
Journal of Theoretical and Applied Information Technology
30th November 2019. Vol.97. No 22

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

3377

CONTEXT-FREE GRAMMAR FOR ASPECT-ORIENTED UML
DESIGN MODELING DIAGRAMS

AWS A. MAGABLEH
Faculty of Computer Science and Information Technology, Department of Information Systems

Yarmouk University, Irbid, Jordan

E-mail: aws.magableh@yu.edu.jo

ABSTRACT

It is well known that aspect orientation (AO) has the potential to support the continued smooth running of
software programs. In AO, before developing a program that may need to be updated all the aspects
(crosscutting concerns) contained therein must be meticulously assessed to ensure that a change to one or
more of those aspects will not have an adverse effect on other parts of the program. To address this issue, in
this paper, three main objectives are targeted. First, a formal representation for aspect-oriented unified
modeling language (UML) design modeling diagrams is proposed in which context-free grammar (CFG) is
used for the aspects. An aspect model encompasses pointcuts, advice, inter-model declarations and aspect
precedence, as well as references the behaviors of other classes and aspects. To ensure that there is
consistency in a system, the aspect-oriented UML design model of the system is converted into a CFG that
consists of set of rules for all the strings that could be present in the formal language being assessed.
Second, the extended Backus–Naur form (EBNF) is applied to represent the CFG rules for the aspect-
oriented model. Third, the potential use of the proposed EBNF transformation for all aspect-oriented UML
diagrams is investigated. This study is inspired by the results of existing research on object-oriented UML
transformation using EBNF. As AO is an extension of object orientation, it seemed natural to extend the
idea of using EBNF to AO and assess whether it would be beneficial in transforming aspect-oriented UML
modeling diagrams.

Keywords: Context-Free Grammar, CFG, Aspect Orientation, AO, Extended Backus–Naur Form, EBNF,
Model Transformation.

1. INTRODUCTION

Aspect-oriented software development (AOSD)
is attracting attention because it can be used to deal
with the crosscutting concerns that may affect other
concerns (classes) or functionalities in a program.
As the name implies these crosscutting concerns,
also known as aspects, can be found throughout
code, which makes it difficult if not impossible to
decompose them during the analysis, design or
implementation stage of the software life cycle.
Furthermore, if left undealt with, their presence can
result in problems of code duplication and/or
significant dependencies between systems, which
are also known as scattering and tangling,
respectively. Both of these problems have serious
implications for the smooth running of the program.
However, these problems can be addressed by using
AOSD to analyze, model and program the aspects.

As unified modeling language (UML) is widely
used to model object-oriented designs, it seems not
only natural but essential that UML is also used in
the modeling of aspect-oriented designs. For
successful AOSD it is necessary to conduct a
precise aspect analysis and create a meticulously
detailed design. Thus far, the methods that have
been proposed for aspect-oriented design modeling
have concentrated on producing formalisms for the
specification of the various aspects. Some methods
have also been introduced to address the issue of
UML inter-consistency, i.e., the consistency
between UML diagrams [1]. A number of methods
can be used to determine UML inter-consistency.
However, the method adopted in this paper is the
transformational method. This method involves
transforming UML diagrams into context-free
grammar (CFG). When a UML diagram can be
correctly transformed into a CFG, i.e., when it
complies with all the specified semantic rules in the
CFG, this indicates that it has consistency [1].

Journal of Theoretical and Applied Information Technology
30th November 2019. Vol.97. No 22

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

3378

In this paper, a formal specification for assessing
and representing aspect-oriented UML design
modeling diagrams is proposed. The diagrams thus
produced contain an accurate detailed
representation of the main aspect orientation (AO)
concepts such as advice, pointcuts, and join points,
as well as a selection of other AO concepts. These
diagrams are then subjected to a transformation
process using a context model and the extended
Backus–Naur form (EBNF) to create the production
rules of the CFG. Previous experiments [2] and the
experiment presented herein demonstrate that the
assessment of the aspect-oriented model using CFG
is highly accurate and can thus ensure that the
quality of aspect-oriented UML design diagrams is
maintained.

The rest of this paper is organized as follows. In
Section 2, an overview of the three main concepts,
namely AO, CFG and EBNF, is presented. Next, in
Section 3, the relevant literature on the domain
under study is briefly reviewed. Then, in Section 4
the proposed aspect-oriented UML diagram
representation using CFG is described. The paper
ends with Section 5 in which some conclusions are
drawn and some directions for future work are
suggested.

2. BACKGROUND

2.1 Aspect Orientation
Aspect-oriented programming is utilized to deal
with the issue of crosscutting concerns or aspects
that can be found throughout a software system.
There are various types of aspects including those
that concern security, logging in, and
synchronization. As these concerns tend to be not
only scattered, but tangled across an entire system,
it is very difficult to make even minimal
improvements to code without there being
unforeseen negative consequences for other parts of
the system. AO additionally tells how these aspects
ought to be woven into the system. The concept of
AOP and the first type of AOP was introduced by
the Xerox Palo Alto Research Center (Xerox
PARC) in the late twentieth century. Notable types
of AOP that are currently in use are AspectC,
AspectC++ and AspectJ [32] [33]
The AOP language specification consists of four
main elements:

 Join points: Locations in the main code
where crosscutting concerns exist;

 Pointcuts: Instructs AOP to coordinate up
join point; to do this, AO characterizes a

designator that takes the join point as a
parameter;

 Advice: Code that is injected into the
original code before or after a join point or
around join points;

 Aspect: The modular unit that collates and
encapsulates the above three elements into
one unit.

In the last few years, AOP has been a key factor in
researchers’ attempts to try to find a way to
successfully deal with AO across the entire
software life cycle, not just at the initial
development stage. One such approach is AOSD
(Shanmughaneethi et al., 2012), which, as the name
implies, considers the issue and effects of aspect
orientation (AO) in all stages of software
development.

2.2 Context-free Grammar

Context-free grammar is a simple mathematical

mechanism that can be used to represent the parts
of a sentence in a natural language as small blocks.
Thus, a complete sentence is represented as a block
structure. This type of grammar is a free syntax that
is easy to use and facilitates the formalism of
grammar in mathematical studies. It should be
noted that while the agreements and references [3]
found in a natural language are not considered in
CFG, it does describe the fundamental recursive
arrangement of sentences and the pattern of clauses
within sentences accurately. Context-free grammar,
which is a free syntax, can be defined as a formal
grammar that has a set of rules for all the strings
that may be present in a formal language. The CFG
rules are used to generate patterns of strings to
represent that language.

Figure 1illustrates the operands of grammar, G, in
CFG, which are denoted as V, Σ, R, and S,
where[4]:

 Vis a finite set of nonterminal symbols,
where each element is called a
nonterminal variable and each of these
variables denotes a different part of a
given sentence.

 Σ is a finite set of terminal symbols, which
are disjointed from V, and make up the
content of the statement. This set of
terminal symbols constitutes the alphabet
of the language defined by the grammar,
G.

Journal of Theoretical and Applied Information Technology
30th November 2019. Vol.97. No 22

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

3379

 Represents a finite relation from V to
, where the asterisk is a unary

operation that represents either sets of
strings or sets of symbols or characters.
The members of Rare the production rules
of G.

 Sis the start variable and/or start symbol
and, as it is meant to characterize the
whole sentence it must be an element of V
(i.e., part of the finite set of nonterminal
symbols).

Figure 1: The CFG equation

2.2.1. The Original and the Extended Backus–
Naur Form

One way in which the production rules of

CFG are written is the Backus–Naur Form (BNF).
The BNF is a formal notation that is used to encode
or rewrite the grammar so that humans can
understand it. Many programming languages,
protocols and formats have a BNF description in
their specification [34]. All the BNF rules have a
(Name::=Expansion) structure, where ::=means
“may expand into” and “may be replaced with.”.
The Name is also known as a nonterminal symbol.
Every Name in the BNF is surrounded by angle
brackets <> regardless of whether it appears on the
left or right of the rule. The Expansion contains
terminal and nonterminal symbols. These are
linked together by sequencing and choices, where
each choice is represented by a vertical bar.

The EBNF is an expansion of the BNF,
which includes further expressions to represent
additional operations. There is little difference
between the BNF and the EBNF in terms of syntax;
rather, the latter provides extra flexibility in terms
of representation. The EBNF has more expressions
such as: Options (<term> ::= [“-”]
<factor>),Repetition(<args> ::= <arg> {
“,”<arg> }), Grouping (<expr> ::= <term> (“+”
| “-”) <expr>)and Concatenation (using “the”)
[5]. Given this advantage, it seemed logical to
adopt the EBNF for this study. The definitions of
the grammar rules for the EBNF are shown in
Figure 2.

Figure 2: Grammar rules in Extended Backus–Naur
Form

Manuscripts must be in English (all figures
and text) and prepared on Letter size paper (8.5 X
11 inches) in two column-format with 1.3 margins
from top and .6 from bottom, and 1.25cm from left
and right, leaving a gutter width of 0.2 between
columns.

3. LITERATURE REVIEW

Context-free grammar has been used in
computer science for a variety of areas including
diagram editors [35], parsing [6][7], formal method
[36]. However, for the purpose of this paper, the
discussion focuses on the use of CFG in diagram
transformation generally as well as in Aspect-
oriented UML diagram transformation, and also the
benefits of using CFG for AO.

One of the first attempts to translate
diagrams into a formal language was made by [8] in
1999, in which the authors proposed a procedure
that involves scanning a diagram to convert it into a
spatial relationship diagram, which is then
translated into a hypergraph model and lastly into a
formal representation. This procedure is illustrated
in Figure 3 below.

Figure 3: Example of translating a diagram into a formal
language

Different studies have been proposed in

the field of object oriented and aspect oriented with
formal specification such as domain-specific
languages. For example, in [9] the authors extended
the LISA specification language through the
addition of aspect-oriented features with the aim of
improving the inheritance, modularity and
extensibility of LISA, as well as developing a
language specification that could be reused multiple

Journal of Theoretical and Applied Information Technology
30th November 2019. Vol.97. No 22

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

3380

times. They named their approach Aspect LISA For
the purpose of their proposed approach they also
formally defined aspect-oriented attribute grammar
(AspectAG). The way in which AspectAG differs
from CFG in terms of definitions is shown in
Figure 4.

Figure 4: Definitions of main AspectAG terms

The aspect-oriented attribute grammar was soon
employed in AO compilers [18]. Then, some years
later, in 2005, this type of grammar was more
clearly defined in [13], in which the authors
describe an attribute grammar as a generalization of
a CFG in which each symbol has an associated set
of attributes that carry semantic information. They
add that attribute values are defined by attribute
evaluation rules that are linked to each production
rule of the CFG. The rules are applied when
computing the values of attribute occurrences as a
function of some other attribute occurrences. Also,
the semantic rules are localized for each CFG
production. The attribute grammar can be formally
represented by the following components: a
CFG(G), a set of attributes (A), and a set of
semantic rules ([RAG = (G, A, R]).

In another line of related prior research, it was
suggested that a text-based method could be used to
define the syntax of a graphic specification
language such as UML [26]. The authors of that
work, which was published in 2003, also defined a
context-free syntax of this textual language in
EBNF.

Over the years other methods have been proposed
for the representation of CFG, including the
grammar flow graph (GFG) [5]. The GFG is a
direct graph in which each production rule of the
CFG is reformulated as a node. The progression of
the production rule or node is denoted by a
preceding dot (.). The authors state that any CFG G
can be transformed into a corresponding GFG in

O(|G|) space and time. Figure 5 shows how |G|
denotes the size of a CFG.

Figure 5: Example of grammar flow graph for CFG

As regards the issue of transformation, in [27], the
main focus was on transforming an object
orientation into a formal representation using CFG.
On the other hand, in [29] and [30], the authors
concentrated on trying to translate UML diagrams
into a formal specification. Other works such as
[31] have proposed sets of rules to convert UML
modeling into formal representations by employing
the concept of the CFG. Figure 6 shows an example
of how the classes in UML can be transformed into
CFG.

Figure 6: Transformation of UML classes into CFG

Journal of Theoretical and Applied Information Technology
30th November 2019. Vol.97. No 22

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

3381

4. RESEARCH QUESTIONS

This research will attempt to answer the following
research questions that is well-articulated on
problem statement and evaluated based on the
nature and extent of information available of the
parameters of the research:

RQ1: What is the current state of art of converting
Aspect-Oriented and Object-Oriented design using
UML into formal methods using context free
grammeme?

RQ2: How possible to attempt to propose a new
representation of Aspect-Oriented UML design to
be converted to formal models using context free
grammar (EBNF) to ensure better accurate of the
models?

5. RESEARCH DESIGN

A research design has been defined as “a blueprint
for conducting a study with maximum control over
factors that may interfere with the validity of the
findings” [17]. It has also been described as “a plan
that describes how, when and where data are to be
collected and analyzed” [17]. Our research design is
a mixed methods approach that combines
qualitative research techniques. The design
consisted of few phases: 1) Theoretical Study
where we have review of the literature (journals,
books and conferences proceedings) to study all
existing AO and OO related approaches that
investigated the techniques of concern design to
formal methods. 2) Ideas and suggestions where
we attempted the development of a research design
and model, development of a research methodology
and the development of rules of transportations.

6. CONTEXT-FREE GRAMMAR FOR

ASPECT-ORIENTED UML DIAGRAMS

The existing works and studies have focused more
on object oriented when it comes to the field of
converting object-oriented design into a formal and
mathematical model. Also, existing literatus have
focused mainly on building objects and aspects in
term of context free grammar however this study is
going to focused on capturing all parts of aspects,
aspect-aspect relationships, aspects posterization
and aspect relationships in the application to be
converted to a formal language using Backus–Naur

form (EBNF), additionally, other literatures have
focused on converting some aspects design,
however this study is giving a proposal to convert
all UML design diagrams (behavioral and structural
diagrams).

According to the principle regarding the separation
of concerns [19] [20] each concern should be dealt
with separately. Here, the term concern refers to
something that is of specific interest to a
stakeholder, and additionally in this context, that
relates to the development of a system. This
principle is based on human cognitive behavior,
where a person is generally better able to think
about and gain an understanding of one item at a
time. This principle can be applied to achieve both
a simplified form of project management. In fact,
today, most software developers already apply this
principle.

For instance, in the area of object orientation,
applications are modeled and implemented by
decomposing the problem and the solution space
into objects, so that each object represents just one
concern. Additionally, in the software development
arena, the principles of encapsulation,
polymorphism, inheritance, and delegation provide
additional support to this process. However, in
actuality, some concerns are present in a lot of
diverse objects because they cannot sit within the
confines of one particular object. These concerns
include security, mobility, distribution, and
resource management) and they necessarily
crosscut other concerns.

Developers can apply AOSD to ease the
identification, modularization, representation, and
composition of these crosscutting concerns in a
systematic way. This process is sometimes referred
to as “aspectization” the end result of which is
enhanced system modularity, which in turn enables
developers to design systems that are easier not
only easier to develop but can be maintained as
well as changed with less difficulty. As mentioned
above, an aspect consists of four key elements. The
advice element defines the behavior of that aspect
[21]. The join point element denotes where a given
aspect could apply the advice in other parts of the
system. Some of the most common join points can
be found in the method execution, in object
representations, or in the settings of attributes. Most
aspect-oriented techniques aim to assist in the
selection of appropriate join points by using some
sort of declarative query mechanism. We call such
a selection predicate a pointcut expression.

Journal of Theoretical and Applied Information Technology
30th November 2019. Vol.97. No 22

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

3382

Essentially, AOSD techniques offer support to
software developers in terms of abstraction,
modularity, and composition which helps them to
determine and deal with crosscutting concerns
during the entire software life cycle. Thus, AOSD
can be of benefit in the requirement engineering
stage as well as in the design of the system
architecture and additionally in the implementation
and testing stages, and ultimately in the eventual
evolution of the software. The advantage of using
an AOSD technique lies in the enhanced reasoning
that can be leveraged for solving a domain-specific
problem. Such a technique can also reduce the size
of the code needed for an application, and
consequently, this has a positive impact on the cost
of development and maintenance time in terms of
both time and money. Importantly, the technique
can also lead toa greater amount of code reuse,
which is also cost-effective.

Unfortunately, due to its nature, UML [22] cannot
directly support aspect-oriented modeling.
Therefore, several researchers have attempted to
apply the object-oriented paradigm followed by
UML to address this issue. These works have, for
instance focused on representing the AspectJ
programming language features in UML [23] or on
integrating aspects into UML 2.0 as components
[24], A general summary of the work that has been
conducted in this area is provided in [25].Overall,
AOP seems to be a very promising as it has been
utilized to good effect in a variety of language
definition and implementation tools [11, 12, 13, 14,
15, 16, 10]. To generate a string of terminal
symbols from a CFG, it is necessary to start with a
string that contains the start symbol. The next step
is to replace the start symbol on the left-hand side
with the right-hand side of the production. Then,
each of the nonterminal symbols in the string is
replaced by the right-hand side of a corresponding
production until all of them have been replaced by
terminal ones.

Figure 7: Proposed conceptual framework for

transforming UML into AO

UML Inter-consistency defined as the concept of
checking and approving the consistency between
UML diagrams. There are different methods to
check on UML Inter-consistency. The method
adopted here to check on the intra-consistency is
the ‘Transformational Method’. Transformational
method defined as the method which concerned
checking consistency by transforming one UML
diagram specification to another language such as
Z-language or context free grammar. This method
stated that, UML diagram is consistent when it
conforms to the semantics of all context-free
grammar rules. If a diagram can be correctly
transformed to a context free grammar, then it
means that the diagram in consistent. In this paper,
for the sake of space, CFG generations for two
aspectual UML structural diagrams and two for
aspectual UML behavioral diagrams are provided
by way of illustration.
Tables 1 and 2 contain the CFG for the aspectual
UML class diagram and the aspectual object
diagram, respectively.

Journal of Theoretical and Applied Information Technology
30th November 2019. Vol.97. No 22

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

3383

Table 1: CFG for the Aspectual UML Class Diagram

<AspectClassDiag
ram ACD>

→ (<Aspect
A><AspectClassDiagramSuite
ACDS>)+

<AspectClassDiag
ramSuite ACDS>

→ ('Precedence' |
'AspectCrosscutting' |
'Crosscutting') |

<Aspect A> → <AspectName><Attributes><
Methods><JoinPoint><Pointc
ut><BeforeAdvice><AfterAdvi
ce><AroundAdvice><StaticCr
osscutting>

<AspectName> → String
<Attributes> → (String | Number)
<Methods> → String

<JoinPoint> → String

<Pointcut> → String

<BeforeAdvice> → String

<AfterAdvice> → String

<AroundAdvice> → String

<StaticCrosscuttin
g>

→ String

Table 2: CFG of the Aspectual Object Diagram

The above process can be applied to other
aspectual UML structural diagrams to transform
them into CFG. These UML diagrams include the
aspectual package diagram, aspectual composite
diagram, aspectual component diagram and
aspectual deployment diagram.

Tables 3 and 4 contain the CFG of the

aspectual UML use case diagram and the aspectual
activity diagram, respectively. Other aspectual
UML behavioral diagrams such as the aspectual
state machine diagram, aspectual sequence
diagram, aspectual communication diagram,
aspectual interaction overview diagram and
aspectual timing diagram follow the same pattern.

Table 3: CFG for Aspectual Use Case Diagram (AUCD)

<AspectUseCase
Diagram
AUCD>

→ <AspectUCInstance><AspectU
CInstancSuite><Relation P>+

<AspectUCInsta
ncSuite>

→ → ('After' | 'After Throwing' |
'After Returning' | 'Before' |
'Around' | 'method call' |
‘Method Execution’| ‘Method
Get’ | ‘ Method Set’ | ‘
Constructor Call’ |’
Constructor Execution’ |
‘Constructor Initialization’ |
‘Constructor Preinitialization’ |
‘ Static Initialization’ |
‘Handler’ | ‘ Advice Execution’
| ‘ Within’ |’ Method Within
Code’ | ‘Constructor Within
Code’ | ‘CFlow’ |’ CFlow
Below’ | ‘This’ | ‘Target’|
‘Argus’') |

<Relation P> → (‘use.before’ | ‘use.after’ |
‘use.around’)

<AspectUCInsta
nce>

→ (‘Advice:Around | ‘Advice:After
| ‘Advice:Before’)

Table 4: Aspectual Activity Diagram (AAD)

<AspectActivity
Diagram>

→

<AspecActivityInstance><Asp
ectActivityInstanceSuite><Rel
ation L>+

<Aspec
ObjectDi
agram
AOD>

→ (<AspectObject><AspectObjectDiagra
mSuite>)+

<Aspect
ObjectD
iagram
Suite>

→ ('After' | 'After Throwing' | 'After
Returning' | 'Before' | 'Around' |
'method call' | ‘Method Execution’|
‘Method Get’ | ‘ Method Set’ | ‘
Constructor Call’ |’ Constructor
Execution’ | ‘Constructor Initialization’
| ‘Constructor Preinitialization’ | ‘
Static Initialization’ | ‘Handler’ | ‘
Advice Execution’ | ‘ Within’ |’ Method
Within Code’ | ‘Constructor Within |
‘CFlow’ |’ CFlow Below’ | ‘This’ |
‘Target’| ‘Argus’') <Component>|

<Aspect
Object>

→ (<AspectObjectName><JoinPoint><P
ointcut>)

<Aspect
ObjectN
ame>

→ String

<JoinPo
int>

→ String

<Pointc
ut>

→ String

Journal of Theoretical and Applied Information Technology
30th November 2019. Vol.97. No 22

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

3384

<AspectActivity
InstanceSuite>

→

('After' | 'After Throwing' |
'After Returning' | 'Before' |
'Around' | 'method call' |
‘Method Execution’| ‘Method
Get’ | ‘ Method Set’ | ‘
Constructor Call’ |’
Constructor Execution’ |
‘Constructor Initialization’ |
‘Constructor Preinitialization’
| ‘ Static Initialization’ |
‘Handler’ | ‘ Advice
Execution’ | ‘ Within’ |’
Method Within Code’ |
‘Constructor Within Code’ |
‘CFlow’ |’ CFlow Below’ |
‘This’ | ‘Target’| ‘Argus’') |

<Relation L> →

(‘After' | 'After Throwing' |
'After Returning' | 'Before' |
'Around')
<AspecActivityInstance>
→(‘AspectActivity |
‘AdviceActivity |
‘JoinPointActicity’)

7. CONCLUSION AND FUTURE WORK

In this paper, the main aim was to produce a CFG
representation for both structural and behavioral
aspect-oriented UML diagrams. The main output
was CFG files that can be utilized by a range of
model checkers. Due to the fact the less attention
has been paid on the importance of concerning
system design that might include aspects also to
formal methods. During the course of this research,
we modeled all UML aspect oriented behavioral
and structural diagrams, we used EBNF language.

 A future research direction that would build on the
results presented herein would be to investigate
whether it is possible to use only CFG source files
to obtain aspect-oriented diagrams and thereby
enable systems to be portable. Another potential
research direction would be to attempt to automate
the transformation of aspect-oriented diagrams
from drawings into formal specifications (CFG).
The ultimate aim would to integrate diagram
drawing environments with a CFG auto generation
tool and then to combine the output from such
research with an accurate model checking and code
generation methodology.

REFERENCES

[1] Zbigniew, H., Ludwik, K., Gianna, R., Jean, L.

Consistency problems in UML-based software
development, Proceedings of the 2004
international conference on UML Modeling
Languages and Applications, p.1-12, October
11-15, 2004, Lisbon, Portugal.

[2] DianxiangXu , Izzat Alsmadi , Weifeng Xu,
Model Checking Aspect-Oriented Design
Specification, Proceedings of the 31st Annual
International Computer Software and
Applications Conference, p.491-500, July 24-
27, 2007

[3] Chen, W. Y., & Yang, H. R. (2018). A Context-
free Grammar for the Ramanujan-Shor
Polynomials. arXiv preprint arXiv:1810.02732.

[4] Minas M. and Viehstaedt G.. Diagen: A
generator for diagram editors providing direct
manipulation and execution of diagrams. Proc.
IEEE VL'95, pp. 203-210, 1995.

[5] Berstel, J. (2013). Transductions and context-
free languages. Springer-Verlag.

[6] Yonezawa, A., &Ohsawa, I. (1988, August).
Object-oriented parallel parsing for context-
free grammars. In Proceedings of the 12th
conference on Computational linguistics-
Volume 2(pp. 773-778). Association for
Computational Linguistics.

[7] Bacławski, K., & DeLoach, S. A. (1998).
Object-Oriented Parsing and Tran

[8] Minas, M. (1999, September). Creating
semantic representations of diagrams.
In International Workshop on Applications of
Graph Transformations with Industrial
Relevance (pp. 209-224). Springer, Berlin,
Heidelberg.

[9] Rebernak, D., Mernik, M., Henriques, P. R., &
Pereira, M. J. V. (2006). AspectLISA: an
aspect-oriented compiler construction system
based on attribute grammars. Electronic Notes
in Theoretical Computer Science, 164(2), 37-
53.

[10] Gray R., V.P. Heuring, S.P. Levi, A.M.
Sloane, and W.M. Waite. Eli: A complete,
flexible compiler construction system.
Communications of the ACM, 35(2):121–131,
1992.

[11] Fors, N., & Hedin, G. (2015). A JastAdd
implementation of Oberon-0. Science of
Computer Programming, 114, 74-84.

[12] Kalleberg, K. T., & Visser, E. (2006).
Combining aspect-oriented and strategic
programming. Electronic Notes in Theoretical
Computer Science, 147(1), 5-30.

Journal of Theoretical and Applied Information Technology
30th November 2019. Vol.97. No 22

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

3385

[13] Kalleberg, K. T., & Visser, E. Combining
aspect-oriented and strategic programming. In
N.M.-O. HoratiuCirstea, editor, Proceedings of
the 6th International Workshop of Rule-Based
Programming (RULE).ENTCS, Nara, Japan,
Elsevier, April 2005.

[14] Kollár, J., & Marcel, T. (2005). Temporal
logic for pointcut definition in AOP. Acta
Electrotechnica et Informatica No, 5(1), 2.

[15] Wu, H., Gray, J., Roychoudhury, S., &Mernik,
M. (2005, March). Weaving a debugging
aspect into domain-specific language
grammars. In Proceedings of the 2005 ACM
symposium on Applied computing (pp. 1370-
1374). ACM.

[16] Van Wyk, E. (2003). Aspects as modular
language extensions. Electronic Notes in
Theoretical Computer Science, 82(3), 555-574.

[17] Mernik, M., &Rebernak, D. (2011). Aspect-
Oriented Attribute
Grammars. ElektronikairElektrotechnika, 116(
10), 99-104.

[18] De Moor, O., Peyton-Jones, S., & Van Wyk,
E. (1999, September). Aspect-oriented
compilers. In International Symposium on
Generative and Component-Based Software
Engineering (pp. 121-133). Springer, Berlin,
Heidelberg.

[19] Parnas, D. L. (1972). On the criteria to be used
in decomposing systems into
modules. Communications of the ACM, 15(12),
1053-1058.

[20] Dijkstra, E. W., Dijkstra, E. W., Dijkstra, E.
W., Informaticien, E. U., & Dijkstra, E. W.
(1976). A discipline of programming(Vol. 1).
Englewood Cliffs: prentice-hall.

[21] Colyer, A., & Clement, A. (2004, March).
Large-scale AOSD for middleware.
In Proceedings of the 3rd international
conference on Aspect-oriented software
development (pp. 56-65). ACM.

[22] Object Management Group. Unified Modeling
Language Specification, Version 2.0
(Superstructure). Revised final adopted draft,
OMG, 2004. http://www.omg.org

[23] Stein, D., Hanenberg, S., &Unland, R. (2002,
April). A UML-based aspect-oriented design
notation for AspectJ. In Proceedings of the 1st
international conference on Aspect-oriented
software development (pp. 106-112). ACM.

[24] Barra, E., Génova, G., &Llorens, J. (2004,
October). An approach to Aspect Modelling
with UML 2.0. In Aspect-Oriented Modeling
Workshop, AOM.

[25] Robert E. Filman, TzillaElrad, Siobh´an
Clarke, and Mehmet Aksit, editors. Aspect-
Oriented Software Development. Addison-
Wesley, 2004

[26] Xia, Y., &Glinz, M. (2003, December).
Rigorous EBNF-based definition for a graphic
modeling language. In Software Engineering
Conference, 2003. Tenth Asia-Pacific (pp. 186-
196). IEEE.

[27] Nakwijit, P., &Ratanaworabhan, P. (2015,
November). A parser generator using the
Grammar Flow Graph. In Computer Science
and Engineering Conference (ICSEC), 2015
International (pp. 1-6). IEEE.

[28] Bacławski, K., & DeLoach, S. A. (1998).
Object-Oriented Parsing and Transformation.

[29] Booch, G., Rumbaugh, J., & Jacobson, I.
(1997). UML notation guide, version
1.1. Rational Software Corporation, Santa
Clara, CA, 2.

[30] Rumbaugh, J., Jacobson, I., &Booch, G.
(2004). Unified modeling language reference
manual, the. Pearson Higher Education.

[31] Babin, G., Lustman, F., &Shoval, P. (1991).
Specification and design of transactions in
information systems: A formal approach. IEEE
Transactions on Software Engineering, 17(8),
814-829.

[32] Laddad, R. 2003. AspectJ in Action: Practical
Aspect-Oriented Programming. Manning
Publications.

[33] Cherait, H., &Bounour, N. (2014). Detecting
Change Patterns in Aspect OrientedSoftware
Evolution: Rule-based Repository
Analysis. International Journal of Software
Engineering and Its Applications
(IJSEIA), 8(1).

[34] Sterling, T., Anderson, M., &Brodowicz, M.
(2017). High performance computing: modern
systems and practices. Morgan Kaufmann.

[35] Costagliola, G., De Rosa, M., &Fuccella, V.
(2015). Extending local context-based
specifications of visual languages. Journal of
Visual Languages & Computing, 31, 184-195.

[36] Bastani, O., Anand, S., & Aiken, A. (2015,
January). Specification inference using
context-free language reachability. In ACM
SIGPLAN Notices (Vol. 50, No. 1, pp. 553-
566). ACM.

