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ABSTRACT

In this paper we describe a method for the numerical construction of curvilinear structured grids in doubly
connected regions and numerical modeling of the convective flow of a non-uniformly heated liquid in a
curvilinear coordinate system. The study is absolutely unique and conducted in accordance with modern
scientific demands. Based on previous surveys and the latest findings in the study area, it brings the acute
question of information technology for the numerical simulation of convective flows of a viscous
incompressible fluid in curvilinear multiply connected domains to a significantly new level. The study is
complex and attempts to analyze the theme thoroughly, taking into account all factors that may influence
the final results. The paper presents a complete required set of multiple graphs, detailed equations and
schemes in order to increase visualization of obtained results on a viscous incompressible fluid in
curvilinear multiply connected domains and simplify the perception of the results for accurate scientific
conclusions and further applied usage. In the numerical construction of curvilinear grids in doubly-
connected domains, the implicit scheme and the method of fractional steps are used by the equidistribution
method and Godunov-Thompson, and in the numerical realization of the equations of an incompressible
fluid, an explicit scheme and a method of fractional steps are used. In the direction of the outer and inner
boundaries, a cyclic run is used, and in the direction of the normal, a scalar run is used. Calculations were
carried out for different cavity configurations, temperature regimes at the boundary. The graphs of
numerical calculations of the temperature and current function are obtained. All this makes the current
study an important contribution to the development of theoretical concepts and methodological approaches
to the use of new information technologies in hydrodynamic studies that takes into account the specific
features of the subject area, as well as the development, adaptation and approbation of tools in the process
of modeling of natural and technogenic objects.

Keywords: Computer Technology, Mathematical Modeling, Curvilinear Structured Grids, Doubly-

Connected, Curvilinear Boundary
1. INTRODUCTION in complex areas, first of all, the physical area is to
be discretized, that is, the stage of modeling

With the rapid development of computer
technology, mathematical modeling of physical,
chemical processes and mechanical systems in
various branches of science is intensively
developing. In recent years, it has become
increasingly necessary to solve problems in
complex regions with complex geometry and in
zones of rapid changes in the characteristics of the
physical medium (density, pressure). For modeling

physical geometries using a set of cells of
difference grids. It should be noted that the use of
non-uniform grids can cause non-physical sources
of mass and momentum to appear in the calculation
schemes, as well as the loss of important properties
inherent in the approximated differential equations.
The model equations recorded in curvilinear
coordinates have a more complex form than the
original equations, in particular, they contain
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variable coefficients, additional terms, nonzero
right-hand sides, and so on. Therefore, the question
of approximation of equations on curvilinear grids
is urgent and requires close attention. In addition,
the diverse requirements imposed on difference
grids make the construction of curvilinear grids a
complex mathematical problem. In this regard, the
development of theoretical concepts and
methodological approaches to the use of advanced
information technologies in hydrodynamic studies
that take into account the specific features of the
subject area, the development, adaptation of tools
and approbation of them in the process of modeling
of natural and technogenic objects of significant
economic importance are very relevant.

Modern research in the field of computational
and applied mathematics is aimed at the creation of
automated computer programs for the construction
of curvilinear adaptive structural and nonstructural
difference grids, as well as the modernization of
numerical algorithms for solving applied problems.
A fundamental study on the justification, numerical
realization of the construction of curvilinear
adaptive grids, the problem of hydrodynamics, and
also some experimental results were published in
the works of N.T. Danaeva, Yu.l. Shokin, G.S.
Khakimzyanova, @~N.M.  Temirbekova, V.D.
Liseikina, J.F. Thompson, Z.U.A. Warsi, C.W.
Mastin, etc.

In this paper we consider the problem of
constructing curvilinear grids on an arbitrary
curvilinear boundary and inside a domain by a
differential method. In these methods, differential
equations of partial derivatives of various types are
used, but differential methods for constructing grids
based on solving equations of elliptic type are most
widely used. A mathematical problem is also
considered with respect to the vorticity variables o,
the stream function y, and the temperature &
describing the convective flow of a nonuniformly
heated viscous fluid in an arbitrary doubly-

connected D domain with a curvilinear boundary

oD =T, UT, (Figure 1).

Y

v
Figure 1: A Doubly Connected Physical Domain
2. FORMULATION OF THE PROBLEM

Methods for constructing curvilinear grids
are  considered. Differential methods for
constructing curvilinear grids are used in this paper,
since the physical domain under consideration is
complex and has curvilinear boundaries. In these
methods, partial differential equations of various
types are used, but differential methods for
constructing grids based on solving equations of
elliptic type are most widely used.

The mapping of the physical region in the

coordinate system (x, y) to the computational

domain in the coordinate system (5,77) is

performed by the method of cutting the region [1]
(Figure 2). The curve of the outer boundary 1 is

mapped onto the line 7=0,0< <1, and the
inner boundary 3 is mapped onto the line
n=1,0<& <1. The cut along the cutting line is
made twice, the boundary 2 is mapped onto the line
&=1,0<7 <1, and the cut line 4 is mapped onto

theline £ =0,0<p<1.
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Figure 2: The Mapping of A Doubly-Connected
Curvilinear Domain Q To A Calculated
Rectangle Q*
3. COMPUTATIONAL ALGORITHM

The construction of a grid in a two-
dimensional domain begins with the construction of
a grid on its boundary. Since the boundary of the
domain is not monotonous, we describe the
boundary with the help of equations in a given
parametric form
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x=f'(p) y=rp) 0<p<i, (1)
where [ - is the length of the boundary.

To construct a grid on the boundaries, we
use the one-dimensional equidistribution method,
i.e. differential equation of the following form [1]:

P P
a{f(&(p)@?) _0.£€(0,]) )

p(0)=0, p(1)=1, where
o) \/(af‘(p)]:(afz(p)]z vo pefo]

op op

The coordinates of the grid nodes at the
boundaries are calculated by formula (1) using the
values of found p. The equations of the
equidistribution method are used to construct two-
dimensional grids with the assumption of
orthogonality of the required coordinate system [1]:

0 ox 0 ox
of, @ o &E\_, 3
6§(g2265)+6n(g”877) ’

where physical coordinates,

¥=(x,y) - is
g, = xé +y§, gy, = xj +)’,§ - are the components

of the metric tensor.

The problem (1)-(3) for the construction of
a grid on the boundary of the domain will be solved
by a finite difference method. The finite difference
scheme (2) has the following form:

}:(‘9,41/2 p[+1_p[+19 p[_pilj:();
1

hl i—1/2 hl
p =0, p,=13i=2.,m~1 (4)
where
2 2
. - J[fl<pm>—fl<p,.>J +[f2(1?,-+1)—f2(p,-)J
+1/2 T
Py~ Di P~ Di

If the boundary of the region is given as

set  of  points A, (xk Vi ) (k= 1,..,M),

(xk Vi )e T, (I = 1,2), then the length is defined
as follows:

The parametric equation for determining
the coordinates of nodes on the boundary for linear

interpolation and p, € [lk,lk +1] has the following

form:

fl(pi):xk +M(pi _lk)

k+1 _lk
fz(pi):yk_l—u(pi_lk) ®)
1k+l_lk

The resulting finite difference problem (4)
is solved by an iterative method of successive
approximations. A uniform grid on the interval

[0,1] is chosen as an initial approximation p? . Let

the grid p; be built on the 7 -th iteration. Let us
define

2
. \/(fl(pﬁl)—f‘(p;”)J +(f2(17;"+1)—f2(177)
i+1/2 T n n n n
Py — D Pin— P
on the grid. The following successive
approximation is found using them. For this, the
following linear problem is solved

n+l n+l _n+l

1 p—p! P P
. ,9‘71 i+l i + ,9"1 i i—1 — 0
hl ( i+1/2 hl i-1/2 hl

(6)

where p™' =0, p™'=1;i=2,.,n-1.

1 m

The iterative process continues to the
specified accuracy, that is, until the following
condition is fulfilled:

n+l n
i

pi|s¢€

max|p

1<i<n

The coordinates of the nodes on the
boundary of the physical region are calculated
using (5) based on the results of the last iteration
approximation. Figures 3 show the results of the
solution to the difference problem (6) and (5),
where 20, 50 and 100 grid nodes are uniformly
distributed at the boundaries.
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Figure 3. Uniformly Distributed Mesh Nodes
Let us write out the difference problem for

determining the coordinates inside the domain. The
finite difference scheme (3) has the following form:

Allii,j +A22;Ci,j =0, (7)

where

Ag o] Kistj i j Xij T
1y =7 | iz —8nis2, >

h h h

As = 1 xi,j+1 _xi,j xi,j _xf,/'*l
2% _; 811,ij+1/2 I — &2
2 2 2

To determine the components of the metric
tensor, the central differences in the integer nodes

X X. . X X

i1, Yo, i+l Nij-l
xfij=¥’ xn,i,j:—’
2h, 2h,
_ Yiej = Vi _ Yijon = Vija
Ve =T gy e T
1 2

2 2 2 2
iy T Xeij T Ve 8wy = Xpiy T Vi

and in the center of the faces the cells are
determined by averaging in the following way:

8, T8y 81 8,
82 = ) s 8y = ) -
The  remaining  coefficients  were

determined similarly. The alternating directions
method is used to find the numerical solution of (6).
Let us consider the algorithm of the alternating
directions method:

—n+l/2 _56"
[, ] i, ] —n+l/2 =
S R ) ®)
0.57 ’ ’
—n+l —n+l/2

X o] i,j

_An ntl/2 n =n+l
057 _Allxi,j +A22xi,j

(€))

Here, n is the number of the iteration, 7
is the iteration parameter. Since the components of
the metric tensor depend on the solution, the

coefficients g,,, &,, are calculated with the

help of the 7 -th iteration solution. Since the
domain under consideration is doubly connected
and the grid nodes must coincide on the cut line

(see Figure 2), then in the & direction we need to

apply the cyclic sweep method [5], with periodic
conditions:

A :Ai’BHnl :B[’CHnl :Ci’F

i+n i+n

ZF;’
(10)

i=L.,n -1

If conditions (10) are satisfied, the solution
of equations (8) is also periodic with period n, -1,
ie.

X, =

i+n—-1"

3169



Journal of Theoretical and Applied Information Technology

15" November 2019. Vol.97. No 22

54
© 2005 — ongoing JATIT & LLS A

SM il

ISSN: 1992-8645

Www.jatit.org

E-ISSN: 1817-3195

Therefore, it is sufficient to find a solution
X,

l

periodic conditions can be written as follows:

i=1,n—1. In this case, equation (8) with

—=n+l/2 —n+l/2 —ntl/2 .
_Alxnl— +CGXT-Bx, T =F,i=1

1j
—n+l/2 —=n+l/2 =ntl/2 _ .
—Ax T +Cx T —Bx, C=F,2<i<n -1
—ntl/2 _ —ntl/2
m,j T TLj
(11)
n
T &n,-1/2,
where 4, =——,
2k
n
T 8xnv/2
i — A 2 s
2k
C.=1+4+8B,,

T
_=n =n
F;- = xi,j +5A22xl—’j .

To determine the running coefficients, the
following formulas are used [5]:

B, . F,+4p
o, -—B Poy=Ab
C.—a,4, C—-a4
Ci_aiAi
B F y
a. = ; =1 =21
2 C, B, C, 72 C,
D=0 Pt P q9; =%a4in TVias
i:nl—Z,...,l; pnﬁl:ﬂnl;

in—l :anl +7/n1;

—n+l/2 _ ﬁn]+l +an]+1pl

ny,Jj

>

1_an1+1% =Vt
—n+l/2 _ =n+l/2 . _
X, T=Epirgx, i=2,.,n -1.

On the cut line, the following periodic
boundary conditions are taken into account:

An, =‘/41’ Bﬂl :Bl’ Cnl :CI’ Fnl =F'1
A scalar sweep with fixed boundary values

found with the help of (5) is used for equation (9) in
the direction 77. Methodical calculations of the

construction of curvilinear grids are considered
based on the method described above.

Since the conditions of periodicity were
used in one direction, the results are also periodic.
In order to determine the most optimal grid, we
used the estimation of the grids quality according to
the methods proposed in [1]. The work [1]
considers four types of estimates that are
orthogonality, local uniformity, non-extension and
convexity of the constructed grid.
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Figure 4: Results of Calculations for the Construction of
Curvilinear Grids
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Figure 5: Cell Division into Triangles

Each grid cell is considered and is divided
diagonally into triangles. The following value
corresponds to the convexity criterion (see equation
12): where R
1)

Sl :5
2)

(xt+Lj _)9,jxyf+u+1 —y,;j) _(xww X X/VHLJ N )]
1

‘%, i) :i[(%’ Xy Xyi,/'ﬁ _)i/) 4()2/44 X Xym, Ny )]

3)

‘Si,j),(#l,j),{'i,j#rl) :%[(xiﬂ,j X Xyi,jﬂ _yi,j)_(xz,jﬂ X Xym,j i )]

4)

S-f:'—L_,:' Wi J+1E+1 j+1]) =

2,

1 4 " N
= [[\x:'—l_v:'—l XLy ,H\.:L";'_p:'—l — ¥ ]

fik [xxi'._,:'—l T X1 I}':-L,:'-l ~ a1 ]]

- the areas of the corresponding triangles formed

by the diagonals. The value Ql.l’ ; can lie in the

interval (— 00,1], for a convex cell 0< QI.I’ ;<1

for degenerate in a triangle and self-intersecting
cells —OO<QI.1J <0.

To determine the estimate of the
orthogonality criterion, use the minimum value of
the sine of the angle as follows:

Q0 = min {sing, } (13)
k=i, ) (i+1,)(i, j+1),(i+1,+1)
where
sing, , = 28 )i1)071) ’
i 41)
28 N A
ing,, =oAL
(1) (41, (i1, /), (41, j+1)
28 N
sin (Di,j+l = (”])’(’;H)’(Hlalﬂ) ,
(6,7 (i, j+1)5 (G, 1) (41, j+1)
; 2801 ) ) (141
sin ¢i+l,j+l — (61,7 )06, j+1),(i+1, j+1) ’
l(i+1,j),(i+1,f+1)l(i, G0, (i+1,j+1)
and the lengths of  the sides are
lep i = \/(xi*rl,j - xi,j)z + (yi+1,j - yi,j)z ,
etc.

Values of functions Qi2 ; can take values

from a segment [— 1,1], for convex cells it takes

positive values, and for degenerate ones it is equal
to zero, and negative values for a nonconvex and
self-intersecting cell. The next criterion of grid
quality is the elongation of the cell, which is
defined as follows:

A

min
g = an (U2 a) (G SR (AR VARV (VS
! max )
e i1 ) )+ )]
(14)

Values Q? ; vary in the interval [0,1]. One

of the main requirements is local uniformity, i.e.,
all cells in the area should be evenly distributed.
Adaptive grids are considered in [1], therefore they
use a control function. Without the control function,
the criterion of local uniformity is defined as
follows:
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4 . Si+1/2,j+1/2 S
Q' =min =,
7 S

(15)
Si+1/2,j+1/2

where Sl.H/z’jJrl/2 is the area of the cell

surrounded by nodes

{(i,j), (i+1,j), (i+1,j+1), (i,j+1)} ,

and a is the average area of one cell. The values of
vary in the interval [0.1]

nl-1n2-1

.8

i+1/2,j+1/2

In order to determine the best variant of
the grid, the criteria for the quality of the grid were
determined at each iteration according to the
methods described above. Based on the defined
criteria for the quality of the grid at each iteration,
the worst (minimum score) was determined, and the
best ones were chosen from the worst ones. Thus,
the most optimal grid was defined by convexity,
since convexity and orthogonality are related
criteria.

0.934622

Figure 6: Graphical Representation of the Convexity
Criterion in Space

0 L 1 1 1 1 1 1
0 1 2 3 4 5 6

Figure 7: Graphical Representation of the Convexity
Criterion in the Plane

It can be seen from Figures 6 and 7 that all
grid cells are convex, since the values of the
estimates are in intervals 0<Ql_1j <1. Thus, we

have the most suitable and mutually orthogonal
curvilinear grid in a doubly-connected domain. To
simulate a convective flow, the equation of an
incompressible fluid is used in the vorticity o,
stream function i, and temperature € variables with
corresponding initial and boundary conditions [4]
in curvilinear coordinate systems. A mathematical
problem describing the convective flow of a non-
uniformly heated viscous fluid in an arbitrary
doubly-connected domain D with a curvilinear
boundary is considered 0D =I'; U T (Figure 1).

This problem in Cartesian coordinate
systems, in a fixed bounded two-dimensional
domain, can be formulated as follows:

ow ow Ow 0 (8a)j 0 (6&)) 06
—tu—+v—=u,— +u,—|— +ﬂa—
X

o ax oy T Moaxlax av| oy
(16)
2 2
oy N oy - w
o’ oy’
(17)

00 00 00 0 (60) 006
—tuUu—+Vv—=py—| — |+ —| —
ot ox oy Ox\ Ox oy\ oy
(18)

with the following initial and boundary conditions:

w=0, H:gp(x,y), (x,y)eﬁ, t=0

oy

w=0, §=0, 9=¢1(x,y,t), (x,y)eFO, te(O,T]

v, L0 0=4lxrd) (wy)er, reloT]
(19)

where X, ) are the Cartesian coordinates,

tis time, ,, — oy v= _ OV are the components of
’ ox

the velocity vector, £, , i, are the coefficients of
kinematic viscosity and thermal diffusivity, f is
the coefficient of thermal density variation, I'j, I}

are the disjoint contours, 7 is the direction of the
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outer normal to the boundary OD, @, is the

specified functions. An analogous problem was
considered in [3] on a closed rectangular cavity 1D

with a boundary I’ containing a rectangular body

with a boundary I', on a uniform rectangular grid

taking into account the uniqueness of the pressure
condition. The use of a Cartesian coordinate system
in finite difference methods is complicated in a
doubly-connected domain with a curvilinear
boundary, as in Figure 1, because of the description
of the computational grid at the boundaries and the
necessary interpolation procedures for obtaining
boundary conditions. The problem (16)-(19) in the

L]
curvilinear coordinate system when mapping the +8 i,f@ﬂSiJ (23)
physical plane (x, y) to the computational plane
(é’ 77) iS as fOHOWS: n+ n+ n+ n+ a)i’fﬂ
w w o & . of a All,hl//i,/'l +A11,hl//i,/‘1 _Alz,h‘//i,jl _A21,hl//i,/‘1 == Jl
Eﬂggﬂgy;ﬂ%{q 165}%50(%&7)_ i
(24)
of o[ w a9
sfet sl i) m ]
n+l _.] (//Hrl,j l//l—l,j l//l,j+1 l//l,j—l
(20) Upjp =i | = Xni 20 X 20,
(25
n+l +1 1 nl )
90 aﬂ% 9 aﬂai/ _0 alza—l// _,_2 %267‘// =_9vn+1 —J |- Viv; ~Wia, + Vi~V
oe\ o) oe\ Pon) o\ Pag) an\ Pon) IV =i | T Vnii 2h T
21) .
(26)
o0 o0 00 o o6 o o0
—ta_ta_—=Juy— allj""]%[aﬂ]_ e s i R
a ag op Maeag) an an o R N N g
T J
o o0 o o6
_J%af(alz&]J_J%&](alzafJ S ﬂ,g_;'v;'fln ,ag;i;' + U ;'__,:"'1::;1 S.i:'
(22) = ﬂg_;‘_h:'ﬂ'il:,agi:' I ,"-45,5_;:“'1 :mg;i'
(27)
where a; =uJy, —vJx,, ay=-uJy,+vJx,,  where
a, = J(y; +x,§), ay, =J .y, +x.x,), ay; =Ji, (yn,i,_/“i,_/ “XnigVii )
ay =J (y§ +x§), Ay =i (xé,i,j"i,j T Vit )

1 . .
J= is the Jacobian of
XeVy =X )e
transformation.
The wuse of transformation into a

curvilinear coordinate system allows us to consider
problem (20) - (22) on a uniform rectangular grid
and obtain qualitative pictures of simulated
processes at moderate amounts of grid nodes. A
metric conversion factors can be calculated
analytically or numerically, depending on the

definition or specification of the curvilinear
boundary. An explicit scheme and an iterative
method of successive upper relaxation is used to
solve the problem numerically. The differential
problem is replaced by a difference analogue of the
following form:

n+l n

L +g"'LL,!|f:}i +.¢"'L]ﬂ|f:}f =

T
{ f) i { ) o
= My N @+ N @

i ¥ " — d ¥ o
=y N — B i N @5

_ 2 2
ay =y, (yn,i,_/ T X0 )
_ 2 2
ay =J;; (yg“,t,f TXei )

Ao = Aoy = Ji,j (ycj,i,qu,i,j F X i Xy )

The difference analogues of the
corresponding differential operators have the
following form (see equation 28):

The algorithm of numerical

implementation is carried out in the following way:
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n+

first of all, @, jl is found by (23); then l//i’f;.rl is
found by (24); u; ;1 and v/ ;1 are determined
from (25), (26) using the found values of lﬂ;:fl ; the

n+l .
values of 91' ; are calculated using the new values

of ui";l and vi";l from (27). The iteration process

continued until the following condition is met:

n+l n
max|@, , —, |<&
I<i<m |/ o) .
1<j<n,

The use of an explicit scheme and slowly
convergent iterative methods is explained by the
fact that rapidly convergent cost-effective methods,
using implicit schemes, require self-adjointness and
positive definiteness of the matrix of differential
operators. This complicates the problem in the
presence of the metric tensors coefficients.
According to the algorithm described above,
numerous methodological calculations are carried
out in various doubly connected domains.
Dimensionless quantities of velocity, length,
temperature, and time were used in the calculations.
In the exampl, the temperature was assumed to be

6 =0 in the outer boundary, and & =1 in the
inner boundary A ring was specially chosen in the
first example, where the boundaries are described
by the equations of a circle, the grid is constructed
by an algebraic method, and the components of the
metric tensor are determined analytically (Figure
8a). Figure 8b shows the results of calculating the
temperature change. It can be seen from the figure
that the cold liquid is based in the lower part of the
region, since it is known from the physics course
that the density of the liquid is inversely
proportional to the temperature.
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Figure 8: Estimated Grid and the Results of Numerical
Solution of the Temperature Change
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Figure 9: The Results of a Numerical Solution of a)
Temperature Change, b) the Current Function at The
Same Time

Since the process is not stationary, the
norms of velocity and temperature also do not tend
to a stationary regime in calculations. According to
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this, the vortex regimes constantly change and the
cooler liquid swings in the lower part of the
calculated domain. Figure 10 shows the results of
calculating the temperature and the current function
at the same time.
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Figure 10: Results of the Numerical Solution of the
Temperature Variation in the Curvilinear Domain
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Figure 11: Results of the Numerical Solution of the
Current Function in the Curvilinear Domain

Figures 10 and 11 show the results of
numerical calculations of the temperature and
current functions at the same time. It is seen from
the figures that vortex motions are formed in the
curves of the boundary, and a warm liquid
accumulates in the upper parts of the bend. Since
the process is non-stationary, the modes of vortices
are constantly changing, and the temperature of the
fluid is constantly transferred. In conclusion, it can
be seen that the construction of a curvilinear grid
for the description of convective flow helps to
obtain a qualitative description of physical
processes.

The results obtained after investigations
are principally different from previously conducted
surveys in the field of computational and applied
mathematics aimed at the creation of automated
computer programs for the construction of
curvilinear adaptive structural and nonstructural
difference grids, as well as the modernization of

numerical algorithms for solving applied problems.
Previous studies in this area usually lack a holistic
approach, whereas the current study is presented in
the form of relevant feedback on urgent scientific
demands for  theoretical  concepts  and
methodological approaches to the use of advanced
information technologies in hydrodynamic studies.
It takes into account the specific features of the
subject area, as well as the development, adaptation
and approbation of tools in the process of modeling
of natural and technogenic objects of significant
importance.

4. CONCLUSIONS

The findings of the study have been reflected and
confirmed by the graphs, allowing us to conclude
that applied methods for the numerical construction
of curvilinear structured grids in doubly connected
domains are effective. They present a scientific
opportunity to develop theoretical concepts and
methodological approaches to the use of new
information technologies in hydrodynamic studies,
taking into account the specific features of the
subject area, as well as the development, adaptation
and approbation of tools in the process of modeling
of natural and technogenic objects. Numerical
modeling of the convective flow of a non-uniformly
heated liquid in a curvilinear coordinate system is
performed. The implicit scheme and the method of
fractional steps are wused in the numerical
construction of curvilinear grids in doubly
connected domains by equidistribution methods and
the method of Godunov-Thompson. An explicit
scheme and the method of fractional steps are used
in the numerical implementation of the equations of
an incompressible fluid. A cyclic run is used in the
direction of the outer and inner boundaries, and a
scalar run is used in the normal direction.
Calculations were carried out for different cavity
configurations and temperature regimes at the
boundary. The graphs of numerical calculations of
the temperature and current functions have been
obtained, namely: the estimated grid and the
numerical solution of the temperature change; the
numerical solution of the temperature change and
the current function at the same time; the numerical
solution of the temperature variation in the
curvilinear domain; the numerical solution of the
current function in the curvilinear domain.
However, further investigations need to be
performed in this area in order to develop and
implement the detailed scheme of the results
obtained in the current study.
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APPENDIX

1) Equation 12

1o min {S(i,j),(i+l,_j),(i+l,j+l)’ S(i,j),(i,j+l),(i+l,j+l)’ S(i,j),(i+l,j),(i,j+l)’ S(i+l,j),(i,j+l),(i+l,j+l)}

& 0.5(S et 1o F St it
()L ) +1) ), ()L )
(12)
2) Equation 28
B n n n n
1 .., . —Q: . .. —Q, .
no_ i+1,j i,j i,j i-1,j
Al,ha)i,j == (al,i+1/2,j _‘al,i+1/2,j‘ + (al,i—1/2,j + ‘al,i—1/2,j‘) )
2 h, h,
B n n n n
1 Q. .., —Q: . .. —@. .
no_ i,j+1 i,J i,j i,j-1
A2,ha)i,j == (a2,i,j+1/2 _‘a2,i,j+1/2‘) + (az,i,j—1/2 +‘a2,i,j—1/2‘ )
2 h, h,
n n n n
A o =i O "D _ @, j D
1,: 0 = 1L,i+1/2,) 1Li-1/2,j >
h, h, h,
n n n n
A w Vi @i jn —Dij @) — O 4
24,0 ; = 7 22,i,j41/2 7 Ayij-1/2 7 ’
2 2 2
n n n n
A n _ Yij a)i+1,j+1 - a)i+1,j—1 a)i—l,j+1 _a)i—l,j—l
12,4D;; = A1z, A, >
2h, 2h, 2h,
n n n n
A n Vi R R Wiy, — Opy
04D = Aipj i+l a1 >
2h, 2h, 2h,
n n n n
OO =J i+1,j _Hi—l,j _ 9i,j+1 _‘95,]—1
hi,j i,j VRN 2h S, 24
1 2
(28)
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