<u>15th November 2019. Vol.97. No 21</u> © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645

www.jatit.org

EFFECT OF CLUSTERING DATA IN IMPROVING MACHINE LEARNING MODEL ACCURACY

SAMIH M. MOSTAFA¹, HIROFUMI AMANO²

¹Mathematics Department, Faculty of Science, South Valley University, Qena, Egypt

²Research Institute for Information Technology, Kyushu University, Japan

E-mail: 1 samih_montser@sci.svu.edu.eg, 2 amano@cc.kyushu-u.ac.jp

ABSTRACT

Supervised machine learning algorithms consider the relationship between dependent and independent variables rather than the relationship between the instances. Machine learning algorithms try to learn the relationship between the input and output from the historical data in order to attain precise predictions about unseen future. Conventional foretelling algorithms are usually based on a model learned and trained from historical data. The instances in the historical data may vary in its characteristics. The variation may be a result of difference in case's pertinence degree to some cases compared to others. However, the problem with such machine learning algorithms is their dealing with the whole data without considering this variation. This paper presents a novel technique to the trained model to improve the prediction accuracy. The proposed method clusters the data using K-means clustering algorithm, and then applies the prediction algorithm to every cluster. The value of K which gives the highest accuracy is selected. The authors performed comparative study of the proposed technique and popular prediction methods namely Linear Regression, Ridge, Lasso, and Elastic. On analysing on five datasets with different sizes and different number of clusters, it was observed that the accuracy of the proposed technique is better from the point of view of Root Mean Square Error (RMSE), and coefficient of determination (R^2).

Keywords: Prediction accuracy, K-means, clustering, regression, machine learning algorithms.

1. INTRODUCTION

Machine learning (ML) is considered as the important subfield of artificial intelligence and is being adopted for numerous of various applications [1, 2]. ML addresses the study and construction of models capable of learning from the data. Understanding what and how the ML algorithm is learning is an issue for the developers of the ML applications [3]. ML can be classified into unsupervised and supervised. Unsupervised learning groups the data into categories depending on the basis of the similarities between data in each group. On the other hand, supervised learning means that the machine learns with the assistance of the labeled training data. Estimating unknown (independent, dependent) mapping of a system using a specific number of (independent, dependent) samples is called learning [4, 5]. This process of estimating needs data collected (i.e., training data), and an algorithm that deals with this data and learns from it. Generally speaking, the learning algorithm learns pattern in the data on hand and create a set of rules to map input/output relation. Data is categorized into labeled (with outcome) or unlabeled (without outcome). Outcome variable(s) may be continuous or distinct, regression is a way of predicting for continuous outcome, and classification is a way of predicting for distinct outcome (i.e., the response to be predicted is the probability or the true of an event/class), the number of classes can be two or more. On the other hand, clustering is applied to unlabeled data using the similarities between observations to group them into clusters [6-8]. The statistical method depends on the characteristics of the data (e.g., similarities between instances in the clustering technique), in other words, the more similarities the better statistical method accuracy. Regression is one of the most common statistical processes for estimating dependent/independent relationship when the dependent to be predicted is a continuous value. The regression line is a refined outline of averages and is drawn in such a way as to reduce the error of the fitted values in relation to the actual values. Equation of the simple linear regression can be defined by the following form:

 $\mathbf{d} = \mathbf{C}_0 + \mathbf{C}_1 \mathbf{I}$

ISSN: 1992-8645	www.jatit.org	E-ISSN: 1817-3195

where C_0 is the intercept and the C_1 is the slope of the regression line. In addition to explaining the relationship between dependent d and independent I variables, the model also predicts the value of dependent variable from the independent variable values from the equation:

$$\widehat{d} = \widehat{C_0} + \widehat{C_1}I$$

the hat symbol refers to the predicted value of the unknown coefficient/variable. In simple regression, for a given dependent variable there is one independent variable. However, in real cases there is more than one independent variable, so existing of multiple independent variables is called multivariate regression. The mathematical notation can take the form:

$$d = C_1 I_1 + C_2 I_2 + C_3 I_3 + \dots + C_m I_m$$

where m is the number of independent variables.

1.1. Goodness of the Model

The performance of the model can be evaluated using following metrics:

• R-squared: how well the model fits the data.

•Root Mean Square Error (RMSE): how close the estimated values are to the actual values.

1.2. Paper Contributions & Novelty

This paper gives a brief discussion of machine learning types, proposes a method for improving the prediction accuracy, and compares between the proposed method and the common methods. In contrast to other techniques, e.g., Clustering Lasso (CL) which selects groups of variables that have the same mechanism of predicting the dependent variable [9], the novelty of the proposed work boils down in benefiting from similarities between instances and applying the selected prediction algorithm for each cluster. The proposed work does not depend on collinearity among variables or the number of variables compared to instances.

1.3. Organization

The rest of this paper is organized as follows: Section 2 presents the proposed method

supported with an illustrative example; dataset specification, the prediction algorithms used in the comparison, the parameters used in the comparison, results and discussion are discussed in section 3.

2. PROPOSED METHOD

In the proposed method, the authors avail from the similarity attribute of the data by clustering it into groups (clusters) before applying the statistical method. In the proposed method, the number of clusters is determined by the elbow method (heuristic method of validation and interpretation of symmetry within cluster analysis). The data is clustered using K-means algorithm in which the number of clusters resulted from the elbow method is used for the clustering. The selected prediction algorithm is applied for every cluster. For deeper clarification, the next subsection discusses an illustrative example.

Algorithm:	Proposed method
1.	Input data
2.	Select the prediction algorithm
3.	Find the value of K using elbow method
4.	Cluster the data using K-means
5.	Apply the selected prediction algorithm in each cluster

In the proposed method, clustering prepressing step is applied to the data before applying the prediction algorithm for the purpose of improving the accuracy of model generated by the userselected prediction algorithm.

2.1 Illustrative Example

To clarify the proposed method, an artificial data with 600 observations has been generated, and linear regression algorithm is applied to the data (Figure 1). K-means algorithm is applied to clustering the data, the value of K is determined using elbow method (Figure 2), the data is clustered into three clusters (Figure 3), then linear regression algorithm is applied to the data in each cluster (Figure 4).

ISSN: 1992-8645

www.jatit.org

E-ISSN: 1817-3195

Figure 2. Determining the value of k using elbow method.

Figure 3. Three clusters of the data

Figure 4. Three regression lines for the clusters

<u>15th November 2019. Vol.97. No 21</u> © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645

www.jatit.org

E-ISSN: 1817-3195

The comparison is done between four

common prediction algorithms namely multible linear regression (MLR), Ridge, Lasso, and

ElasticNet and the proposed method. Table 2 gives

short descriptions of the prediction algorithms

3. EXPERIMENTAL IMPLEMENTATION

3.1. Datasets

Six datasets that are commonly used in databases repository are used in the comparative study (Table 1).

3.2. Prediction Algorithms

	_		
Dataset name	#Instances	#Features	References
Diabetes	442	11	[10]
Graduate Admissions	500	8	[11]
California	20640	9	[12]
Diamonds	53940	10	[13]
Boston	506	12	[14]
Iris	150	6	[15]

Table 1. Datasets specifications

used.

Table 2. Packages and functions used

Prediction method	Short description	References
MLR	minimizes the residual sum of squares between the observed responses in the dataset, and the responses predicted by the linear approximation.	[16]
Ridge	solves a regression model where the loss function is the linear least squares function, and imposes a penalty on the size of the coefficients.	[17]
Lasso	estimates sparse coefficients. Coefficients that add lightweight value to the model will be zero	[18]
ElasticNet	allows for learning a sparse model where few of the weights are non-zero like Lasso, while still maintaining the regularization properties of Ridge.	[19]

3.3. Performance Measure

The comparisons were done from the point of view of the following parameters:

• Root mean squared error (RMSE): indicates how close the forecasted values are to the actual values; hence the lower value of RMSE, the good of the model performance [20]. The mathematical notation can be written as:

$$RMSE = \sqrt{\frac{\sum_{i=1}^{n} (y_i - \hat{y}_i)^2}{n}}$$

where y_i and \hat{y}_i are the actual value and forecasted value of the *i*-th observation respectively, and n is the number cases.

• Coefficient of determination (R² score): it is a measure of how perfectly the evaluated regression line of the model adapts the data distribution [21]. It can be written as:

$$R^{2}(y, \hat{y}) = 1 - \frac{\sum_{i=1}^{n} (y_{i} - \hat{y}_{i})^{2}}{\sum_{i=1}^{n} (y_{i} - \bar{y})^{2}};$$

$$\bar{y} = \frac{1}{n} \sum_{i=1}^{n} y_{i}$$

3.4. Experimental Results and Discussion

The experiments are conducted on a computer equipped with 16 GB of RAM, Intel core i5-2400 (3.10 GHz), 1 TB of HDD, Gnu/Linux Fedora 28 of OS, and Python (version 3.7) of programming language. Table 3 summarizes the observations by comparing the improvements of the proposed approach versus common four algorithms from the point of view of R^2 score and RMSE. The notable observations are:

- Clustered MLR is better than MLR in R² score and RMSE for all datasets.
- Clustered Ridge is better than Ridge in R² score and RMSE for all datasets.
- Clustered Lasso is better than Lasso for Iris, Diamond, and Diabetes, and behaves

© 2005 – ongoing JATIT & LLS

ISSN: 1992-8645	www.jatit.org	E-ISSN: 1817-3195

somewhat similar to Lasso for Admission, Boston, and California.

• Clustered ElasticNet is better than ElasticNet for Iris, Diamond, and Diabetes, and behaves somewhat similar to ElasticNet for Admission, Boston, and California Table 4 shows the comparisons between the four common methods and the proposed method from the point of view of R^2 score and RMSE.

	MI	LR	Ric	lge	La	550	Elast	icNet
dataset	R ² score	RMSE						
Admission	better	better	better	better	worst	worst	worst	same
Boston	better	better	better	better	better	better	same	same
California	better	better	better	better	worst	worst	worst	worst
Diabetes	better	better	better	better	better	better	better	better
Diamond	better	better	better	better	better	better	better	better
Iris	better	better	better	better	better	better	better	better

Table 3. Proposed approach versus MLR, Ridge, Lasso, and ElasticNet

4. Conclusion and Future Works

This paper introduces a method that aims to improve the prediction accuracy of the model by clustering the data and applying the selected algorithm, which is a user choice, for each cluster. Unlike the traditional supervised algorithms which find the relationship between the dependent and independent variables, the proposed approach benefits from the similarities between the instances to improve the prediction accuracy. Four common algorithms are compared with the proposed method, the results showed that the proposed method achieves significant improvement from the point of view of RMSE, and coefficient of determination R^2 . In the future research avenues, the proposed approach will be analysed in more dataset, other standard error metrics will be considered (e.g., P-value and T-value).

Journal of Theoretical and Applied Information Technology <u>15th November 2019. Vol.97. No 21</u> © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645

www.jatit.org

E-ISSN: 1817-3195

		Tabl	e 4. Compa	risons betw	veen comme	on algorith	ms and the	proposed		
			Cluster	ed MLR	M	LR	Clustere	ed Ridge	Ric	lge
dataset	Cluster ID	# obs. per clus ter	R ² score	RMSE	R ² score	RMSE	R ² score	RMSE	R ² score	RMSE
	0	80	0.90058 7	0.04269	0.90308 2	0.04215	0.89668 7	0.04352	0.90232	0.04231
	1	85	0.76472	0.06693	0.7314	0.07151 8 0.04042	0.77273 2	0.06578	0.73459	0.07109 1
Admissi	2	84	3	0.03207 7 0.03588	0.77202 2 0.87628	6 0.03524	0.90909 0.86949	8	0.87580	0.04948 0.03531
on (500	3	83	0.87173 0.91456	9 0.04097	5 0.91714	6 0.04035	5 0.90643	0.0362 0.04288	2 0.91548	4 0.04075
obs.)	5	82 86	1	6 0.06312 7	2 0.85382 7	3 0.07100	1 0.88819 2	2 0.06209	2 0.85386	5 0.07099 4
	Average	80	0.87274 3286	0.04704 9204	0.84229 3064	0.05161 8251	0.87377 1396	0.04695 0917	0.84228 0112	0.05165 8971
	Improve ment				0.03615 1576	0.08851 6127			0.03738 8136	0.09113 7201
	0	185	0.81549 9	3.80968	0.75999 7	4.34508 4	0.80465	3.92008 4	0.75521 4	4.38816 4
	1	137	0.60816	4.94037 1	0.32914 5	6.46426 8	0.59972 1	4.99328 5	0.30788 6	6.56589 4
Boston (506 obs.)	2	184	0.79888 1	4.06712 9	0.77684 2	4.28417 4	0.80702 5	3.98392 5	0.77468 4	4.30484 3
,	Average		0.74084 6565	4.27239 3928	0.62199 4708	5.03117 545 0.15081	0.73713 2497	4.29909 7932	0.61259 4663	5.08630 0222 0.15476
	ment				178	5953			5656	9136
C I'f	0	720 8	0.66595 8	0.60168	0.62772 2	0.63518	0.66600	0.60164	0.62768 9	0.63521
nia (20640	1	39	0.04299 5 0.75353	0.73097 1 0.44839	0.60065 0.70599	6 0.48973	3	0.73097 3 0.47390	0.00000 3 0.70594	0.77309 5 0.48977
obs.)	3	234 185 9	2 0.64994 4	8 0.58180 9	0.63040 2	8 0.59782 9	0.72469 0.64920 4	$0.58242 \\ 4$	7 0.63035 5	5 0.59786 7
	Average		0.67810 7166	0.59071 6165	0.64119 1351	0.62396 5652	0.67072 195	0.59723 8209	0.64116 3447	0.62398 8367
	ment				3789	7367			1354	9642
	0	180	0.24455	38.0004 9	-0.58888	55.1102 7	0.17910 1	39.6125	-1.15089	64.1204
Diabete s	1	262	0.09290	5	-1.30065	9 9	0.10635	34.0836 4	-1.21911	2
(442 obs.)	Average		0.16872 7508	36.1698 2113	0.94476 16	54.8988 3005	0.14272 5619	36.8480 7093	1.18500 069	58.9150 139
	Improve ment				1.17859 2683	0.34115 4974			1.12044 349	0.37455 5508
Diamon	0	329 63 565	0.87864 9 0.40465	302.700 3 1986.21	0.33042 9	711.032 3164.01	0.87838 1 0.40428	303.034 5 1986.83	0.32941 9	711.567 8 3163.65
d (53940 obs.)	2	4 153 23	9 0.59228 7	3 1007.74 2	-0.51074 0.29129 7	2 1328.63	5 0.59270 6	8 1007.22 4	-0.5104 0.29176 9	3 1328.18 8
	Average		0.62519 8361	1098.88 5094	0.03699 4739	1734.55 8121	0.62512 3609	1099.03 2344	0.03692 9956	1734.46 9421

Journal of Theoretical and Applied Information Technology <u>15th November 2019. Vol.97. No 21</u> © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645				www.jatit.org				E-ISSN: 1817-3195		
	Improve ment				15.8996 5597	0.36647 5484			15.9272 7726	0.36635 8189
	0	53	0.58589 2	0.15982 4	0.53837	0.16874	0.60948 6	0.15520 4	0.58034	0.16089
Iris	1	97	0.50539 3	0.24685 1	0.51907 3	0.24341 4	0.50930 6	0.24587 3	0.51660 3	0.24403 8
(150 obs.)	Average		0.54564 2513	0.20333 7645	0.52872 2806	0.20607 9331	0.55939 6339	0.20053 8486	0.54847 4215	0.20246 4357
	Improve ment				0.03200 1092	0.01330 4032			0.01991 3651	0.00951 2148

			Clustere	ed Lasso	La	\$\$0	Clust Elast	ered icNet	Elast	icNet
dataset	Cluster ID	# obs. per clus ter	R ² score	RMSE	R ² score	RMSE	R ² score	RMSE	R ² score	RMSE
	0	80	0.39724	0.10512	0.10319	0.12822	0.624298	0.08299	0.476870	0.09793
	1	00	0.41897	0.10518	0.21894	0.12195	0.558337	0.09170	0.500034	0.09757
	1	85	5	6	6	5	418	8	743	3
	2	84	- 0.01393	0.10425	0.24701	0.08984	0.590989	0.06621	0.636564 741	0.06241 9
		07	-	0.10233	0.28481	0.08474	0.383689	0.07866	0.595595	0.06372
Admissi	3	83	0.04289	3	6	3	678	7	155	4
(500	4		0.21780	0.12398	0.29519	0.115(0	0.653176	0.08255	0.645685	0.08344
obs.)		82	2	3 0 1 5 9 7 9	4	0.11769	12	8	84 0.667472	5 0 10709
	5	86	2	9	0.29872	3	827	4	0.007472	3
	Average		0.20613 7182	0.11678 0231	0.24131 3579	0.11633 0496	0.576703 29	0.08534 2992	0.587037 135	0.08536 4642
	Improve ment			0201	0.14577 048	- 0.00386 601		-//-	- 0.017603 393	0.00025 3615
					0.0	001			0,0	
	0	185	0.50421 1	6.24507 9	0.63127 6	5.38567 8	0.555916 205	5.91047 1	0.635021 837	5.35825 1
	1		0.49127	5.62918	0.47095	5.74053	0.489438	5.63935	0.473984	5.72406
D (1	137	7	9	2	7	342	3	885	1
Boston (506	2	184	0.78851	4.1/063	0.64288	5.41955 8	0.705213 571	4.92396	0.656423 965	5.31584
obs.)	Average		0.59466 7172	5.34830 2053	0.58170 4998	5.51525 7787	0.583522 706	5.49126 1589	0.588476 895	5.46605 2459
	Improve ment				0.02228 3071	0.03027 161			- 0.008418 664	- 0.00461 194
	0	720 8	0.19451 1	0.93432 8	0.28420 8	0.88077 1	0.398249 064	0.80756 6	0.422555 231	0.79108 8
Califor	1	113	0.34741	0.98828	0.29673	1.02594	0.450214	0.90710	0.436138	0.91864
(20640	2	37	-	0.90696	0.31536	0.74732	0.320412	0.74457	0.486811	0.64702
obs.)	L	234	0.00836	6	8	9	819	1	721	6
	3	185	0.06335	0.95170	0.28480	0.83161 9	0.325355 782	0.80769	0.420265 792	0.74873
	Average	,	0.14922 8941	0.94531 9905	0.29527 854	0.87141 5265	0.373558 119	0.81673 5984	0.441442 829	0.77637 343
	Improve ment				- 0.49461 637	- 0.08480 99			0.153779 165	0.05198 858

Journal of Theoretical and Applied Information Technology

	Improve ment				0.96684 1711	0.40734 7886			0.856890 97	0.10040 588
obs.)	Average		0.11496 26	0.31823 3686	- 3.46708 467	0.53696 541	0.114962 595	0.31823 3686	0.803321 738	0.35375 2519
Iris (150	1	97	0.19781	0.38414 9	0.18902	0.38273 7	0.197813 953	0.38414 9	0.367240 443	0.27920 6
	0	53	0.03211	0.25231 8	6.74515	0.69119 4	0.032111 237	0.25231 8	1.973883 919	0.42829 9
	Improve ment				16.1138 214	0.36595 1428			1.663280 779	0.42994 502
	Average		0.62460 0687	1099.63 9291	0.03649 6857	1734.31 3961	0.466547 637	1294.71 6959	- 0.703393 874	2271.21 4188
d (53940 obs.)	2	153 23	0.59348 8	1006.25 7	0.29303	1327.00 2	0.402987 813	1219.44 9	0.416165 349	1205.91 6
Diamon	1	565 4	0.40457	1986.35	- 0.50916	3162.36	0.253176	2224.60	2.206191 315	4609.33
	0	329 63	0.87573 9	306.308 3	0.32562 2	713.579 5	0.743478 863	440.100 9	0.320155 658	998.397
	Improve ment				0.99764 4487	0.37440 0116			0.996135 44	0.50096 7497
obs.)	Average		- 0.00368 829	39.9206 8967	- 1.56581 185	63.8118 5592	- 0.011709 111	40.0970 2716	- 3.029868 79	80.3495 3014
Diabete s (442	1	262	0.02383	36.4817 1	1.62935	58.4636 8	0.023699 919	36.4794 7	2.644023 327	68.8260 4
	0	180	0.01644 9	43.3596 7	1.50228	69.1600 3	0.000281 698	43.7145 8	3.415714 253	91.8730 2
ISSN: 19	92-8645				<u>www.jati</u>	<u>t.org</u>			E-ISSN:	1817-3195
				<u>15th Nove</u> © 2005	ember 2019. – ongoing J	Vol.97. No ATIT & LL	<u>21</u> S			

REFERENCES:

- [1] T. Segaran, Programming Collective Intelligence: Building Smart Web 2.0 Applications. 2007.
- D. Vallejo-Huanga, P. Morillo, and C. [2] "Semi-Supervised Clustering Ferri, Algorithms for Grouping Scientific Articles," Procedia Comput. Sci., vol. 108, pp. 325-34, 2017.
- [3] V. K. Ayyadevara, Pro Machine Learning Algorithms. 2018.
- [4] V. Cherkassky and F. M. Mulier, Learning from Data: Concepts, Theory, and Methods / V. Cherkassky, F. Mulier. 1998.
- [5] W. A. Yousef and S. Kundu, "Learning algorithms may perform worse with increasing training set size: Algorithmdata incompatibility," Comput. Stat. Data Anal., vol. 74, pp. 181-97, 2014.
- K. Chen and L. Liu, "The 'Best K' for [6] Entropy-based Categorical Data Clustering.," 2005, pp. 253-62.
- M. N. Murty, P. J. Flynn, and A. K. Jain, [7] "Data Clustering: A Review," ACM Comput. Surv., vol. 31, p. 43, 1999.

[8] A. K. Jain and R. C. Dubes, "Algorithms for Clustering data." 1988.

- [9] Q. Yu and B. Li, "Regularization and Estimation in Regression with Cluster Variables," Open J. Stat., vol. 04, no. 10, pp. 814–25, 2014.
- N. D. of Statistics, "Diabetes Data-1-5-[10] 2019," NCSU Department of Statistics. [Online]. Available: https://www4.stat.ncsu.edu/~boos/var.sel ect/diabetes.html. [Accessed: 01-May-2019].
- [11] M. S. Acharya, "Graduate Admissions-1-5-2019," Kaggle Inc, 2018. [Online]. Available: https://www.kaggle.com/mohansacharya /graduate-admissions. [Accessed: 01-May-2019].
- [12] C. Nugent, "California Housing Prices-3-5-2019," Kaggle Inc, 2017. [Online]. Available: https://www.kaggle.com/camnugent/cali fornia-housing-prices. [Accessed: 03-May-2019].
- "Diamonds-20-4-2019," [13] M. Shiva, Kaggle Inc, 2017. [Online]. Available:

122IN:	1992-8645	www.jatit.org	E-ISSN: 1817-3195
	https://www.kaggle.com/shivam2503	8/di	
	amonds. [Accessed: 20-Apr-2019].		
[14]	I. Kaggle, "Boston Housing-25-4-20	19."	
	[Online]. Availa	ıble:	
	https://www.kaggle.com/c/boston-		
	housing. [Accessed: 25-Apr-2019].		
[15]	I. Kaggle, "Iris Dataset-25-4-20	19."	
	[Online]. Availa	ıble:	
	https://www.kaggle.com/jchen2186/n	nac	
	hine-learning-with-iris-dataset.		
	[Accessed: 25-Apr-2019].		
[16]	D. W. Gareth James Trevor Ha	stie,	
	Robert Tibshirani, An introduction	n to	
	statistical learning: with application	s in	
	R. New York : Springer, [2013] ©202	13.	
[17]	Scikit-learn, "Ridgre Regression-2	6-4-	
	2019." [Online]. Availa	ıble:	
	https://scikit-		
	learn.org/stable/modules/generated/sl	klea	
	rn.linear_model.Ridge.html. [Acces	sed:	
	26-Apr-2019].		
[18]	Scikit-learn, "Lasso Regression-2"	7-4-	
	2019." [Online]. Availa	ible:	
	https://scikit-	11.	
	learn.org/stable/modules/linear_mode	el.ht	
101	ml. [Accessed: 2/-Apr-2019].	28	
[19]	A 2010 " Foulinal Association	-28-	
	4-2019. [Online]. Availa	ible:	
	nups://scikit-	-1 1-4	
	ml#elestic not [Accessed: 28/	cl.llt A pr	
	20101	Api-	
201	I B Avdilek and A Arslan "A by	brid	
20]	method for imputation of missing va	lues	
	using optimized fuzzy c-means y	with	
	support vector regression and a gen	netic	
	algorithm" Inf Sci (Ny) vol 233	nn	
	25–35, 2013.	rr.	
211	T. Beysolow II. Introduction to D	Deen	
I		r	