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ABSTRACT 
 

Crack detection is a crucial problem in many tasks such as inspection conditions of concrete pipes or tunnels, 
diagnosing structural damages, ensuring road safety and so on. Thus, vision-based crack detection had 
attracted researchers recently, and many approaches for crack detection had been proposed. However, it 
remains a great challenging task due to the intensity inhomogeneity of cracks and complexity of the 
background. Inspire by the fast development of deep convolutional neural network (CNN) in image 
processing recently, we propose a multi-scale deep convolutional network based on encoder-decoder 
architecture. More specific, our network is based on SegNet network, which is a deep convolutional encoder-
decoder architecture designed for pixel-wise semantic segmentation. We first discard the softmax layer in the 
SegNet network, and then build enhanced modules based on the convolution feature maps from encoder and 
decoder network. Furthermore, we adopt the focal loss function instead of cross-entropy loss in the original 
SegNet network to focus on learning the hard examples and down-weighting the numerous easy negatives. 
Experimental results on public datasets show that our network achieves better results compared to other state-
of-the-art methods on crack detection. 

Keywords: Crack Detection, Deep Learning, Convolutional Neural Network, Object Detection, Encoder-
Decoder Architecture 

 
 
1. INTRODUCTION  
 

Crack is one of the most common defects that 
can be found on surfaces of various types of physical 
structures such as the road pavement, the wall, the 
ceiling of tunnels, concrete pipes or tunnels, and so 
on. Early detecting and repairing cracks are crucial 
tasks for preventing the expansion of harms, avoid 
accidents and keeping the safety in many 
environments. With the development of 
technologies in image processing, many approaches 
have been proposed to applying image processing 
technologies to perform automatic crack detection. 
Traditional methods [13-28] usually utilize hand 
crafted features such as edges, textures, energies, etc. 
to detect cracks. In the ideal case, if a crack has high 
contrast to background, traditional methods could 
detect it with high accuracy. However, in practice 
cracks may constantly suffer from noise in the 
background, leading to poor continuity and low 
contrast. In addition, shadows and lighting 

conditions may also impact the imaging quality of 
the crack. These affects commonly lead to degraded 
performance of the traditional crack detection 
methods. In recent years, with fast development of 
deep learning, many methods for crack detection 
based on deep learning have been proposed and 
achieved state-of-the-art performances [30-36]. 
Deep CNN-based methods have also been proposed 
for tasks such as edge detection [9], [2], contour 
detection [37], [38], boundary segmentation [3], [39] 
and so on. These deep frameworks build high-level 
features from low-level primitives by hierarchically 
convolving the sensory inputs. In particular, when 
using deep learning for edge detection, the 
convolutional features become coarser and coarser 
in the convolving-pooling pipeline, and the detailed 
features in larger-scale layers and the abstracted 
features in the smaller-scale layers can be fused 
together to improve the performance of edge 
detection. When using deep learning for image 
segmentation [12], the convolutional features in the 
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Figure 1: The Structure of The Proposed Framework. 

 
decoder network have been found to be useful to 
improve the performance of semantic image 
segmentation, and the indexing of pooling positions 
can further improve accuracy of boundary 
localization. 

Motivated by the above ideas, we propose a 
multi-scale deep convolutional network based on 
encoder-decoder architecture for crack detection. 
Our proposed method is based on SegNet network 
[12]. For crack detection, we discard the last 
Softmax layer in the original SegNet network. Then, 
we build two enhanced modules in the SegNet 
network. Enhanced modules take two inputs layer: 
the convolutional layer before the pooling layer at 
the first scale and the last scale in the encoder 
network and the last convolutional layer at the 
corresponding scale in the decoder network, and 
generate the overall fused layer in the end of our 
network. Furthermore, we adopted the focal loss 
function [29] instead of cross-entropy loss in the 
original SegNet network to focus on learning the 
hard examples and down-weighting the numerous 
easy negatives. 

This paper is organized as follows: an overview 
of previous methods is presented in Section 2. 
Section 3 describes the detail of the proposed 
method. Section 4 demonstrates experimental 
results. Finally, the conclusion is made in Section 5. 
 
2. RELATED WORK 
 

Over the past years, many approaches for crack 
detection based on vision have been proposed. These 
approaches can be divided into two categories: 
traditional approaches and deep learning-based 
approaches. Traditional approaches often utilize 
hand crafted features like edges, textures, energies, 
etc. to detect cracks, including Gabor Filter Invariant 
to Rotation [13], block binarization [14], 
thresholding operations [15], edge detection [16], 
[17], and percolation-based [18], as well as their 
improved approaches. In [19], Otsu thresholding 
was used for leakage recognition processes, and a 
novel algorithm based on the features of the local 
image grids was developed to recognize cracks. 
Mohanty et al. [20] showed that image mosaic 
technology could be effectively used to detect water 
leakage and cracks in tunnel. In energy 
minimization-based methods, minimal path 
searching has been developed for crack detection. In 
[21] and [22], seed-growing methods built on 
minimal path searching were proposed for pavement 
crack detection. In [23], minimal path searching was 
performed in a path-voting way. In [24], the minimal 
path searching was used to track cracks in complex 
background. Machine learning-based methods have 
also been investigated for crack detection in early 
works such as Support Vector Machines [25], [26], 
Artificial Neural Networks [27] and Adabost [28]. 
Although traditional approaches showed satisfactory 
performance to some extent, these methods 
generally relied on exploiting handcrafted low-level 
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Figure 2: The Architecture of The Encoder Network. 

 
features. These features may be affected under 
complex environments. 

With the fast development of deep 
convolutional neural network recently, many 
methods for crack detection based on deep CNN 
have been proposed and achieved state-of-the-art 
performances. Li et al. [30] presented a unified and 
purely vision-based method which had displayed 
abilities in damage detection and localization 
networks. Xue and Li [31] achieved automatic 
intelligent classifications and detections of tunnel 
lining damages through fully convolutional 
networks, region proposal networks, and position-
sensitive region-of-interest pooling techniques. In 
order to identify the actual profiles of multiple 
damage and realize pixel-level detections, Huang et 
al. [32] used two-stream algorithms of the 
corresponding FCN, in which one stream was used 
to recognize crack by a sliding-window-assembling 
operation, and the other was adopted for leakage by 
a resizing-interpolation operation. Hoskere et al. 
[33] proposed a multiscale pixel-wise deep neural 
network to successfully recognize six different types 
of structural damages. Li et al. [34] proposed a Fully 
Convolutional Network for concrete structures at the 
pixel-level. In [35], deep convolutional neural 
network was used to classify the image patches into 
crack blocks and non-crack ones. In [36], fully 
convolutional neural networks were studied to infer 
cracks of nuclear power plant using multi-view 
images. Deep learning-based methods achieve better 
results compared to traditional methods. However, 
there still lacks investigation on end-to-end trainable 
CNN models for robust crack detection. 
 
3. PROPOSED APPROACH 
 

Figure 1 shows the overall framework of the 
proposed method. Our proposed method is based on 
SegNet network [12]. SegNet is a deep 
convolutional encoder-decoder architecture 
designed for pixel-wise semantic segmentation. 
SegNet has an encoder network and a corresponding 
decoder network, followed by a final pixelwise 
classification layer. For crack detection, we discard 

the last Softmax layer in the original SegNet. Then, 
we build two enhanced modules in the SegNet 
network. Enhanced modules take two inputs layer: 
the convolutional layer before the pooling layer at 
the first scale and the last scale in the encoder 
network and the last convolutional layer at the 
corresponding scale in the decoder network, and 
generate the overall fused layer in the end of our 
network. Furthermore, we adopted the focal loss 
function [29] instead of cross-entropy loss in the 
original SegNet network to focus on learning the 
hard examples and down-weighting the numerous 
easy negatives. Details of our proposed network is 
described in next sub-section. 
 
3.1 Encoder Network 

The encoder network is based on the VGG-16 
[1] architecture. The fully connected layers in 
original VGG-16 are discard in favor of retaining 
higher resolution feature maps at the deepest encoder 
output. Thus, the encoder network consists of 13 
convolutional layers and 5 down-sampling pooling 
layers which correspond to the first 13 convolutional 
layers and 5 down-sampling pooling layers in the 
VGG-16 network. This architecture reduces the 
number of parameters in the encoder network 
significantly. Figure 2 shows the architecture of the 
encoder network. Each convolution layer in the 
encoder network performs convolution with a filter 
bank to produce a set of feature maps. Then, a batch-
normalization step is adopted after these feature 
maps to speed up the training. Following that, an 
element-wise rectified-linear non-linearity is 
applied. At the end of each convolution layer, max-
pooling with a 2 x 2 window and stride of 2 are 
performed to effectively reduce the spatial sizes of 
the feature maps. In addition, max-pooling indices 
are generated to capture and record the boundary 
information in the encoder feature maps when sub-
sampling is performed. 
 
3.2 Decoder Network 

The decoder network consists of up-sampling 
layers, convolutional layers, and batch 
normalizations, which were then followed by a 
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Softmax classifier for the purpose of predicting the 
pixel-wise labels. The decoder network also has 13 
convolutional layers, and each decoder layer has a 
corresponding layer in the encoder network. Each 
decoder scale in the decoder network upsamples its 
input feature map using the memorized max-pooling 
indices from the corresponding encoder feature map. 
This up-sampling step will produce sparse feature 
maps. The sparse feature maps obtain more precise 
location of region boundaries compared with 
continuous and dense feature maps. Figure 3 
illustrates the decoding technique of each decoder 
scale. These sparse feature maps are then convolved 
with a trainable decoder filter bank to produce dense 
feature maps. A batch normalization step is then 
applied to each of these feature maps. 

 
Figure 3: The Decoder in Decoder Network. Here, 𝑝ଵ, 
𝑝ଶ, 𝑝ଷ and 𝑝ସ Correspond to Values in A Feature Map. 

 
3.3 Enhanced Module 

It has been found that the fusion of the multi-
scale convolutional feature maps is proved to be 
useful for improving the performance of object 
detection [2], [3], [4], [5]. In this paper, we examine 
the change of scale of feature maps caused by both 
the pooling operation in the encoder network and 
upsampling operation in the decoder network, and 
build an enhanced module on encoder-decoder 
architecture of the SegNet. The proposed enhanced 
module is shown as green color box in Figure 1. At 
shown in Figure 1, the convolutional layer before the 
pooling layer at the first scale and the last scale in 
the encoder network is concatenated to the last 
convolutional layer at the corresponding scale in the 
decoder network. The enhanced module handles the 
concatenated convolutional features with a sequence 
of operations. Figure 4 shows the structure of the 
proposed enhanced module in details. First, the 

feature maps from encoder network and decoder 
network are concatenated. Then, a 1 x 1 convolution 
layer is applied to decreases the multi-channel 
feature maps to 1 channel. Next, in order to calculate 
pixel-wise prediction loss in each scale, a 
deconvolution layer is added to up-sample the 
feature map. Finally, a crop layer is adopted to crop 
the up-sampling result into the size of the input 
image. At the end of each enhanced module, we can 
get the prediction maps of each scale with the same 
size of the ground-truth crack maps. Furthermore, 
the prediction maps generated in the enhanced 
modules are further concatenated, and a 1 x 1 
convolution layer is added to fuse the outputs at 
multiple scales. Thus, we can obtain the prediction 
maps at each scale and the overall fused layer in the 
end. 

 

 
 

Figure 4: The Structure of The Proposed Enhanced 
Module. 

3.4 Loss Function 
The original SegNet is designed for semantic 

segmentation, so a softmax loss layer was added at 
the end of the decoder network to measure the 
prediction error in each object channel. In our 
proposed network, the output is a 1-channel 
prediction map that indicates the probability of each 
pixel belonging to the crack. On the other hands, due 
to the different sizes of cracks on the same images, 
cracks at the boundaries and small-scale cracks, the 
accuracy crack detection using one-stage networks is 
relatively low. For the purpose of solving above 
issues, we utilize the focal loss function rather than 
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Figure 5: Example Images in CRACK500 Dataset (First Row) and CrackTree Dataset (Second Row). 

 
traditional cross entropy function in order to focus 
on learning the hard examples and down-weighting 
the numerous easy negatives. The focal loss function 
is defined as follows: 
 

𝑙(𝐹௧) = −𝛼௧(1 − 𝐹௧)ఊlog (𝐹௧)   (1) 
 
where 𝛼௧ ∈ [0,1] represents the weight variable, and 
can be set by the inverse class frequency in order to 
address the class imbalance; and the 𝐹௧ is defined as 
follows: 
 

𝐹௧ = ቄ
𝐹             𝑖𝑓 𝑦 = 1

1 − 𝐹        𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
   (2) 

 
where 𝑦 represents the ground-truth class and 𝐹 
represents the prediction label with the ground-truth 
class of 1. 
In (1), (1 − 𝐹௧)ఊ (with 𝛾 ∈ [0,5]) is used to reduce 
the relative loss for the well-classified samples 
(when 𝐹௧ > 0.5), and focus more on the mis-
classified samples (hard samples). In this way, the 
contributions of the cracks and backgrounds can be 
balanced to the loss function, which not only 
improves the efficiency, but also increases the 
detection accuracy. 
 
4. EXPERIMENTAL RESULTS 
 

In this section, we analyze and compare the 
performance of the proposed approach with other 
state-of-the-art approaches on crack detection. The 
proposed method is implemented on a machine with 
Intel Core i5 9400 CPU, 8GB of RAM, NVIDIA 

GeForce GTX 1660Ti GPU. We use TensorFlow for 
implementing deep CNN frameworks. 
 
4.1 Dataset 

In order to train the proposed network and 
compare the results of our method with other 
approaches, we adopt recently public datasets for 
crack detection, including CRACK500 [8] and 
CrackTree [6]. Figure 5 shows some example 
images in these datasets. Details of each dataset are 
described as following: 

 CRACK500: In [8], the authors presented a 
dataset to train and evaluate their proposed 
method. CRACK500 includes 500 images 
with resolution around 2000 x 1500. The 
images were taken on main campus of 
Temple University using cell phones. The 
dataset is divided into 250 images of 
training data, 50 images of validation data, 
and 200 images of test data. We use all 250 
images in training data to train our network. 
To enlarge the size of the training dataset, 
data augmentation is applied to all images. 
We first rotate the images with different 
angles to create a training set of 1250 
images. Then, we flip these images in the 
vertical and horizontal direction to get 2500 
images in total. Finally, we crop 5 sub-
images on each image with a size of 480 x 
480. After data augmentation, we get a 
training dataset of 12500 images in total. 

 CrackTree: Zou, et al [6] presented a 
dataset to evaluate their proposed method. 
CrackTree dataset includes 206 pavement 
images with resolution 800 x 600. These 
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Figure 6: Detection Results of Proposed Method on CRACK500 Dataset and CrackTree Dataset.
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Table 1: The AIU, ODS, and OIS of The Proposed Method and Other Methods on CRACK500 and CrackTree Dataset. 

Method CRACK500 CrackTree Processing time 
(CRACK500/ 

CrackTree) AIU ODS OIS AIU ODS OIS 

HED [9] 0.481 0.575 0.625 0.040 0.317 0.449 0.12s/0.08s 

RCF [2] 0.403 0.490 0.586 0.032 0.255 0.487 0.1s/0.0.06s 

FCN [10] 0.379 0.513 0.577 0.008 0.334 0.333 0.8s/0.4s 

CrackForest [12] - 0.199 0.199 - 0.080 0.080 6s/4s 

Proposed method 0.484 0.599 0.602 0.040 0.424 0.476 0.34s/0.15s 

images include various types of cracks in 
different difficult environments such as 
shadows, occlusions, low contrast, noise, 
and so on. 

 
4.2 Evaluation Metrics 

Since the similarity with edge detection, many 
approaches used criteria for edge detection to 
evaluate crack detection, including the best F-
measure on the data set for a fixed scale (ODS) and 
the aggregate F-measure on the data set for the best 
scale in each image (OIS) [7]. The ODS and OIS are 
defined as follows: 

 

𝑂𝐷𝑆 = 𝑚𝑎𝑥 ቄ2
×ோ

ାோ
: 𝑡 = 0.01, 0.02, … , 0.99ቅ (3) 

 

𝑂𝐼𝑆 =
ଵ

ே
∑ 𝑚𝑎𝑥 ቄ2


×ோ




ାோ

 : 𝑡 = 0.01, 0.02, … , 0.99ቅ
ே


 (4) 

 
where 𝑡 represents the threshold; 𝑖 represents the 
index of image; 𝑁 represents the total number of 
images; 𝑃௧ and 𝑅௧ represent precision and recall at 
threshold 𝑡 over dataset; 𝑃௧

  and 𝑅௧
  are computed 

over image 𝑖. 
For the purpose of comparing the detection 

results of the proposed method with other state-of-
the-art methods, we also use these criteria for 
evaluating the detection results in this paper. 
Furthermore, we adopt AIU as in [8] to evaluate our 
proposed method. AIU is computed on the detection 
and ground truth without NMS and thinning 
operation. AIU of an image is defined as follow: 

 

𝐴𝐼𝑈 =  
ଵ

ே
∑

ே


ே
 ାே

 ିே
௧     (5) 

 
where 𝑁௧ represents the total number of thresholds 𝑡 
∈ [0.01, 0.99]  with interval 0.01; for a given 
threshold 𝑡, 𝑁

௧  represents the number of pixels of 
intersected region between the predicted and ground 
truth crack area; 𝑁

௧ and 𝑁
௧ represent the number of 

pixels of predicted and ground truth crack region, 
respectively. Thus, the AIU is in the range of 0 to 1. 
The higher value means the better performance. The 
AIU of a dataset is the average of the AIU of all 
images in the dataset. 
 
4.3 Performance Results 

In this section, we analyze and compare the 
performance of proposed approach with current 
state-of-the-art methods, including HED [9], RCF 
[2], FCN [10] and CrackForest [12]. HED fuses 
multi-scale convolutional feature maps by using the 
last convolutional feature map at each stage in VGG-
16. We train HED on CRACK500 training dataset. 
RCF is developed based on HED. RCF fuses multi-
scale convolutional features by using all 
convolutional feature maps at each stage in VGG-16. 
We train HED on CRACK500 training dataset as the 
same HED. FCN defined fully convolutional 
network in semantic segmentation. We replace the 
loss function with sigmoid cross-entropy loss for 
crack detection. We train FCN on CRACK500 
training dataset with base learning rate is set to 
0.00001, momentum is set to 0.99 and weight decay 
is set to 0.0005. CrackForest uses SE architecture to 
generate the crack map, and post-processes the crack 
map to obtain the final crack. We train FCN on 
CRACK500 training dataset. All the 
hyperparameters are set as default. 

Figure 6 shows examples of detection results 
on CRACK500 and CrackTree. In this Figure, input 
test images are shown at the first row (CRACK500) 
and the fourth row (CrackTree). Ground truth 
images are shown at the second row (CRACK500) 
and the fifth row (CrackTree), while detection 
results images are shown at the third row 
(CRACK500) and the sixth row (CrackTree). As 
shown in this Figure, the input images contain 
shadows and obvious noise. The proposed approach 
can still generate a crack map very close to the 
ground truth. Furthermore, the proposed method can 
exactly detect cracks when input images contain tiny 
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cracks, cracks embedded in the road lane, which can 
hardly be observed without a careful inspection. 

Table 1 shows the quantitative detection results 
of the proposed method and other state-of-the-art 
methods on both CRACK500 dataset and CrackTree 
dataset. As shown, the proposed method achieves the 
best results on both CRACK500 dataset and 
CrackTree dataset. More specific, with CRACK500 
dataset, the performance of the proposed method is 
improved comparing with HED, RCF, FCN and 
CrackForest framework by 0.024, 0.109, 0.086, 0.4 
on ODS respectively. With CrackTree dataset, 
comparing with HED, RCF, FCN and CrackForest 
framework, the proposed algorithm improves by 
0.107, 0.169, 0.09, 0.344 on ODS respectively. For 
the computational efficiency, our approach needs 
0.34 second for processing an image in CRACK500 
dataset and 0.15 second for processing an image in 
CrackForest dataset. HED and RCF can achieve 
faster speeds, at about 0.12 second and 0.1 second 
with CRACK500 dataset. CrackForest needs up to 6 
seconds to process an image in CRACK500 dataset. 
 
5. CONCLUSIONS 

 
In this paper, we propose a multi-scale deep 

convolutional network based on SegNet for crack 
detection. The proposed approach fist discards the 
Softmax layer in original SegNet architecture. Then, 
two enhanced modules are build, which take the 
convolutional layer before the pooling layer at the 
first scale and the last scale in the encoder network 
and the last convolutional layer at the corresponding 
scale in the decoder network as input layers to 
generate the overall fused layer in the end of 
proposed network. Furthermore, the focal loss 
function is adopted to focus on learning the hard 
examples and down-weighting the numerous easy 
negatives. Experimental results on two public 
datasets, including CRACK500 and CrackTree, 
show that our network achieves better results 
compared to other state-of-the-art methods. 
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