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ABSTRACT 
 

In this paper we describe a method for the numerical construction of curvilinear structured grids in doubly 
connected regions and numerical modeling of the convective flow of a non-uniformly heated liquid in a 
curvilinear coordinate system. The study is absolutely unique and conducted in accordance with modern 
scientific demands. Based on previous surveys and the latest findings in the study area, it brings the acute 
question of information technology for the numerical simulation of convective flows of a viscous 
incompressible fluid in curvilinear multiply connected domains to a significantly new level. The study is 
complex and attempts to analyze the theme thoroughly, taking into account all factors that may influence 
the final results. The paper presents a complete required set of multiple graphs, detailed equations and 
schemes in order to increase visualization of obtained results on a viscous incompressible fluid in 
curvilinear multiply connected domains and simplify the perception of the results for accurate scientific 
conclusions and further applied usage. In the numerical construction of curvilinear grids in doubly-
connected domains, the implicit scheme and the method of fractional steps are used by the equidistribution 
method and Godunov-Thompson, and in the numerical realization of the equations of an incompressible 
fluid, an explicit scheme and a method of fractional steps are used. In the direction of the outer and inner 
boundaries, a cyclic run is used, and in the direction of the normal, a scalar run is used. Calculations were 
carried out for different cavity configurations, temperature regimes at the boundary. The graphs of 
numerical calculations of the temperature and current function are obtained. All this makes the current 
study an important contribution to the development of theoretical concepts and methodological approaches 
to the use of new information technologies in hydrodynamic studies that takes into account the specific 
features of the subject area, as well as the development, adaptation and approbation of tools in the process 
of modeling of natural and technogenic objects. 

Keywords: Computer Technology, Mathematical Modeling, Curvilinear Structured Grids, Doubly-
Connected, Curvilinear Boundary 

 
1. INTRODUCTION  
 

With the rapid development of computer 
technology, mathematical modeling of physical, 
chemical processes and mechanical systems in 
various branches of science is intensively 
developing. In recent years, it has become 
increasingly necessary to solve problems in 
complex regions with complex geometry and in 
zones of rapid changes in the characteristics of the 
physical medium (density, pressure). For modeling 

in complex areas, first of all, the physical area is to 
be discretized, that is, the stage of modeling 
physical geometries using a set of cells of 
difference grids. It should be noted that the use of 
non-uniform grids can cause non-physical sources 
of mass and momentum to appear in the calculation 
schemes, as well as the loss of important properties 
inherent in the approximated differential equations. 
The model equations recorded in curvilinear 
coordinates have a more complex form than the 
original equations, in particular, they contain 
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variable coefficients, additional terms, nonzero 
right-hand sides, and so on. Therefore, the question 
of approximation of equations on curvilinear grids 
is urgent and requires close attention. In addition, 
the diverse requirements imposed on difference 
grids make the construction of curvilinear grids a 
complex mathematical problem. In this regard, the 
development of theoretical concepts and 
methodological approaches to the use of advanced 
information technologies in hydrodynamic studies 
that take into account the specific features of the 
subject area, the development, adaptation of tools 
and approbation of them in the process of modeling 
of natural and technogenic objects of significant 
economic importance are very relevant. 

 
Modern research in the field of computational 

and applied mathematics is aimed at the creation of 
automated computer programs for the construction 
of curvilinear adaptive structural and nonstructural 
difference grids, as well as the modernization of 
numerical algorithms for solving applied problems. 
A fundamental study on the justification, numerical 
realization of the construction of curvilinear 
adaptive grids, the problem of hydrodynamics, and 
also some experimental results were published in 
the works of N.T. Danaeva, Yu.I. Shokin, G.S. 
Khakimzyanova, N.M. Temirbekova, V.D. 
Liseikina, J.F. Thompson, Z.U.A. Warsi, C.W. 
Mastin, etc.   

 
In this paper we consider the problem of 

constructing curvilinear grids on an arbitrary 
curvilinear boundary and inside a domain by a 
differential method. In these methods, differential 
equations of partial derivatives of various types are 
used, but differential methods for constructing grids 
based on solving equations of elliptic type are most 
widely used. A mathematical problem is also 
considered with respect to the vorticity variables , 
the stream function , and the temperature  
describing the convective flow of a nonuniformly 
heated viscous fluid in an arbitrary doubly-
connected D domain with a curvilinear boundary 

10 D  (Figure 1). 

 

Figure 1: A Doubly Connected Physical Domain 

2. FORMULATION OF THE PROBLEM 

Methods for constructing curvilinear grids 
are considered. Differential methods for 
constructing curvilinear grids are used in this paper, 
since the physical domain under consideration is 
complex and has curvilinear boundaries. In these 
methods, partial differential equations of various 
types are used, but differential methods for 
constructing grids based on solving equations of 
elliptic type are most widely used. 

The mapping of the physical region in the 

coordinate system  yx,  to the computational 

domain in the coordinate system   ,  is 

performed by the method of cutting the region [1] 
(Figure 2). The curve of the outer boundary 1 is 
mapped onto the line 10,0   , and the 

inner boundary 3 is mapped onto the line 
10,1   . The cut along the cutting line is 

made twice, the boundary 2 is mapped onto the line 
10,1   , and the cut line 4 is mapped onto 

the line 10,0   .  

 
Figure 2: The Mapping of A Doubly-Connected 

Curvilinear Domain Q To A Calculated  
Rectangle Q* 

3. COMPUTATIONAL ALGORITHM 
 

The construction of a grid in a two-
dimensional domain begins with the construction of 
a grid on its boundary. Since the boundary of the 
domain is not monotonous, we describe the 
boundary with the help of equations in a given 
parametric form 

D 

y 

x 

Г0 
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    ,0,, 21 lppfypfx   (1) 

where l  - is the length of the boundary. 
 
To construct a grid on the boundaries, we 

use the one-dimensional equidistribution method, 
i.e. differential equation of the following form [1]: 

  0





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
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
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p ,  1,0  (2) 

    lpp  1,00 , where  

       lp
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The coordinates of the grid nodes at the 

boundaries are calculated by formula (1) using the 
values of found p. The equations of the 
equidistribution method are used to construct two-
dimensional grids with the assumption of 
orthogonality of the required coordinate system [1]: 
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 (3) 

 
where ),( yxx 

  - is physical coordinates, 
22

22
22

11 ,  yxgyxg   - are the components 

of the metric tensor. 
 

The problem (1)-(3) for the construction of 
a grid on the boundary of the domain will be solved 
by a finite difference method. The finite difference 
scheme (2) has the following form: 
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If the boundary of the region is given as  
set of points    MkyxA kkk ,..,1,  , 

   2,1,  lyx lkk ,  then the length is defined 

as follows: 
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The parametric equation for determining 
the coordinates of nodes on the boundary for linear 
interpolation and  1,  kki llp  has the following 

form: 
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The resulting finite difference problem (4) 

is solved by an iterative method of successive 
approximations. A uniform grid on the interval 

 l,0  is chosen as an initial approximation 0
ip .  Let 

the grid n
ip  be built on the n -th iteration. Let us 

define 
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on the grid. The following successive 

approximation is found using them. For this, the 
following linear problem is solved  
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 (6) 

 
where lpp n

n
n   11
1 1

,0 ; 1,..,2 1  ni .     

 
The iterative process continues to the 

specified accuracy, that is, until the following 
condition is fulfilled: 

 





n
i

n
i

ni
pp 1

1 1

max  

 
The coordinates of the nodes on the 

boundary of the physical region are calculated 
using (5) based on the results of the last iteration 
approximation. Figures 3 show the results of the 
solution to the difference problem (6) and (5), 
where 20, 50 and 100 grid nodes are uniformly 
distributed at the boundaries. 
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a) Evenly Distributed Mesh Nodes (20 Nodes) 

 
b) Evenly Distributed Mesh Nodes (50 Nodes) 

 

C) Evenly Distributed Mesh Nodes (100 Knots) 
 

Figure 3. Uniformly Distributed Mesh Nodes 
 

Let us write out the difference problem for 
determining the coordinates inside the domain. The 
finite difference scheme (3) has the following form: 
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To determine the components of the metric 

tensor, the central differences in the integer nodes 
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and in the center of the faces the cells are 
determined by averaging in the following way: 
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The remaining coefficients were 

determined similarly. The alternating directions 
method is used to find the numerical solution of (6). 
Let us consider the algorithm of the alternating 
directions method: 
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Here, n  is the number of the iteration,   
is the iteration parameter. Since the components of 
the metric tensor depend on the solution, the 

coefficients 2211 , gg  are calculated with the 

help of the n -th iteration solution. Since the 
domain under consideration is doubly connected 
and the grid nodes must coincide on the cut line 
(see Figure 2), then in the   direction we need to 

apply the cyclic sweep method [5], with periodic 
conditions: 

ini AA  1
,

ini BB  1
,

ini CC  1
, ini FF  1

,

1,..,1 1  ni  (10) 

 
If conditions (10) are satisfied, the solution 

of equations (8) is also periodic with period 11 n , 

i.e. 

11  nii xx


. 
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Therefore, it is sufficient to find a solution 
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, 1,1 1  ni . In this case, equation (8) with 

periodic conditions can be written as follows: 
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To determine the running coefficients, the 
following formulas are used [5]: 
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On the cut line, the following periodic 

boundary conditions are taken into account: 

11
AAn  , 11

BBn  , 11
CCn  , 

11
FFn  . 

 
A scalar sweep with fixed boundary values 

found with the help of (5) is used for equation (9) in 
the direction  . Methodical calculations of the 

construction of curvilinear grids are considered 
based on the method described above. 

 

Since the conditions of periodicity were 
used in one direction, the results are also periodic. 
In order to determine the most optimal grid, we 
used the estimation of the grids quality according to 
the methods proposed in [1]. The work [1] 
considers four types of estimates that are 
orthogonality, local uniformity, non-extension and 
convexity of the constructed grid. 

 
a) 

 
b) 
 

 
c) 

Figure 4: Results of Calculations for the Construction of 
Curvilinear Grids 
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Figure 5: Cell Division into Triangles 

 
Each grid cell is considered and is divided 

diagonally into triangles. The following value 
corresponds to the convexity criterion (see equation 
12): where  , 
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by the diagonals. The value 1
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,  jiQ , 

for degenerate in a triangle and self-intersecting 

cells 01
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To determine the estimate of the 

orthogonality criterion, use the minimum value of 
the sine of the angle as follows: 
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and the lengths of the sides are 

       2,,1
2

,,1,1,, jijijijijiji yyxxl   , 

etc. 
 

Values of functions 2
, jiQ  can take values 

from a segment  1,1 , for convex cells it takes 

positive values, and for degenerate ones it is equal 
to zero, and negative values for a nonconvex and 
self-intersecting cell. The next criterion of grid 
quality is the elongation of the cell, which is 
defined as follows: 
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 (14) 
 

Values 3
, jiQ  vary in the interval  1,0 . One 

of the main requirements is local uniformity, i.e., 
all cells in the area should be evenly distributed. 
Adaptive grids are considered in [1], therefore they 
use a control function. Without the control function, 
the criterion of local uniformity is defined as 
follows: 
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where 2/1,2/1  jiS  is the area of the cell 

surrounded by nodes 

        1,,1,1,,1,,  jijijiji , 

and a is the average area of one cell.  The values of 
vary in the interval [0.1] 
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In order to determine the best variant of 

the grid, the criteria for the quality of the grid were 
determined at each iteration according to the 
methods described above. Based on the defined 
criteria for the quality of the grid at each iteration, 
the worst (minimum score) was determined, and the 
best ones were chosen from the worst ones. Thus, 
the most optimal grid was defined by convexity, 
since convexity and orthogonality are related 
criteria. 

 

 
 

Figure 6: Graphical Representation of the Convexity 
Criterion in Space 

 
Figure 7: Graphical Representation of the Convexity 

Criterion in the Plane 

 
It can be seen from Figures 6 and 7 that all 

grid cells are convex, since the values of the 
estimates are in intervals 10 1

,  jiQ . Thus, we 

have the most suitable and mutually orthogonal 
curvilinear grid in a doubly-connected domain. To 
simulate a convective flow, the equation of an 
incompressible fluid is used in the vorticity , 
stream function , and temperature  variables with 
corresponding initial and boundary conditions [4] 
in curvilinear coordinate systems. A mathematical 
problem describing the convective flow of a non-
uniformly heated viscous fluid in an arbitrary 
doubly-connected domain D  with a curvilinear 

boundary is considered 10 D  (Figure 1). 

This problem in Cartesian coordinate 
systems, in a fixed bounded two-dimensional 
domain, can be formulated as follows: 
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with the following initial and boundary conditions: 

    0,,,,,0  tDyxyx  
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where yx,  are the Cartesian coordinates, 

t is time, 
x

v
y

u










,  are the components of 

the velocity vector,  ,u  are the coefficients of 

kinematic viscosity and thermal diffusivity,   is 

the coefficient of thermal density variation, 10 ,   

are the disjoint contours, n  is the direction of the 

у 
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outer normal to the boundary D , i  is the 

specified functions. An analogous problem was 
considered in [3] on a closed  rectangular cavity D  

with a boundary 0  containing a rectangular body 

with a boundary 1  on a uniform rectangular grid 

taking into account the uniqueness of the pressure 
condition. The use of a Cartesian coordinate system 
in finite difference methods is complicated in a 
doubly-connected domain with a curvilinear 
boundary, as in Figure 1, because of the description 
of the computational grid at the boundaries and the 
necessary interpolation procedures for obtaining 
boundary conditions. The problem (16)-(19) in the 
curvilinear coordinate system when mapping the 

physical plane  yx,  to the computational plane 

  ,  is as follows: 
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where  vJхuJуa 1 ,  vJхuJуa 2 , 

 22
11  xyJa  ,   xxyyJa 12 , 

 22
22  xyJa  , 

 ухух
J




1
 is the Jacobian of 

transformation. 
 
The use of transformation into a 

curvilinear coordinate system allows us to consider 
problem (20) - (22) on a uniform rectangular grid 
and obtain qualitative pictures of simulated 
processes at moderate amounts of grid nodes. A 
metric conversion factors can be calculated 
analytically or numerically, depending on the 

definition or specification of the curvilinear 
boundary. An explicit scheme and an iterative 
method of successive upper relaxation is used to 
solve the problem numerically. The differential 
problem is replaced by a difference analogue of the 
following form: 
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 (27) 
where  

 n
jiji

n
jijijiji vxuуJa ,,,,,,,,,1   , 

 n
jiji

n
jijijiji uуvxJa ,,,,,,,,,2   ,  

 2
,,

2
,,,,,11 jijijili xyJa   , 

 2
,,

2
,,,22 jijiji xyJa   ,  

 jijijijijijiji xxyyJaa ,,,,,,,,,,,21,,12   . 

 
The difference analogues of the 

corresponding differential operators have the 
following form (see equation 28): 
 

The algorithm of numerical 
implementation is carried out in the following way: 
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first of all,  1
,
n
ji  is found by (23); then 1

,
n
ji  is 

found by (24); 1
,
n
jiu  and  1

,
n
jiv  are determined  

from (25), (26) using the found values of 1
,
n
ji ; the 

values of 1
,
n
ji  are calculated using the new values 

of 1
,
n
jiu  and  1

,
n
jiv  from (27). The iteration process 

continued until the following condition is met: 
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The use of an explicit scheme and slowly 

convergent iterative methods is explained by the 
fact that rapidly convergent cost-effective methods, 
using implicit schemes, require self-adjointness and 
positive definiteness of the matrix of differential 
operators. This complicates the problem in the 
presence of the metric tensors coefficients. 
According to the algorithm described above, 
numerous methodological calculations are carried 
out in various doubly connected domains. 
Dimensionless quantities of velocity, length, 
temperature, and time were used in the calculations. 
In the exampl, the temperature was assumed to be 

0  in the outer boundary, and 1  in the 
inner boundary A ring was specially chosen in the 
first example, where the boundaries are described 
by the equations of a circle, the grid is constructed 
by an algebraic method, and the components of the 
metric tensor are determined analytically (Figure 
8a). Figure 8b shows the results of calculating the 
temperature change. It can be seen from the figure 
that the cold liquid is based in the lower part of the 
region, since it is known from the physics course 
that the density of the liquid is inversely 
proportional to the temperature. 

 

 
a) 

 
b) 

Figure 8: Estimated Grid and the Results of Numerical 
Solution of the Temperature Change 

 

 
a) 

 
b) 

Figure 9: The Results of a Numerical Solution of a) 
Temperature Change, b) the Current Function at The 

Same Time 

 
Since the process is not stationary, the 

norms of velocity and temperature also do not tend 
to a stationary regime in calculations. According to х 

у 
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this, the vortex regimes constantly change and the 
cooler liquid swings in the lower part of the 
calculated domain. Figure 10 shows the results of 
calculating the temperature and the current function 
at the same time. 

 

 
Figure 10: Results of the Numerical Solution of the 
Temperature Variation in the Curvilinear Domain 

 

 
Figure 11: Results of the Numerical Solution of the 

Current Function in the Curvilinear Domain 
 

Figures 10 and 11 show the results of 
numerical calculations of the temperature and 
current functions at the same time. It is seen from 
the figures that vortex motions are formed in the 
curves of the boundary, and a warm liquid 
accumulates in the upper parts of the bend. Since 
the process is non-stationary, the modes of vortices 
are constantly changing, and the temperature of the 
fluid is constantly transferred. In conclusion, it can 
be seen that the construction of a curvilinear grid 
for the description of convective flow helps to 
obtain a qualitative description of physical 
processes. 

The results obtained after investigations 
are principally different from previously conducted 
surveys in the field of computational and applied 
mathematics aimed at the creation of automated 
computer programs for the construction of 
curvilinear adaptive structural and nonstructural 
difference grids, as well as the modernization of 

numerical algorithms for solving applied problems. 
Previous studies in this area usually lack a holistic 
approach, whereas the current study is presented in 
the form of relevant feedback on urgent scientific 
demands for theoretical concepts and 
methodological approaches to the use of advanced 
information technologies in hydrodynamic studies. 
It takes into account the specific features of the 
subject area, as well as the development, adaptation 
and approbation of tools in the process of modeling 
of natural and technogenic objects of significant 
importance.  
 
4. CONCLUSIONS 

The findings of the study have been reflected and 
confirmed by the graphs, allowing us to conclude 
that applied methods for the numerical construction 
of curvilinear structured grids in doubly connected 
domains are effective. They present a scientific 
opportunity to develop theoretical concepts and 
methodological approaches to the use of new 
information technologies in hydrodynamic studies, 
taking into account the specific features of the 
subject area, as well as the development, adaptation 
and approbation of tools in the process of modeling 
of natural and technogenic objects. Numerical 
modeling of the convective flow of a non-uniformly 
heated liquid in a curvilinear coordinate system is 
performed. The implicit scheme and the method of 
fractional steps are used in the numerical 
construction of curvilinear grids in doubly 
connected domains by equidistribution methods and 
the method of Godunov-Thompson. An explicit 
scheme and the method of fractional steps are used 
in the numerical implementation of the equations of 
an incompressible fluid. A cyclic run is used in the 
direction of the outer and inner boundaries, and a 
scalar run is used in the normal direction. 
Calculations were carried out for different cavity 
configurations and temperature regimes at the 
boundary. The graphs of numerical calculations of 
the temperature and current functions have been 
obtained, namely: the estimated grid and the 
numerical solution of the temperature change; the 
numerical solution of the temperature change and 
the current function at the same time; the numerical 
solution of the temperature variation in the 
curvilinear domain; the numerical solution of the 
current function in the curvilinear domain. 
However, further investigations need to be 
performed in this area in order to develop and 
implement the detailed scheme of the results 
obtained in the current study.  
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APPENDIX 
. 

1) Equation 12 
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