the TPM used on that computer is 1.2,
with the IFX manufacturer.

Our application test was developed on
java. So, we used JSR 321 [29] as a trusted
computing API for java. It makes us able to
develop a trusted computing API for java providing
comparable functionality the TSS offers to the C
world. We have installed the jTSS Core Services as
a system service to enable our java applications to
access the TPM.

About the cloud storage, we used Amazon
S3 [30], and the AWS SDK [31] for Java for all the
upload/download operations. As well, for the
Encrypted File System, we used the Amazon EFS
(Elastic File System).

In the experiments, we evaluate the system
with an individual file of different sizes : 1KB,
10KB, 100KB, 1MB and 10MB. Diagram below
represents, in a simplified way, our global
approach:

Figure 5: Proposed Diagram

6.3.1 FADE-TPM-EFS’s Upload Scenario
Here we diagram the scenario of the file upload
architecture.

Journal of Theoretical and Applied Information Technology
15th December 2019. Vol.97. No 23

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

3525

Figure 6: File Upload Architecture

6.3.2 FADE-TPM-EFS’s Download Scenario
Here we diagram the scenario of the file download
architecture.

Figure 7: File Download Architecture

6.3.3 Results of time performance of FADE-

TPM-EFS
Here we schematize and give figures in relation to
the performance of upload and download
operations.

Figure 8: Proposed Design Upload Scenario

Table 1: Performance of Upload Operations.

File
Size

Total
Runni

ng
Time

(s)

Data
Transmissi

on (s)

AES+HM
AC (s)

Key
Managem

ent
(TPM+EF

S)
1KB 1.262 1.261 0.000 0.001

10KB 1.554 1.552 0.001 0.001
100K

B
2.453 2.449 0.002 0.002

1MB 4.196 4.173 0.022 0.001
10M

B
16.276 16.058 0.218 0.001

Figure 9: Proposed Design Download Scenario

Journal of Theoretical and Applied Information Technology
15th December 2019. Vol.97. No 23

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

3526

Table 2: Performance of Download Operations.

File
Size

Total
Runni

ng
Time

(s)

Data
Transmissi

on (s)

AES+HM
AC (s)

Key
Managem

ent
(TPM+EF

S)
1KB 0.841 0.840 0.000 0.001

10KB 0.910 0.909 0.000 0.001
100K

B
1.968 1.964 0.002 0.002

1MB 4.696 4.677 0.017 0.002
10M

B
33.745 33.577 0.166 0.002

In the experiments, we evaluated our

system when it operates on an individual file of
different sizes, and we measured the time
performance, by dividing the running time of each
measurement into three components:

• Data transmission time, between the data owner
and the cloud storage in upload/download process.
• AES and HMAC time, used for performing AES
and HMAC on the file.
• Key Management time, for the data owner to
coordinate with the Key Manager on operating the
cryptographic keys.

Thereafter, we averaged each of our
measurement results over dozen different trials. We
measured the running time of file upload/download
operations for different file sizes. We then
compared the results between the three systems:
FADE, FADE-TPM and FADE-TPM-EFS.

We should notice that the data
transmission is divided into two components: the
file component, which measures the transmission
time for the file body and the file metadata, and the
policy component, which measures the
transmission time for the policy metadata.

Based on these results and in accordance
with those calculated in the FADE [6], and FADE-
TPM [24]; We note that the time of key
management is almost the same with FADE in
upload operation, but largely low in download. But
basically, the time is negligible of both operations
for our design, regardless of file size. This is almost
logical, since our system is based on a client-side
local TPM, and cloud storage-side local EFS,
without any interaction with an external key
generator.

As well, with the EFS, encryption has
minimal effect on I/O latency and throughput.
Encryption and decryption are transparent to users,
applications, and services. All data and metadata is
encrypted by Amazon EFS on our behalf before it
is written to disk and is decrypted before it is read

by data owner. We don’t need to change data owner
tools, applications, or services to access an
encrypted file system.

7. DISCUSSION

The results are almost the same as
compared to our previous work (FADE-TPM [33]).
We measured the overhead cost time of our design
for download/upload operations on files of different
sizes. The measurement concerns the cryptographic
operations using TPM and EFS. The experiment
has proved that the overhead cost time of our
design does not imply a remarkable overload time,
and that the transfer of the plains files remains a
dominant factor. Also, the design enables to
reinforce the security with a zero-time cost. Our
model leverages the burden of key management
infrastructure and reinforces the confidentiality of
the system. By using the TPM and EFS we add a
new security layer with a zero overhead cost time.
Also, the use of TPM and EFS enables more trust in
the cloud storage service and resists to software
attacks.

8. CONCLUSION AND FUTURE WORK

Cloud computing has become very
promising paradigm. But at the same time several
security problems can arise and await for means of
neutralizing them. To this day, the state of the art
presents several works whose aim is to ensure one
property from the CIA triad. It’s the data
confidentiality. Most of these works relies on Key
Managers to outsource the cryptographic keys.
Also, it causes a large processing time, in
proportion to file sizes. We already proposed
FADE-TPM system that uses TPM in client side,
for cryptographic operations, and now, the addition
of the EFS module will bring a new layer of
security by encrypting encrypted data in the cloud
storage. Our final proposed scheme shows unique
results: it provides a value-added security layer
compared to previous works with a less overhead
computational time.

Therefore, in this paper, we proposed our
novel approach called FADE-TPM-EFS. It is a new
design model for FADE, that envolve the consumer
and the cloud storage in encryption process. It
consists of using the client-side TPM for encryption
operations, and the cloud storage-side EFS, instead
of using a key manager that may not be fully
trusted. This system has proven to be efficient and
secure whatever the operation is upload or
download and whatever the size of the file, without
affecting the overhead performance. It is more

Journal of Theoretical and Applied Information Technology
15th December 2019. Vol.97. No 23

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

3527

suitable for organizations that aim to archive large
files. In the other hand individual customers who
manipulates small file sizes can still get best results.

Our research can be extended in several
directions. First, we are going to evaluate the
performance of our design when multiple policies
are associated with a file. Second, further study
should be conducted to propose security modules
for the customer, since in spite of that our system is
performing, if a hacker spies the client or his
identity was usurped, it could be critical.

In addition, we manage to combine our
approach with Identity Based Encryption scheme
(IBE) [34] in order to simplify certificate
management. This scheme is based on the use of a
pairing between elements of two cryptographic
groups to a third group with a mapping to construct
or analyze cryptographic systems.

REFRENCES:

[1] L.K Ronald and R.D. Vines, “Cloud
Security: A comprehensive Guide to
Secure Cloud Computing”, Wiley
Publishing, Hoboken, 2010.

[2] “Dropbox for .NET Developers”,
https://www.dropbox.com/developers/docu
mentation/dotnet.

[3] K. Hashizume and Rosado, D.G.,
Fernandez-Medina, E., Fernandez, E.B.,
“An analysis of security issues for cloud
computing”, Journal of Internet Services
and Applications, vol. 4, p. 1-13, 2013, doi:
10.1186/1869-0238-4-5.

[4] Jacob R. Lorch, David Molnar, Helen J.
Wang, and Li Zhuang, “Enabling Security
in Cloud Storage SLAs with CloudProof”,
Microsoft Research.

[5] http://technet.microsoft.com/en-
us/library/cc700811.aspx

[6] Tang Y., Lee P, John C.S. Lui., Perlman
R., “FADE: Secure Overlay Cloud Storage
with File Assured Deletion”, 2010.

[7] Tang Q., “From Ephemerizer to Timed-
Ephemerizer: Achieve Assured Lifecycle
Enforcement for Sensitive Data”, 2005.

[8] Sharma S., Chugh A., “Survey Paper on
Cloud Storage Security”, International
Journal of Innovative Research in Computer
and Communication Engineering, vol. 1,
Issue. 2, 2013, ISSN: 2320-9801.

[9] “Encrypting File Data withcAmazon Elastic
File System. Encryption of Data at Rest and
in Transit”, Amazon Web Services, Inc. or

its affiliates, 2018.

[10] http://www.trustedcomputinggroup.org.

[11] Garfinkel, S. L. and Shelat, A.,
“Remembrance of data passed: a study of
disk sanitization practices”, vol. 1, 2003, pp.
17-27.

[12] Philip McMichael, “The dangers of dead
data, Computer Fraud Security”, vol. 2014
Issue 3, 2014, p. 9-12. doi: 10.1016/S1361-
3723(14)70470-1.

[13] Wasim Ahmad Bhat and Syed Mohammad
Khurshaid Quadri, ”After- deletion data
recovery: myths and solutions, Computer
Fraud Security”, vol. 2012 Issue 4, 2012, p.
17-20, doi: 10.1016/S1361- 3723(12)70032-
5.

[14] Bo Qin, Hua Deng, Qianhong Wu,
Josep Domingo- Ferrer and David
Nac- cache and Yunya Zhou, “Flexible
attribute-based encryption applicable to
secure e-healthcare records”, International
Journal of Information Security, Vol. 14,
2015, pp. 499-511, doi: 10.1007/s10207-
014-0272-7.

[15] Walter Colin D, “Longer Randomly Blinded
RSA Keys May Be Weaker Than Shorter
Ones, Information Security Applications”,
8th Interna- tional Workshop WISA 2007,
Jeju Island Ko- rea, 2007, pp. 303-316.

[16] Igarramen Z., Hedabou M., “Protecting Co-
resident VMs from Side-Channel Attack in
Cloud Environment: SAFEPERIMETER
System”, Springer International Publishing
Switzerland 2016, Lecture Notes in
Electrical Engineering, 2016, p. 541-542,
DOI: 10.1007/978-3-319-30298-0_55

[17] A. K. Ranjan and V. Kumar and M.
Hussain, “Security Analysis of Cloud
Storage with Access Control and File
Assured Deletion (FADE)”, Second
International Conference on Ad- vances in
Computing and Communication
Engineering (ICACCE) Dehradun, 2015,
pp. 453-458, doi:
10.1109/ICACCE.2015.10.

[18] A. B. Habib, T. Khanam and R. Palit,
“Simplified File Assured Deletion (SFADE)
- A user friendly overlay approach for data
security in cloud storage system”,
International Conference on Advances in
Computing Communications and
Informatics (ICACCI), 2013, pp. 1640-

Journal of Theoretical and Applied Information Technology
15th December 2019. Vol.97. No 23

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

3528

1644, doi: 10.1109/ICACCI.2013.663742.

[19] Kak A. AES, “The Advanced Encryption
Standard”, 2016.

[20] G eambasu R., Kohno T., A.Levy A.,
M.Levy H., “Vanish: Increasing Data
Privacy with Self- Destruction Data”, 2009.

[21] S.Alvi A., M.Bochare D., “Distributed Hash
Table In Peer-To-Peer (P2P) System”,
2014.

[22] Zhang H., Wen Y., Xie H., Yu N., “A
Survey on Distributed Hash Table (DHT):
Theory, Platforms, and Applications”, 2013.

[23] Shamir Adi, “Identity-Based Cryptosystems
and Signature Schemes, Advances in
Cryptology”, Proceedings of CRYPTO,
pp.84, 47-53 , doi: 10.1007/3-540-39568-
7_5.

[24] Dorwin D., “Cryptographic Features of the
Trusted Platform Module”, 2006, pp. 1- 6
21.

[25] Tomlinson A., “Smart Cards, Tokens,
Security and Applications”, Chapter:
Introduction to the TPM, 2008, pp. 161-166.

[26] Evans M., “RSA Encryption. The
university of Melbourne”, on behalf of the
Australian Mathematical Sciences Institute
(AMSI), 2013.

[27] Singh G., Supriya, “A Study of Encryption
Algorithms (RSA, DES, 3DES and AES)
for Information Security”, 2013.

[28] C. D. Walter. Longer randomly blinded
RSA
 keys may be weaker than shorter ones. In
 Proceedings of the 8th international
conference
 on Information security applications
 (WISA'07), Sehun Kim, Moti Yung, and
 Hyung-Woo Lee (Eds.). Springer-Verlag,
 Berlin, Heidelberg, pp. 303-316. (2007).

[29] “JSR 321 Trusted Computing API for
Java”, 2009.

[30] “The Business Value of AWS”, 2015.

[31] AWS Encryption SDK Developer Guide
(2017).

[32]

Bentajer A., Ennama F., Hedabou M. and
Elfezazi S.: “A User Friendly and Improved
Design for Secure Deletion in Cloud
Storage”, Journal of Theoretical and
Applied Information Technology, vol. 95,
No. 6, 2017, p. 1384-1385, ISSN: 1817-

[33]

3195.
Igarramen Z. and Hedabou M., “FADE-
TPM: Novel Approach of File Assured
Deletion Based on Trusted Platform
Module”, Lecture Notes in Networks and
Systems, 2018, doi: DOI:
10.1109/CloudTech.2017.8284727

[34] Bentajer A., Hedabou M., Abouelmehdi K.,
Igarramen Z. and El fezazi S., “An IBE-
based design for assured deletion in cloud
storage”, Cryptologia, Taylor & Francis
Group, 2019, doi:
10.1080/01611194.2018.1549123

