
Journal of Theoretical and Applied Information Technology
30th November 2019. Vol.97. No 22

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

3197

THE ANALYSIS OF CURRENT STATE OF AGILE
SOFTWARE DEVELOPMENT

SAMER ATAWNEH

Saudi Electronic University, PO Box: 93499, 11673, Riyadh, Saudi Arabia

E-mail: satawneh@seu.edu.sa

ABSTRACT

The agile software development methods are studied in this paper. Agile software development methodology
was formally represented to the community of software engineering through twelve principles and four core
values. Agility is considered the cornerstone of the agile software development. This contrasts with the plan-
driven technique that is explained in different conventional models (e.g. Waterfall). Currently, the agile
development is an important development approach, which is derived from practical uses to encourage the
cooperation between users and developers so that fast development processes could be supported, and to
adapt with the modifications that are affecting the dynamic environment. Many agile methods are currently
available in the literature with Scrum and Extreme Programming (XP) methods forming two most commonly
used methods. This study demonstrates the value of applying the agile methods in developing software
projects by analysing the current agile methods. The study results reveal that the agile development
introduces significant benefits over conventional methodologies. However, these benefits are not compatible
with all projects and situations. The results also show a decline in the interest in XP, while the interest in
Scrum is increasing all the time.
Keywords: Agile development, XP, Scrum, Adaptive software development, Crystal, Lean development

1. INTRODUCTION

The aim of this introduction is to portray the

meanings that are recently correlated to “agile”, to
give a definition of the agile development. Agile
development methodology (also known as
lightweight development methodology) is a software
development framework that relies on pre-existing
incremental and iterative development principles [1]
(for example, Spiral and Waterfall methodologies).
This methodology uses continuous planning,
development, and testing and continuous contact
with system stakeholders [2]. Most software
development organizations are gravitating and
moving towards agile software development
methods [3]. With the mass movement towards this
methodology, the software development using
agility is becoming the mainstream [4]. Note that
agility is a cornerstone of the agile software
development [5]. Conboy [6] formally defined agile
development as ‘‘the continual readiness of an
information systems development method to rapidly
or inherently create change, proactively or reactively
embrace change, and learn from change while
contributing to perceived customer value, thereby
bringing about quality, economic benefits, and
simplicity values achieved through relationships

with its environment and by its collective
components.”

The general agile framework approach is
that short development cycles are involved in which
a flexible approach is used in software product
development [1, 2]. This approach allows teams to
be self-managing and adaptive to change in
requirements, where priority is based on the ever-
changing requirements. In addition, one major
feature of agile development is team interaction,
collaboration and collective decision-making. The
Agile framework also emphasizes stage-by-stage of
a software product delivery providing fine-tuning or
additional validation of the software’s feature set
with each delivery phase. With this approach, the
usual excessive negotiations in a development
project (when scope is modified or system
requirement changes) is minimized or totally
eliminated.
Agile development approaches articulate and
describe all required processes, enumerate
deliverables, assigns roles for defining
specifications, designing, implementing and
verifying a software product. Over the last decade,
the development processes are constantly changing
and evolving. With the surging popularity of agility
as an approach for developing software projects, the

Journal of Theoretical and Applied Information Technology
30th November 2019. Vol.97. No 22

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

3198

general approach used by software development
companies in managing development teams has
radically changed. In late 1990s, varied methods of
agile methodology such as Scrum, XP, Crystal, lean
software development, and Feature-driven
Development (FDD) emerged and attained
popularity, as they all attempted to address the core
Agile manifesto principles [7, 8]. The Agile
manifesto 1 will be highlighted in Section 2.2.

1.1. Software Development Process

One of the major overarching focus and
goal of the software engineering discipline is to offer
appropriate solutions to existing practical software
development problems [3, 9]. Currently, the
software engineering discipline has matured into
independent profession and a domain that is tightly
associated with computer sciences and other
conventional engineering disciplines. Overall,
software engineering discipline handles all processes
necessary to solve real software development
problems in an optimal and reliable way. Software
engineering principles equip and empower software
developers with disciplined, quantifiable methods
and tools that guide them with best-practice
guidelines and systematic approach to software
design, implementation, post implementation
operation, and maintenance” [10]. Software
engineering discipline also encompasses applying
several theories, processes, methods and utilization
of tested tools to develop and maintain software
systems in concert with the needs of organizational
software development constraints.

Developing software systems is considered
to be a complicated process where several software
projects end in overdue results of these projects. For
instance, failure to achieve the goals of the project,
or results containing project annulments [11]. Such
an increased failure level is unanticipated when the
history of over 60 years is derived for researches
regarding project failures, several best-practices
books, software development projects, countless
development tools, processes and methods. There
are many complex sources that make increased
failure levels of software projects more obvious. The
main grounds behind that refers back to the essential
characteristics of a software, the used software
contexts, the tasks complexity pertaining to the
software development, and the overall nature of the
software projects.

1 See http://agilemanifesto.org/

The software development process is
defined as “a set of activities that lead to produce a
software product” [9]. Since the improvement of
various software might need several processes,
extremely different processes are improved by the
software engineering discipline over the past
decades ago. Nonetheless, there exist a number of
tasks in which each improved project should
involve. For instance, the tasks of implementation
for designing, coding and testing the software, the
definition tasks for requirements specification, and
the tasks of evolution for corrections and
adaptations. Various processes of software
development differ based on how strictly the tasks
are being addressed and on addressing its sequences.

In the late 1990s, the development of
several agile methodologies arose, which means a
move in the software development processes.
Further, it indicates to the number of software
development projects that are being currently
organised [12]. In the 2000s, the significance of a
software acting as discriminator for conventional
products including products pertaining to the online
software requires more rapid time-to-market times.
Additionally, a significance of user-interactive
products produces a rapid user feedback that is also
significant, where formal processes are made
extremely indeclinable. Accordingly, the
development iterative processes acquired further
considerations [13]. Nowadays, the majority of
software processes are being created based on the
use of existing software functionality and standard
tools that are derived from open source libraries or
commercial products. In general, nearly 30% of the
software components are required to form a custom
built, where more flexible processes are allowed to
be implemented [14].

This study concentrates on the agile

software development model. The agility literature,
approaches, and trends are highlighted in the
following sections. The structure of this research
paper is organized as follows. Section 2 introduces
the agility literature and highlights the importance of
agile development over traditional methodologies.
Section 3 analyses the well-known agile methods
including XP, Scrum and other common agile
methods while the research trends are presented in
Section 4. Finally, Section 5 concludes the paper.

Journal of Theoretical and Applied Information Technology
30th November 2019. Vol.97. No 22

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

3199

2. AGILE LITERATURE

Earlier in the 2000s, an endless flow of
alterations within the software industry was
experienced. New technology has rapidly evolved
where exchanged ideas spread among the developers
of software within the global connectivity, which is
derived by WWW. The technological potential is a
result of intensive investments through the IT
industry. Moreover, various different software
applications are currently being enhanced for the
consumer market, which require interfaces that are
user-friendly. Thus, the user feedback must be
promptly integrated with the improved process
resulting with requirements that are changeable and
unpredictable. In general, a rapid change is
continuously being ingrained within software
manufacturing [13]. Consequently, the ability to
adapt with new requirements and speed-to-market is
significant in order to efficiently perform through an
uncertain environment [15]. Only shorter product
life-cycles could definitely act with these challenges.
The lightweight approaches emerged during the
1990s and introduced a reversed pole to the heavy-
weight development approaches that are seen to be
extremely rigid to efficiently improve a software for
volatile project circumstances [16].

When the Agile Manifesto was published in
2001, the agile software development has acquired
popularity. There exist various software vendors
such as Adobe [17], SAP [18, 19], Microsoft [20],
and many others that have implemented different
agile methodologies over the past years ago. As a
result, the agile software development appears
nowadays as a mainstream development approach.
This approach including a continuous attention on
expert software developers within restricted
validations pertaining to the development approach
effectiveness. Several approaches and methods vary
from non-agile and agile methods. Abrahamsson et
al. [21] study the agile methods, which include
cooperative (close communication with customers),
incremental (small software releases),
straightforward (the involved approaches are simple

to understand, adjust and learn), and adaptive (the
ability of producing changes within the last moment)
software development method. Conboy [6] improves
another often-cited definition according to an
extensive agility investigation through other
research domains. Based on the perspective of
Conboy, agility consists of two concepts, which are
leanness and flexibility. Agility not only integrates
the ability of changing, but rather can motivate the
ability of the project team to rapidly adapt to any
particular change. Additionally, leanness is defined
as the involvement of the apparent customer value
based on quality, simplicity and economy.

Schmidt et al. [22] propose a different
perspective for conceptualising the agility pertaining
to the software development team based on its
central development task organisation (e.g.
implementation, software specification, software
validation and design). Collaboration as well as
iteration are suggested to represent the central
behavioural markers that are related to the agile
teams. The previous tasks are repeatedly iterated by
the agile teams when many team members are being
involved in the process. Additionally, the software is
created, designed, implemented and validated by
these teams into small steps including the whole
team within the entire steps.

2.1. How agile development is different from
traditional models?

The entire traditional process models
(Waterfall, Spiral, RUP, etc) are in common based
on their long iteration cycles, their large design
upfront and specifications of the documents, and
their heavyweight approach to process management
[23]. Abrahamsson et al. [21] declare that any
development approach is considered agile if it is
incremental, straightforward, cooperative, adaptive.
This is totally different from the conventional
approaches used for software development. Nerur et
al. [24] discussed the main differences between the
conventional approaches and the agile development
(see Table 1).

Table 1. Conventional versus agile software development.

 Conventional Models Agile Development
Basic assumptions Developed Systems are built

through extensive and
meticulous planning, and are
fully predictable and specifiable.

Small teams develop high-quality
software using the principles of
continuous design improvement and
testing, and based on rapid feedback and
change.

Management style Control and command Collaboration and leadership
Control Process focal People focal

Journal of Theoretical and Applied Information Technology
30th November 2019. Vol.97. No 22

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

3200

Knowledge management Explicit Implicit
Communication Formal Informal
Role assignment Individuals Self-organizing teams
Development model Life-cycle models (Spiral,

Waterfall, or with some
variation)

Evolutionary-delivery models

Customer’s role Important Critical

The agile software development’s value in
comparison with the conventional methods focuses
on the interactions of the users and developers as one
primary successful driver [25]. Although the
Standish Group’s reports [11] can be argumentative,
they mention that the developed software using the
agile approach has three times the success rate of the
conventional Waterfall, and a much lower time and
cost percentages. Based on the promises held by the
agile practices, these methods provide the potential
for enabling the teams of the software development
to adapt to the ever changing requirements of the
customer within high collaborative and interactive
levels that could result with better outcomes
pertaining the project [25].

2.2. Agile Manifesto

In 2001, a group of 17 advocates who are
relying on lightweight software engineering
methods, and who are grouped together in order to
build the agile Manifesto [3, 26]. The Agile
Manifesto produces a group of four core values that
are appropriate for organisations that adopt the
agility in software development. In the early 2000s,
these core values were brought by previous
lightweight methods that are provided by these
agilists [3]. Therefore, the essence of agile
development is formed by four values, which are
comprised as:

Individuals and interactions over processes and
tools
Working software over comprehensive
documentation
Customer collaboration over contract negotiation
Responding to change over following a plan

The concentration of the first value is on
interactions and individuals, which implies that the
agile software development team is considered as
‘flexible and organic’ instead of ‘formalised,
bureaucratic, and mechanistic” [24]. Decision-
making can be delayed by specialized roles within
the operational level based on different teams [27].
Here, the developers have self-organize, blend and
interchange various roles [28]. As indicated by the
second value, the documentation is deprioritized by

the agile software development for the product in
order to spend less on time for documentation in
aiding a fast software delivery [26]. The
concentration of the third value is based on how to
successfully collaborate with the customer [28]. The
decision-maker, as role for the project manager, is
highly reduced [24]. The fourth value of change
adaption means that the incremental and iterative
features of the agile software development with
various product releases enable the project teams to
adopt and give prompt responses [29]. The agile
manifesto concentrates on the customer
collaboration and working software [30]. The
manifesto aims at achieving the customer’s
satisfaction by performing a fast delivery for the
product. The agile manifesto also concentrates on
the delivery of the valuable software [31].

The focus of this study is to analyze the

current agile methodologies to answer the following
questions: is there any lack in the theoretical basics
of the agile development? Are there significant
benefits of using agile development over other
conventional methods? and what is the best Agile
method in use?

3. AGILE METHODS

Miller [32] mentioned the following set of
features to the agile software processes based on fast
delivery, which shortens the development life-cycles
of projects:
1. Short cycles with Iterative that enable rapid
corrections and verifications.
2. Modularity for the development process level
3. Iteration cycles ranging from 1 to 6 weeks.
4. Adaptive with current potential emergent risks.
5. An incremental process method allows creating
and functioning applications through small steps.
6. The stinginess in the improved process eliminates
the entire unneeded activities.
7. People-oriented, that is, the agile processes help
users through any technologies and processes.
8. Incremental (and convergent) method attempts at
reducing any risks.
9. Communicative and collaborative working style.

Journal of Theoretical and Applied Information Technology
30th November 2019. Vol.97. No 22

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

3201

Various software engineering approaches
were produced in the early 2000s. Such approaches
rely on the ideas of an evolutionary, iterative and
incremental software development processes [3].
Since these approaches include the four indicated
core parameters of the agile software engineering,
they were afterwards called agile methodologies. In
this section, the recent state of the agility for
software development methodologies are studied.
Not only are Scrum and Extreme Programming the
most influential, but are currently also considered
the most common methods [3, 33]. There are many
other approaches, which are either rediscovered or
invented to refer to the same family of software
development methodologies. Such approaches
comprise Crystal Methods [34], Feature-Driven
Development (FDD) [35], Adaptive Software
Development (ASD) [16], Agile Unified Process
(AUP) [36] and Lean Software Development (LSD)
[37]. Fig. 1 shows the state-of-the-art agile
methodologies, and in the following subsections, an
overview of these agile methodologies is
highlighted.

Fig. 1. Agile methodologies

3.1. Extreme Programming (XP)

The emergence of the XP has been
commonly recognised as a start point for many
different agile development approaches [21]. XP is
mainly studied by the authors as a lightweight
approach for small to medium-sized teams
developing projects based on requirements that are
rapidly-changing or vague [3]. Beck [38] creates a
group of programming practices. The main ideas are

focused on a set of practices, principles and values
in which the developers have to use to develop the
software responsiveness to change and its quality.
The XP aims at delivering useful concepts and ideas
pertaining to the software engineering to “extreme”
levels degrees [38].

The XP has developed from problems that
were caused based on the long development cycles
of conventional development methodologies [39]. It
begins with practices that are seen to be operative in
processes that are related to software development
[21]. The XP methodology is "theorised" according
to the key practices and principles that are being used
[38]. Despite the fact that the XP individual practices
are not up-to-date, they are still lined up and
collected in order to function together based on
novel methods, and thus constituting a new
development method.

The XP attracted an essential attention due
to its importance in testing, simplicity,
communication and its maintainable developer-
oriented practices including its motivating name
[40]. The XP programmers support a robust
concentration on a software coding process rather
than a documentation or plans. Additionally, the
software quality is considered to be the basic
concentration where the quality must be enduringly
checked based on automated tests. Furthermore, XP
programmers maintain simple design and avoid
characteristics that are overmanned [3].

3.1.1. The XP process

XP applies an object-oriented approach
since it has an effective improved model and
involves a group of practices and rules that arise
through the context of four framework activities [3].
These activities are planning, designing, coding and
testing (Fig. 2). The planning activity starts with
listening, which is a requirements-collecting activity
that provides the ability of the technical members of
XP team to understand the context of the business
for the software and to obtain a broad feel for the
needed outputs and the major functionality and
features. The XP design follows a thorough
principle, which is called the “Keep It Simple” (KIS)
principle [3]. A simple design is frequently favoured
over a complex representation. Additionally, the
simple design provides an implemented guidance for
a story that is the same as it is written, nothing more,
nothing less. The XP method encourages refactoring
— a development practice that is based on
restructuring of the software implementation that
could improve the software quality, i.e. its structure

Journal of Theoretical and Applied Information Technology
30th November 2019. Vol.97. No 22

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

3202

or readability, without having the software
functionality changed. The aim is to increase the
software long-term maintainability and extensibility.

Fig. 2. XP method

The development team does not make a
move to the code after performing the preliminary
design work, but it instead creates a sequence of unit
tests to practice every story that is involved within
the new release or increment. When each unit test is
developed, the development team can concentrate on
what must be applied to efficiently pass the test.
When completing the code, it can be directly unit-
tested. The main idea of coding (and one of the most
XP aspects) is to implement the so-called pair
programming. It is recommended by the XP that a
development team of two members share one
computer and implement a side-by-side software.
One developer writes the code, while the other
developer challenges, supports and observes the
selected method to obtain better results [3].

The unit tests are created before the start
of the code, which is one of the key elements related
to the XP [3]. The created unit tests must be applied
in a way that allows them to be automated. This
supports a strategy of a regression testing when
modifying the code. Validation and integration
testing that are applied for the system can be
performed daily. The XP development team is
provided with a continuous indication progress and

can earlier increase the alerts if things go askew.
The customer identifies the acceptance tests of XP,
aka customer tests, to concentrate on the entire
functionality and characteristics of the system,
which are reviewable and visible by the customer.
The Industrial XP (IXP) is variant of the XP and
was proposed recently [41]. The XP is refined by
the IXP and the agile process is targeted by the IXP
when it is mainly being used through large
organisations.

3.2. SCRUM

Scrum (taken its name from the rugby
match) is considered to be an agile development
approach, which is laid by J. Sutherland and his
group during the 1990s [41]. Scrum is a project
management framework [3] and relies on agile
framework values and principles [2]. It is the most
common agile-inspired development method that is
frequently being applied [41]. Scrum (1) determines
particular roles within the development team and (2)
creates an iterative work mode, which is centralised
through the development sprints, and (3) defines
various artefacts for which are being used by the
developers in order to organise their given tasks. The
key elements of Scrum are shown in Fig. 3.

Journal of Theoretical and Applied Information Technology
30th November 2019. Vol.97. No 22

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

3203

Fig. 3. Scrum method

The Scrum team consists of nearly ten
persons (typically from six to 10 developers [1]).
There are two particular roles relating the Scrum
team, which comprise a product owner (PO) and a
scrum master (SM) [3]. The PO represents the
customer and voices his/her requirements. The PO
role is considered to be a managerial role [2]. The
PO defines the development targets in the coming
sprint and is responsible of creating a value for
customers [3]. The PO normally defines customer’s
requirements and a sequence of prioritised
development tasks by ensuring the highest value
items to be always on top [23]. The work increments
are reviewed by the PO after each sprint. The SM
acts as a facilitator who is in charge of maintaining
scrum processes, and who could remove
impediments that might stop the team from working
in an efficient manner. The SM does not involve the
responsibilities of people management, but rather it
can behave as a teacher and a coach where it stresses
that the scrum process is being followed [23].

The remaining members of the Scrum team
refer back to the development team. These team
members analyse the software requirements, design,
implement and test the developed software [3]. The
Scrum development team is considered to be cross-
functional, i.e. all members are seen to include an
essential skills set in order to perform the entire tasks
pertaining to the software development.
Subsequently, there is no extra role within the Scrum
team such as testers or developers for the user
interface. The development team members’ size
ranges from 2 – 7 persons [23].

An iterative work mode is followed by the
Scrum teams where the development project is
divided into small development iterations. These
small development iterations are called the
development sprints and contain a particular length
duration ranging from one to four weeks, after which
new software characteristics are delivered to the
customer [3]. Each sprint begins with a sprint
planning meeting and the Scrum members decide on
the to-be-implemented software characteristics.
Accordingly, different sub-tasks are determined and
assigned by the team members for the individual
developers. The entire team members set up a daily
meeting for an approximate duration of 15 minutes
(often called daily stand-up [23]) so that their work
process could be synchronised and could gain
transparency through the team members [3]. The
entire developers tell the Scrum team members about
the achievements they performed. These developers
define the current work and take issues that are likely
to be addressed by the team into account. Hence,
every team member provides answers for three key
questions whilst the meeting is being held. These
questions comprise: (1) ‘What had I accomplished
yesterday?’, (2) ‘What will I do before the next
Scrum meeting?’ and (3) ‘Are there any obstacles?’
[23]. All sprints terminate with sprint review
meetings when the progress of Scrum members is
presented to the PO or is immediately provided to
the customer. Further, a retrospective meeting is
organised by the SM for the team such that possible
improvements are discussed regarding to the future
teamwork processes.

The development tasks are classified and
organised by the team members based on the use
of a product backlog. A product backlog consists

Journal of Theoretical and Applied Information Technology
30th November 2019. Vol.97. No 22

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

3204

of a sequence of prioritized tasks that is identified
by the PO [3]. Items are provided to the product
backlog at any time (this shows the way of how
modifications are presented). The backlog is
assessed by the product manager and priorities are
updated as required [41]. This backlog is broken
by the development team members into a set of
sprint backlog items where the backlog progress
is tracked by a Burndown chart when every sprint
occurs [3]. The Burndown chart presents the ratio
of the committed versus achieved backlog items.

A product (or software) increment,
which is a shippable product state, is considered
to be the work sum that is performed in the present
sprint and in the other previous sprints. A
definition of done indicates the case when a
backlog item is completed [23]. Such a definition
involves the minimum requirements that are based
on the functionality or documentation tests
relating to the developed increment. Due to the
distinctive features of Scrum; such as the
existence of daily stand-up and the review of the
work increments after each sprint, the interest in
Scrum is being increased throughout the time
[30].

3.3. Other agile process methods

As previously indicated, the most
commonly used agile process methods comprise the
SCRUM and XP. Nonetheless, several other agile
process methods are proposed where they are being
used through the industry. The most common are
Adaptive Software Development (ASD), Crystal
methodologies, Feature Drive Development (FDD),
Agile Unified Process (AUP), and Lean Software
Development (LSD) [41]. In the following
subsections, a very brief overview of these agile
methods is highlighted.

3.3.1. Adaptive software development (ASD)

Jim Highsmith [42] suggested the
Adaptive Software Development (ASD) as a
technique that is by means created to build complex
systems and software. The philosophical
underpinnings of the ASD concentrates on the team
self-organization and the human collaboration.
Highsmith defines the ASD as a “life cycle” that
includes three phases which comprise learning,
collaboration and speculation. During the
Speculation cycle, the project starts, and the
Adaptive-cycle planning is performed. The
Adaptive-cycle planning makes use of the project
initiation information, which forms the mission

statement of the customer, the constraints of the
project (e.g. user descriptions or delivery dates),
and basic requirements, in order to identify the
sequence of released software increments.

Motivated people use collaboration in
such a way their creative and talented output are
increased. This approach is considered to be a
recurring theme for every agile method [41]. When
the ASD members start developing the components
related to the adaptive cycle, they emphasize on
“learning” and on progress toward a completed
cycle. It is argued by Highsmith that software
developers frequently overrate their particular
understanding pertaining to the process, project,
and technology where learning will help them in
developing their real understanding levels.

3.3.2. Crystal

The term “crystal” is taken from the
features relating to the geological crystals along
with their own hardness, shape and colour.
Cockburn [34] and Highsmith [43] introduced the
crystal family of agile approaches to perform a
software development method, which delivers a
premium characteristic to “maneuverability.” The
Cockburn’s characteristic refers to as “a resource-
limited, cooperative game of communication and
invention. The primary goal here is to deliver a
useful, working software, where the secondary goal
is setting up for the next game” [41].

In order to attain manoeuvrability, a set of
methodologies are defined by Cockburn and
Highsmith where each methodology contains core
elements that are based on work products, process
patterns, practice, and roles, which are distinct to
each other [41]. A Crystal family is actually a group
of agile processes, which are proved to act
effectively through many different project types.
The aim here is to permit the agile team members
to choose the member that belongs to the crystal
family and is the most appropriate for their
environment and project.

3.3.3. Feature driven development (FDD)

Similar to the other agile methodologies,
the FDD brings a philosophy in which (1)
collaboration is emphasised among members within
a team. (2) the project and problem complexities are
managed based on the use of a feature-based
decomposition and follow it by integrating the
software increments, (3) text-based, graphical and
verbal means are used by a communication of
technical detail [41]. FDD emphasizes the activities

Journal of Theoretical and Applied Information Technology
30th November 2019. Vol.97. No 22

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

3205

of software quality assurance by assuring a strategy
of using design and code inspections, the
incremental development, the implementation of
audits of software quality assurance, the use of
different metrics, and the use of different patterns for
analysing, designing and constructing the software.
Different types of presentations and articles of the
FDD are found at:
www.featuredrivendevelopment.com.

3.3.4. Agile unified process (AUP)

The AUP adopts both the “iterative in a
small” and the “serial in a large” philosophy in order
to create the software [36]. When adopting the
traditional Unified Process activities, which are
inception, elaboration, construction, and transition,
a serial overlay is provided by the AUP, where the
serial overlay is the sequence of activities of
software development, which provides the ability for
a team to visualise the entire flow of the process for
the software project. Nonetheless, based on every
activity, the team iterates to deliver significant
software increments for end users and to achieve
agility as fast as possible.

3.3.5. Lean software development (LSD)

Lean production brings importance on
value based on the reduction of costs, through
removing “waste”, where waste can be represented
as large inventories and waiting time [30]. The LSD
adapts the lean manufacturing principles to
developing the software. The LSD principles that
motivate the LSD work is briefly summarised as
create knowledge, build quality in, deliver fast,
eliminate waste, defer commitment, respect people,
and optimize the whole [41]. Every principle is
adapted to the process of the software. For instance,
the “eliminate waste” principle is based on the
context of the agile project. This could be
interpreted as: (1) The addition of important
functions or features, (2) The evaluation of the
schedule and cost impact of any requirement that is
currently requested, (3) The elimination of any
extra processing steps, (4) The creation of
mechanisms for developing a way in which team
members can search for the information, (5) The
ensuring that the testing process will find as many
errors as possible, (6) The reduction of the time that
is needed for requesting and obtaining a decision,
which puts an impact on the software or on the
process that creates it, and (7) The streamlining of
the manner in a way that can transmit an
information to the entire stakeholders who are
engaged in the process.

4. TRENDS

It is clear that no single method is able to
perform tasks for all projects [21, 44]. However, the
project manager(s) must determine the nature of the
project, and after that, the best appropriate
development methodology is selected [21].
According to McCauley [45], both process-oriented
and agile methods are significantly required since
there is no one-size-fits-all development paradigm,
which can be appropriate with the whole conceivable
purposes. This view is common through many
specialists in the field [46]. The principal aspects of
agile and light methods comprise speed and
simplicity. Hence, the development group just
focuses on functions that are required within the
development work, rapidly delivering them,
gathering feedbacks and responding to the
information that is being delivered. What lets a
development methodology be an agile one? The case
is based on a software development that is
cooperative (developers and customers who are
continuously working all together with close
communications), incremental (small software
releases with short iterations), adaptive (the ability
of the method to produce last moment changes), and
straightforward (the methodology is well
documented, simple to learn, and easy to be
modified).

Many studies provide productivity
comparisons between the agile and conventional
software development demonstrating positive results
to an unbiased effect, while most of the researches
show a positive effect on the quality [3, 47]. Critical
researches on developing software using agility
investigate the novelty related to using agility in
software development, criticises a lack of
concentration on a long-term architecture, claims
that it is just appropriate to a small development
team, and envisages that XO could yield with an
ineffective teamwork [48]. Until now, the research
community remains apart from completely
comprehending how, why or in which perspectives
of a project the agile software development performs
[3]. Researchers carry out extensive studies that aim
at improving a complete theoretical understanding of
using the agility in the software development. The
theoretical perception does not only clarify the
success of the agility in the software development,
but moreover, it leads professionals on the way of
using the agile development method.

In summary, the agile software
development is a development method that is rising

Journal of Theoretical and Applied Information Technology
30th November 2019. Vol.97. No 22

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

3206

with its popularity since the start of the 2000s. A
study on the agile software development is improved
from its best-practice achievement stories to stricter
researches related to a character that is mainly
descriptive. The availability of the knowledge that
belongs to the teamwork research provides
promising theoretical lens pertaining to the direction
of the study. Since the high relevancy of the software
development organisations with each other, such a
method must not just be generalizable, but could
further be validated with the data that is derived from
expert software developers. While the study on agile
software development is considered extremely
fragmented, the dependent variable and the
conceptualisation of agility are required to be clearly
studied by each research study. Follow-up
researches are based on results obtained from the
study to improve the field towards a prospected and
integrated research. Despite the robust concentration
on the collaboration and teamwork within the agile
teams, only few researches about the effectiveness of
work teams is investigated in order to better
understanding the agile methodologies.

Overall:
1. There is an urge motivation for stricter theory-
supported researches along with different visions
derived from expert software developers.
2. By implementing the theory over agile practices,
it is possible to understand the agile activities value
as methods that could rise the cooperation through
the development team and through customers and
developers [25].
3. The agile development introduces significant
benefits. However, these benefits are not compatible
with all projects, people, situations, and products
[41].
4. Agility can be implemented through any software
process. In order to achieve that, it is important to
design the process in a way to give the teamwork the
ability of streamlining tasks and adapting them
together. Additionally, it performs a plan in such a
way that comprehends the fluidity of the agile
method. It removes the significant products and
maintains them lean. Therefore, it ensures the
incremental strategy of delivery that rapidly
provides a workable software to customers as simple
as it could be for the operational environment and the
type of product.
5. For practitioners, it is noticed that there is a
deterioration in the interest in extreme programming,
while the interest in Scrum is being increased
throughout the time [30].

5. CONCLUSION

Today, agile software development

methods are considered lightweight methods that
could employ an incremental and iterative lifecycle
accompanied with short requirements and iterations,
which could be modified within the development
with broad participation by the customer. Many agile
methods are proposed and developed, with the XP
and Scrum considered as the two most commonly
used agile methods. Every agile method consists of
its own set of specified practices including many
different concentrations. The XP, for instance, is
comprised of practices that concentrates on different
activities pertaining to the software development
teamwork, whereas the Scrum possess a set of
practices that improves the project management by
rapidly revealing risks throughout the project.
Trends for testing software development
methodologies demonstrate that the practices of
agility are adapted to the workplace context as
organisations that adopts more practices of the agile-
like software development. This study found that the
agility practices are frequently underestimated
because of the lack of the theoretical basics. The
study results also reveal that the agile development
introduces significant benefits over conventional
methodologies. However, these benefits are not
compatible with all projects, people, situations, and
products. In addition, due to the distinctive features
of Scrum, such as the existence of daily stand-up and
the review of the work increments after each sprint,
the interest in Scrum is being increased throughout
the time, while the interest in XP is deteriorating.
One of the options for the future research is to test
the current agility practices that most commonly
being used and to compare between these practices.
This leads to an open question: “how do the agile
practices provide values to the software
development teams?”

REFERENCES:

[1] Patanakul, P. and R. Rufo-McCarron,
Transitioning to agile software
development: Lessons learned from a
government-contracted program. The
Journal of High Technology Management
Research, 2018. 29(2): p. 181-192.

[2] Steinhardt, G., The Product Manager's
Toolkit: Methodologies, Processes and
Tasks in High-Tech Product Management.
2010: Springer Science & Business Media.

[3] Schmidt, C., Agile Software Development,
in Agile Software Development Teams.
2016, Springer. p. 7-35.

Journal of Theoretical and Applied Information Technology
30th November 2019. Vol.97. No 22

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

3207

[4] West, D., et al., Agile development:
Mainstream adoption has changed agility.
Forrester Research, 2010. 2(1): p. 41.

[5] Hoda, R., et al., Systematic literature
reviews in agile software development: A
tertiary study. Information and software
technology, 2017. 85: p. 60-70.

[6] Conboy, K., Agility from first principles:
Reconstructing the concept of agility in
information systems development.
Information Systems Research, 2009.
20(3): p. 329-354.

[7] Dingsøyr, T., et al., A decade of agile
methodologies: Towards explaining agile
software development. 2012, Elsevier.

[8] Curcio, K., et al., Usability in Agile
Software Development: A Tertiary Study.
Computer Standards & Interfaces, 2019.

[9] Sommerville, I., Software Engineering.
International computer science series. ed:
Addison Wesley, 2004.

[10] Radatz, J., A. Geraci, and F. Katki, IEEE
standard glossary of software engineering
terminology. IEEE Std, 1990.
610121990(121990): p. 3.

[11] Clancy, T., The Standish Group CHAOS
Report. Project Smart, 2014.

[12] Boehm, B. A view of 20th and 21st century
software engineering. in Proceedings of the
28th international conference on Software
engineering. 2006. ACM.

[13] MacCormack, A., R. Verganti, and M.
Iansiti, Developing products on “Internet
time”: The anatomy of a flexible
development process. Management
science, 2001. 47(1): p. 133-150.

[14] Royce, W., K. Bittner, and M. Perrow, The
economics of iterative software
development: Steering toward better
business results. 2009: Pearson Education.

[15] Baskerville, R., et al., Is internet-speed
software development different? IEEE
software, 2003(6): p. 70-77.

[16] Highsmith, J. and A. Cockburn, Agile
software development: The business of
innovation. Computer, 2001. 34(9): p. 120-
127.

[17] Green, P. Measuring the impact of scrum
on product development at adobe systems.
in System Sciences (HICSS), 2011 44th
Hawaii International Conference on. 2011.
IEEE.

[18] Schnitter, J. and O. Mackert. Large-scale
agile software development at SAP AG. in
International Conference on Evaluation of

Novel Approaches to Software
Engineering. 2010. Springer.

[19] Schmidt, C.T., S. Ganesha Venkatesha, and
J. Heymann. Empirical insights into the
perceived benefits of agile software
engineering practices: A case study from
SAP. in Companion Proceedings of the
36th International Conference on Software
Engineering. 2014. ACM.

[20] Begel, A. and N. Nagappan. Usage and
perceptions of agile software development
in an industrial context: An exploratory
study. in Empirical Software Engineering
and Measurement, 2007. ESEM 2007. First
International Symposium on. 2007. IEEE.

[21] Abrahamsson, P., et al., Agile software
development methods: Review and
analysis. arXiv preprint arXiv:1709.08439,
2017.

[22] Schmidt, C., et al., Team adaptability in
agile information systems development.
2013.

[23] Scheerer, A., Coordination in Large-Scale
Agile Software Development. 2017:
Springer.

[24] Nerur, S., R. Mahapatra, and G.
Mangalaraj, Challenges of migrating to
agile methodologies. Communications of
the ACM, 2005. 48(5): p. 72-78.

[25] Yu, X. and S. Petter, Understanding agile
software development practices using
shared mental models theory. Information
and Software Technology, 2014. 56(8): p.
911-921.

[26] Fowler, M. and J. Highsmith, The agile
manifesto. Software Development, 2001.
9(8): p. 28-35.

[27] Moe, N.B. and A. Aurum. Understanding
decision-making in agile software
development: a case-study. in Software
Engineering and Advanced Applications,
2008. SEAA'08. 34th Euromicro
Conference. 2008. IEEE.

[28] Drury-Grogan, M.L., K. Conboy, and T.
Acton, Examining decision characteristics
& challenges for agile software
development. Journal of Systems and
Software, 2017. 131: p. 248-265.

[29] Dybå, T. and T. Dingsøyr, Empirical
studies of agile software development: A
systematic review. Information and
software technology, 2008. 50(9-10): p.
833-859.

[30] Dingsøyr, T. and C. Lassenius, Emerging
themes in agile software development:

Journal of Theoretical and Applied Information Technology
30th November 2019. Vol.97. No 22

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

3208

Introduction to the special section on
continuous value delivery. Information and
Software Technology, 2016. 77: p. 56-60.

[31] Alahyari, H., R.B. Svensson, and T.
Gorschek, A study of value in agile
software development organizations.
Journal of Systems and Software, 2017.
125: p. 271-288.

[32] Miller, G.G. The characteristics of agile
software processes. in tools. 2001. IEEE.

[33] Holvitie, J., et al., Technical debt and agile
software development practices and
processes: An industry practitioner survey.
Information and Software Technology,
2018. 96: p. 141-160.

[34] Cockburn, A., Crystal Clear. A Human-
Powered Methodology for Small Teams,
2005.

[35] Felsing, J.M. and S.R. Palmer, A Practical
Guide to Feature-Driven Development.
IEEE Software, 2002. 7: p. 67-72.

[36] Ambler, S., The agile unified process (aup).
Ambysoft, 2005. 14.

[37] Poppendieck, M. and T. Poppendieck,
Implementing lean software development:
From concept to cash. 2007: Pearson
Education.

[38] Beck, K. and E. Gamma, Extreme
programming explained: embrace change.
2000: addison-wesley professional.

[39] Beck, K., Embracing change with extreme
programming. Computer, 1999. 32(10): p.
70-77.

[40] Larman, C. and V.R. Basili, Iterative and
incremental developments. a brief history.
Computer, 2003. 36(6): p. 47-56.

[41] Pressman, R.S., and Maxim, Bruce, R.,
Software Engineering: A Practitioner’s
Approach. 2015, McGraw-Hill.

[42] Highsmith, J.R., Adaptive software
development: a collaborative approach to
managing complex systems. 2013:
Addison-Wesley.

[43] Highsmith, J.A. and J. Highsmith, Agile
software development ecosystems. Vol. 13.
2002: Addison-Wesley Professional.

[44] Hawrysh, S. and J. Ruprecht, Light
methodologies: It's Like Déjà Vu All Over
Again. Cutter IT Journal, 2000. 13(11): p.
4-12.

[45] McCauley, R., Agile development methods
poised to upset status quo. ACM SIGCSE
Bulletin, 2001. 33(4): p. 14-15.

[46] Glass, R.L., Agile versus traditional: Make
love, not war! Cutter IT Journal, 2001.
14(12): p. 12-18.

[47] Wellington, C.A., T. Briggs, and C.D.
Girard. Comparison of student experiences
with plan-driven and agile methodologies.
in Frontiers in Education, 2005. FIE'05.
Proceedings 35th Annual Conference.
2005. IEEE.

[48] McAvoy, J. and T. Butler, The role of
project management in ineffective decision
making within Agile software development
projects. European Journal of Information
Systems, 2009. 18(4): p. 372-383.

