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ABSTRACT 
 

Over the past several decades, scheduling has emerged as an area of critical research, thereby constituting a 
requisite process for myriad applications in real life. In this regard, many researchers have experimented 
and utilized various optimization algorithms to obtain optimized schedules. It is also noteworthy that the 
concepts of some optimization algorithms are essentially derived from nature. This paper aims to augment a 
compiler using a chemical reaction optimizer in order to identify an optimized instructions static schedule 
capable of being used within both single and multicore computer systems. This scheduling algorithm, 
which is denoted as SS-CRO (static scheduling using chemical reaction optimizer), is unique in that it 
provides alternative schedules involving different costs. Subsequently, SS-CRO tests the schedules in 
accordance with different types of instructions dependencies before making an appropriate selection. SS-
CRO demonstrates that it can not only provide different schedule orders, but also make a competent 
selection of accepted solutions, whilst dismissing the inappropriate ones in a reasonable span of time. So, 
this paper presents SS-CRO algorithm that is used to obtain an optimized static scheduling, where SS-CRO 
has been implemented and evaluated analytically and experimentally. As analytical results, the number of 
steps for the SS-CRO approximately is O(Num_iteration×CROFun), where CROFun is the number of steps 
of the selected function. In the experiments results, SS-CRO achieved better execution time and higher 
accepted solutions in comparison with other optimization algorithms such as; SS-DA (static scheduling 
using duelist algorithm) and SS-GA (static scheduling using genetic algorithm). Furthermore, SS-CRO 
achieved the maximum percentage of number of solutions with respect to the execution time of all 
experiments for all proposed input cases, which is ranged as (10%-30%).  

Keywords: Chemical Reaction Optimizer, Compiler, Instruction Set, Metaheuristic Approach, Static 
Scheduling 

 

1. INTRODUCTION  

In recent times, the concept of optimized 
scheduling gained prominence across a plethora of 
applications. Within this overarching theme, the 
computer architecture finds inclusion among such 
applications wherein a number of approaches have 
been adopted with a view to fulfil the onerous task 
of enhancing the performance of computations. 
Notably, the trend to improve the performance of 
computer applications has it genesis in two distinct 
avenues. First, the efficacy of dynamic scheduling 
in augmenting the speed as well as capacity of the 
hardware has been recognized. Second, static 
scheduling is known to improve the quality of 

software that exerts control over the hardware. In 
fact, the primary application has been observed to 
focus on software improvement issues, which then 
leads to a reduction in the amount of time necessary 
to run the application on the device. By functioning 
intelligently and via an improvement in any of its 
stages, a compiler can accelerate the pace of 
computation. To illustrate, the generic parser was 
proposed by authors of [1], whereas (a predictive 
bottom-up parser was postulated by authors of [2]. 
Similarly, the authors of [3] put forward the notion 
of compiler support pertaining to automatic 
parallelization on multicore systems. Meanwhile, 
the authors of [4] presented a scalable parser 
framework for massive text-based file using 
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graphic processing units. While the dynamic 
scheduling has been known to be used more 
frequently, the element of exorbitant cost has been 
a matter of disappointment. It is for this reason that 
static scheduling is utilized as a complementary 
approach to dynamic scheduling. However, the 
majority of existing static scheduling techniques is 
premised on classical dependency analysis and is 
characterized on the basis of its stymied 
capabilities. Against this backdrop, this study is 
aimed at meeting the need for a refreshing approach 
to resolve this problem. Correspondingly, chemical 
reaction optimizer has demonstrated its 
efficaciousness in several fields and hence, can be 
used to make improvements in a program’s static 
scheduling at different levels, including tasks and 
instruction. This, in turn, is justified by the 
following facts: 
 A program denotes a set of instructions that 

are executed based on their inter-
dependencies. The compiler can be used to 
generate an optimized static schedule of these 
instructions [3]. Actually, the optimized 
schedule is intended to feed the pipeline whilst 
to simultaneously executing the instructions. 
Thus, bridging the gap in pipeline stages, as 
demonstrated by the authors of [5].  In 
pipelining, the main predicament is to 
maintain all the stages in their entirety with a 
view to reduce latency to the maximum extent 
possible using an intelligent compiler. 
According to [6], this can be accomplished by 
instruction reordering/serialization, and 
multiple instruction issues.  

 The chemical reaction is a natural process that 
causes some substances from an unstable state 
to become stable through a number of 
iterations [7]. Concurrently, this process 
necessitates energy preservation in accordance 
with the conservation of energy law whilst 
transferring it from one entity or form to 
another. As a result, it becomes possible to 
replicate these laws to resolve problems in 
different regions; authors of [8] termed this 
process as a nature-inspired computing. 
Correspondingly, the authors of [7] presented 
chemical reaction as a metaheuristic for 
optimization. The chemical reaction optimizer 
(from now CRO) algorithm begins with a set 
of input values as an input vector, 
Subsequently, the vector will be manipulated 
by four types of operations (on-wall 
ineffective collision; decomposition; inter-
molecular ineffective collision; and synthesis) 

to obtain an optimized solution whilst 
maintaining a set of constraints. 
 

To reiterate, static scheduling and CRO 
algorithm performs operations with similar effects. 
Hence, a correspondence can be established 
between their respective operations. Therefore, we 
will incorporate chemical reaction optimizer as a 
tool for a static scheduling in the proposed 
algorithm static scheduling using chemical reaction 
optimizer (from now SS-CRO), in this paper. 
Notably, once we establish a correspondence 
between molecules and program segments the four 
types of chemical reactions are considered to be 
ways of optimization. Subject to constraints 
(instruction dependencies), such optimization is 
reduced to instruction reordering/serialization and 
decomposition into multiple issues (segments).  

 
Meanwhile, three cases of a program 

dependency graph (PDG) of a program segment 
were proposed to test SS-CRO, which are varies in 
the dependencies between their nodes (i.e. program 
segment instructions). The less dependency a PDG 
has, the more solutions achieved by SS-CRO. SS-
CRO is been compared with two distinct 
optimization algorithms such as static scheduling 
using duelist algorithm (from now SS-DA) and 
static scheduling using genetic algorithm (from 
now SS-GA). SS-CRO achieved the lowest 
execution time for all proposed input cases, and for 
all iteration numbers. On the other hand, SS-CRO 
achieved the maximum percentage of accepted 
solutions (from now PerSol) with respect to 
execution time, which was ranged as (10%-30%), 
while PerSol of the SS-DA achieved the moderate 
range as (0%-21%), and the minimum values of 
PerSol was for the SS-GA, which was ranged as 
(0%-1%). 
The main objectives of this paper are: define the 
static scheduling of instructions, formalize the 
program instructions dependencies, decompose the 
program into basic blocks and reflect the program 
dependencies using CRO, present and apply the 
Chemical Reaction Optimizer to obtain an 
optimized static scheduling, implement static 
scheduling using CRO, evaluate analytically and 
experimentally the SS-CRO algorithm. 

 
Furthermore, SS-CRO can be used in many 

modern devices to enhance their compilers; such as, 
personnel computers and laptops, embedded 
systems in smart devices, smart phones, super 
computers, and special purpose computer in critical 
systems. 



Journal of Theoretical and Applied Information Technology 
15th November 2019. Vol.97. No 21 

 © 2005 – ongoing  JATIT & LLS   

 

ISSN: 1992-8645                                                                  www.jatit.org                                                      E-ISSN: 1817-3195 

 
3146 

 

The remaining portion of this paper is 
organized in the following manner: Section 2 
undertakes a description of literature review, while 
Section 3 presents a brief background of CRO, GA 
and DA. Meanwhile, section 4 demonstrates 
Instruction Static Scheduling and CRO. On the 
other hand, Section 5 elucidates the proposed 
algorithm SS-CRO pertaining to instructions static 
scheduling in compilers. Section 6 outlines the 
results of the experiment, whereas Section 7 
summarizes the conclusions. 

2. LITERATURE REVIEW 

In an extensive body of extant study, 
researchers have proposed a number of 
evolutionary algorithms in order to solve complex 
problems. These algorithms demonstrated their 
ability to solve range of problems. One of the areas 
that evidence the usage of evolutionary algorithms 
is optimizing task schedules of various types of 
problems. Most of the researchers have looked 
toward nature to identify possible solutions. For 
example, authors of [9] came up with the particle 
swarm optimization (PSO), while the author of [10] 
and the authors of [11] put forward the memetic 
algorithm (MA). Similarly, differential evolution 
(DE) was presented by authors of [12], ant colony 
optimization (ACO) was the brainchild of the work 
in [13], harmony search (HS) was postulated by 
authors of [14], Sea Lion optimization algorithm 
presented by authors of [15].  

 
In the past, researchers have also used 

evolutionary algorithms such as genetic algorithms 
to optimize task scheduling as well as to solve the 
problem of traveling salesman problem (TSP); for 
this purpose, authors have adopted interesting 
approaches to arrive at a feasible solution [16, 17]. 
In particular, authors of [16] used genetic 
algorithms to provide optimal or near optimal 
solutions for scheduling various tasks on several 
processors. This evolutionary algorithm can be 
helpful in augmenting the efficiency of executing 
programs on multiprocessor scheduling problem in 
parallel. They also extended their solution by 
assigning the problem to appropriate processors and 
focusing on the reduction of execution time of the 
entire system. In addition to creating some genes to 
present the tasks that can be configured in a 
directed graph to underpin. the inter-dependencies 
of tasks, author of [16] used three main operators in 
order to manipulate their presented algorithm, 
including selection, crossover, and mutation. 
Finally, they implemented the entire genetic 

algorithm scheduling precedence on constrained 
task graphs. 

 
In particular, many heuristic algorithms were 

employed in different fields to solve range of 
problems, such as; solving the travelling salesman 
problem [18, 19]. Meanwhile, authors presented 
performance evaluation for different parallel 
heuristic algorithms as shown in [20-22]. Moreover, 
many metaheuristic algorithms were proposed to 
solve range of problems such as; task scheduling in 
cloud computing using vocalization of humpback 
whale optimization algorithm [23]; test Jordan 
University Hospital Databases (JUH DBs) 
exceptions by applying genetic algorithm [24]; 
using genetic algorithm as a test data generator 
[25]; using multiple-population genetic algorithm 
for branch coverage test data generation [26]; a 
solution for traveling salesman problem using grey 
wolf optimizer algorithm [27].  

 
Meanwhile, the authors of [28] presented a 

common model to schedule tasks with advance 
reservation requests as well as computational batch 
tasks. In addition, they lowered the effect of 
advance reservations on a schedule quality by 
putting forward unambiguous on-line scheduling 
policies and generic advices.    

 
Correspondingly, authors of [29] formulated 

the (primal) problem as a nonlinear integer 
programming model. In addition, they 
demonstrated their ability to solve this problem by 
resolving a corresponding dual problem using a 
nonlinear relaxation. More specifically, they 
utilized genetic algorithm since both primal and 
dual problems are NP-hard. They observed that the 
genetic algorithm consistently outperformed a 
standard mathematical programming package with 
regard to computation time and solution quality.  

 
Analogously, authors of [30] put forth a three-

stage algorithm for resource-aware scheduling of 
computational jobs within a large-scale 
heterogeneous data center. Their algorithm aimed at 
allocating job classes to machine configurations in 
order to obtain an efficient mapping between 
capacity profiles concerning machine resources and 
request profiles relating to job resources. 
Meanwhile, authors of [31] presented a task 
scheduling framework considering both thermal 
issues in 3D integration technology and power 
supply noise interactions on different cores.  
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Similarly, authors of [32] presented an 
algorithm named as clusters dimension exchange 
method (CDEM) in order to augment both the load 
balancing technique and job scheduling within the 
OTIS (Optical Transpose Interconnection System)-
hypercube interconnection network.   

 
In [33], authors leveraged the efficacy of the 

chemical reaction optimization algorithm for the 
purpose of multi-objective optimization. By 
premising their work on non-dominated sorting, 
they were able to propose a new quasi-linear with 
average time complexity concerning the quick non-
dominated sorting algorithm. Additionally, the 
authors compared their findings with several multi-
objective algorithms on a gamut of benchmarks 
problems, thus highlighting the efficiency and 
effectiveness of their proposed algorithm.  

 
Meanwhile authors of [34] utilized CRO to 

resolve the printed circuit board drilling problem 
(PCBDP), which is the primary component of 
computers and electronic equipment (PCB). The 
authors focused their attention to solving the 
problem of controlling the drilling machine within 
the drill holes in PCB. More specifically, they 
aligned it as a TSP. Finally, they used CRO to solve 
the problem, which was subsequently implemented 
as an illustration of TSP. 

In [1], authors presented a twofold generic 
parser that simulated the behavior of multiple 
parsing automata. This proposed parser, which was 
an extended version of Position Parsing Automation 
(PPA), accepted the strings drawn from regular tree 
grammar, context-free grammar, or both of them. 
Importantly, this parsing enhancement can help 
compilers perform their jobs efficiently.  

  
Correspondingly, authors of [35] presented a 

hybrid load balancing algorithm that chained cubic 
tree interconnection network. This algorithm 
combines two common load balancing strategies: 
dynamic load balancing and parallel scheduling. In 
the study, the performance was measured using 
several metrics. In addition, the presented algorithm 
underpinned the importance of parallel scheduling 
with dynamic load balancing.  

 
Meanwhile, authors of [36] presented a system 

that identifies transformation algorithms for an 
input program where programs’ specific features is 
been considered.    

 
Finally, authors of [2] proposed the 

implementation of a predictive bottom-up parser in 

two versions. Both versions were used as 
components of the proposed algorithm that 
simulates the operation of a shift–reduce 
automaton, which is defined and constructed by 
integrating its parsing actions with conflict 
resolution, reduction prediction, and error recovery. 

3. BACKGROUND  

This section introduces a brief background of 
three optimization algorithms; namely, chemical 
reaction optimizer (CRO), genetic algorithm (GA) 
and duelist algorithm (DA).  
 

First, the chemical reaction optimizer that is 
presented by authors of [7], and it is inspired from 
the chemical reaction between unstable molecules. 
The molecular go through four different reactions 
defined by the authors of [7], which are on-wall 
ineffective collision; decomposition; inter-
molecular ineffective collision; and synthesis. 
Subsequently, the unstable molecules are converted 
to stable one. Importantly, this algorithm extracted 
it's constrains from the low energy that is used in 
the natural chemical reaction, which is based on 
energy preservation where this energy should be 
reserved before and after any reaction. Actually, 
authors used CRO to solve several problems, and 
the results achieved by CRO were competitive. For 
more details in regards of CRO can be found in 
[37-40].  

 
Second, genetic algorithm (GA) is a well-

known metaheuristic algorithm presented by 
authors of [41]. Basically, GA is been inspired from 
the natural selection and used for solving 
constrained and unconstrained optimization 
problems. Mainly, GA modifies a population of 
individual solutions periodically. In every iteration, 
GA selects randomly two distinct individuals from 
the available solutions in the current population. 
Moreover, GA has three main steps: selection step, 
crossover step and mutation step. In particular, in 
the selection step, two distinct individuals denoted 
as parents and will be used in next step. In the 
crossover step, GA combines the parents from the 
previous step to generate offspring for the new 
population. In the mutation step, GA randomly 
applies some changes for the parents to generate 
new offspring. Furthermore, many researchers used 
GA to solve optimization problems and their 
experimental results showed that GA can achieve 
optimal solutions. Thus, more details of GA can be 
found in [16, 17, 24-26, 41-43].  
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Third, duelist algorithm (DA) is a recent 
optimization algorithm, which inspired by how the 
duelist improve their skills in a duel [44], which is 
considered as a pure random algorithm. Actually, 
DA is based on human fight and how they improve 
their capabilities from each duelist, where it starts 
with a duelist population and chooses randomly two 
duelists to fight. Thus, in every duel there is a 
winner and a loser, where a loser learns from the 
winner. On the other hand, the winner uses new 
skills to improve its fighting capabilities, where the 
duelist with highest capabilities will be noted as 
champions. Subsequently, champions are 
responsible to train new duelists and duelists with 
worst capabilities will be eliminated. Thus, for 
more details in regards of DA can be found in [44-
46] 

4. INSTRUCTIONS STATIC SCHEDULING AND 

CRO  

In static scheduling, the compiler can 
potentially reorder the program instructions in 
varying orders to reduce the latency whilst 
concurrently saving the inter-dependencies between 
the instructions. Notably, these interdependencies 
imply that the program yields the same results, at a 
reduced cost (CPU time) [5]. Furthermore, it is 
possible to perform static scheduling by 
decomposing program segment into multiple ones, 
with a proper serialization to maintain 
interdependencies between instructions. The 
multiple segments constitute code parallelization. 
Such segments are appropriate for multicore and 
multiple issue processors.  

 
On the other hand, the primary objective of 

CRO is to present an optimized solution for a 
problem. This process is underscored by the 
contours of different types of chemical reactions 
such as: on-wall ineffective collision, 
decomposition, inter-molecular ineffective 
collision, and synthesis  ]7[ . Each type entails its 
own properties. However, these operations mimic 
the static scheduling in terms of 
reordering/serialization and generation of multiple 
schedules.  

 
The static scheduling and its reflection by CRO 

are formalized as follows: 
Let <I1,…, In> be a sequence of instructions 

constituting a program P.  
Let C = {ci,…, ci} be a set estimated execution 

costs of the individual instructions.  

Let D= {D12,…, Dij} be a set of instruction 
dependencies as described in Section 3.1. Dij 

represents the dependency between Ii and Ij. 
Let a program dependency graph (PDG) be 

defined as PDG = (N, E, C), where: 
 N= {np1, np2, np3,…,npn}is a set of nodes 

such that npi represents Ii . In [47], authors 
pretended that there are two distinct kinds of 
nodes in a PDG such as: 

o Regular node that has a regular 
statement such as; assignment 
statement   

o Control node that has a control 
statement such as; a condition in 
a loop or an if statement. 

 E = {e11, e12 ,e3 ,…,eij }is a set of edges such 
that eij represents Dij between the nodes npi 
and npj and labeled by the cost cj. In [47], 
authors pretended that there are two distinct 
kinds of edges in a PDG such as: 

o Solid edge that presents data a 
dependency or a name 
dependency  

o Dashed edge that represents a 
control dependency  

 
Let an optimized static schedule S respective to 

P be defined as PDG decomposition maintaining 
the constraints implied by D. Such decomposition 
constitutes specific order O(PDG) of the PDG 
nodes. It is obtained through iterative application of 
the following operations: 
 Reordering/Serialization operation SRO 

(PDG)S=O<np1, np2, np3,…,npn> is a 
sequence of nodes in a specific order with 
minimal cost and satisfying D. 

 Multiple scheduling operation MS(PDG) S, 
where S=S1, …, Sn is a decomposition of PDG 
into multiple schedules S1= O<np1,np2, 
np3,…,npm>,…, Sn=O< npl+1, npl+2 , npl+3 …, 
npn> with minimal cost and satisfying D. 
 

The reflection of static Scheduling is achieved 
by establishing a correspondence between its four 
reactions and the operations SRO 
(reordering/serialization) and MS (multiple 
scheduling). Reflected static scheduling is then 
defined by the composite function 
FCRO(PDG)=OCDCICSN(PDG)S, where OC, 
DC, IC and SN are correspondent functions to the 
CRO reactions: on wall ineffective collision; 
decomposition, inter-molecular ineffective 
collision; and synthesis, respectively. The 
definitions of these functions with the illustrative 
examples are given in Section 4.2, while the 
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implementation of FCRO is given in Section 5. In 
subsequent section we use words instruction and 
node interchangeably. This is justified by the 
definition of PDG. 

4.1 Dependencies in Instructions Static 
Scheduling 

 This section includes the definition of the 
primary types of dependencies, as defined by 
authors of [5]. Instructions static scheduling 
comprises of three types of dependencies: data 
dependency, name dependency, and control 
dependency. Dependencies manifest in a schedule 
between two instructions Ii and Ij under specific 
conditions, as enlisted below for each type of 
dependencies. Once we define the sets 
D={D12,…,Dij}and CONT={ContIi,…,ContIm} 
respective to data (name) and control dependencies 
a PDG respective to an input program P can be 
constructed as given by the formal definition. In 
addition, they will be used as the objective function 
(from now OF) in the SS-CRO, which will be used 
further to evaluate the effectiveness and the 
acceptability of the solution. The construction of D 
and CONT proceeds as given below. 
 

Let P=<I1, …,In> denotes a sequential schedule 
of n instructions of a program segment P we define:  

 PRO(Ii) as the set of data operands 
that hold the results from Ii, and  

 USE(Ii) as the set of data operands 
used in the instruction Ii. Let us 
assume that USE(Ii), and PRO(Ii), ≠ 
∅, ∀i. Subsequently, an edge eij 
between npi and npj in PDG will be 
exists if and only if there is any kind 
of dependencies such as dij∈D or 
ContIi ∈ CONT. In addition, the cost 
of eij is defined as cij, where cij∈C. 

 
In congruence with the observation by authors 

of [5], we will define the instruction dependencies 
set D= {D12,…,Dij}in terms of  

 
 Dij = USE(Ii) ∈ PRO(Ii)                                                                                                                

                                                      (1) 
 

 Dij=USE(Ik)∈PRO(Ii) ≠ ∅, and 
USE(Ij)∈PRO(Ik )≠ ∅,∃Ik              (2) 

 
Where dependencies defined in Equation 1 and 2 
are used to represent data dependency (also referred 
to as true data dependency), wherein, Ij signifies the 
data dependent on Ii if any of the following 
conditions holds: 

 Instruction Ij uses a result produced by 
instruction Ii, as illustrated in Equation 1, i.e. 
in the PDG there is an edge eij between npi and 
npj.   

 Instruction Ij data meanwhile is predicated on 
instruction Ik, while Ik data is dependent on 
instruction Ii, as depicted in Equation 2, i.e. in 
the PDG there are two edges eik between npi 
and npk and ekj between npk and npj. 
 

 Dij= ri∈PRO(Ii) and 
ri∈USE(Ij),where ∃ri                    (3) 
 

 Dij=(ri∈PRO(Ii)∩USE(Ii ))and ri∈                      
(USE(Ij)∩PRO(Ij)),where ∃ri                               

                                                                        (4) 
 
Meanwhile, dependencies defined in Equation 

3 and 4 are used to represent name dependency 
occurs in case there is an absence of data flow 
between two instructions, but they make use of the 
same registers or memory locations. Authors of [5] 
presented the following two types of name 
dependency: 
 An anti-dependence between instruction Ii and 

Ij takes place when Ii writes an operand ri that 
is read by Ij. Therefore, the original order 
needs to be preserved in order to ensure that 
every instruction involves the correct value, as 
illustrated in Equation 3, i.e. in the PDG there 
is an edge eij between npi and npj.  

 An output dependence occurs when two 
instructions Ii and Ij are writing on the same 
operand ri, which is why we should maintain 
the order of the instructions in order to make 
sure that the last value is written within the 
register, as evidenced in Equation 4, i.e. in the 
PDG there is an edge eij between npi and npj. 
 

Control dependency takes place when an 
instruction execution gets controlled by such a 
branch. We define the set CONT as follows. Let us 
assume that Ii in a program P features a control 
instruction and subsequently dominant to the 
sequence of dependent instructions<Ij+1,Ij+2, 

…..,Im>. Then we define a control dependency 
CONT such that ContIi = <ConIj+1, …,ConIm> ∈ 
CONT in schedule S. Assume ∀Ii ∈ S, ∃!O(Ii) where 
O(Ii)is the order of Ii in P (where Ii refers to an 
instruction or a nested of instructions such as nested 
loop or nested if statements in P). In a PDG the 
nested nodes will get two distinct kinds of edges 
such as; the first edge is a regular solid edge which 
connects two dependent instructions according to 
the dependent operands and the second edge is a 
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control dashed edge that controls the order of the 
instruction according to the control node which 
reflects a condition statement in the loop/if 
statement. Analogously, the two constraints 
pertaining to control dependency are as follows: 

 
 An instruction controlled by a branch cannot 

move before, which will prevent the branch 
from controlling it, as illustrated in Equation 
5. In a PDG, a control node should be 
connected with all of its successors by dashed 
edge.  

 
ContIi=O(Iik )>O(Ii),∀Iik∈ContIi               (5) 
 

 An instruction out of the branch cannot be 
made after the branch, which, in turn, will 
control its execution, as depicted in Equation 
6. In a PDG, a dependent node should be 
connected with its predecessors by a dashed 
edge.  
 
ContIi=O(Iik )>O(Iim+1),∀Iik∈ContIi               (6) 
 
 

4.2 Definitions and Examples of Instructions 
Static Scheduling Using CRO Reactions 

This section defines chemical reaction in 
accordance with the instructions of the static 
scheduling problem. Four distinct reactions are 
observed in the iterations made in CRO: (i) on wall 
ineffective collision (OC); (ii) decomposition (DC); 
(iii) inter-molecular ineffective collision (IC); and 
(iv) synthesis (SN). Each of these reactions has its 
own properties, such as the number of actual inputs 
and the number of outputs needed. The following 
subsections depict an example for each type of 
reaction using two program sub-segments Seg1 and 
Seg2. These sub-segments and their respective 
PDGs, are shown in Figure 1 and Figure 2, 
respectively. Notice that both sub-segments are 
extracted from the same program segment P, for 
illustrative purpose. One more, instruction number 
10 is excluded from the PDG because its job is 
been demonstrated in the PDG implicitly 

 

 
 

Instructions  Cost(c) 
11: DIV.D    F9,F10,F11; 0 
12: ADD.D  F12,F9,F10; 2 
13: SUB.D   F13,F12,F11; 2 
14: MUL.D  F13,F12,F11; 3 
15: MUL.D  F14,F15,F16 0 
16: ADD.D  F15, #8 1 
17: MULD. F14,F15,F16 3 

Total 11 
(a) A program sequence Seg2 

 
 

 
 

(b) PDG2 of Seg2 
Figure 2: Seg2 and its respectiveDPG2 

 

4.2.1 On wall ineffective collision 

According to our purpose, we interpret the on 
wall ineffective collision (OC) as a molecular S 
(old schedule) hits an outer object. Subsequently, a 
reordering of the instructions will be resulted. The 
reflection of static scheduling by OC will be 
reduced to altering the order of the instructions in 

Instructions  Cost(c) 
1: DIV.D   F1,F2,F3; 0 
 2: ADD.D  F2,F4,F1; 2 
3: SUB.D   F5,F1,F6; 1 
4: MUL.D  F7,F1,F8; 1 
5: LOOP:   L.D  F0, 0(R1); 0 
6:         ADD.D   F4,F0,F2; 2 
7:         S.D         F4, 0(R1);   2 
8:      DADDUI R1,#-8; 1 
9:         BNE        R1, 1 
10: LOOPEND;  
 Total  10 

(a) A program sequence Seg1 

(b) PDG1 of Seg1 

Figure  1: S1 and its respective PDG1 
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schedule S and providing a new schedule S’ (new 
molecular). Where S’ has a new PDG’ that has the 
same nodes of PDG, but reordered. Formally, we 
define OC as a reordering operation SRO over a 
given flow-graph, as given by Equation 7. 

 
OC = SRO(PDG) → PDG′: S → S′ 

                                                                         (7) 
 

Where S refers to a schedule of n instructions S 
= O<I1,…,In>, such that each Ii has a specific order, 
and the initial PDG of S has the dependency set D 
and estimated cost c. The on wall ineffective 
collision is then defined as a reordering process to 
produce S′=O<I1, …,In>, where ∃Ik ∈S and  ∃Ik ∈ S′ 
are two distinct instructions have the same order k 
in both schedules S and S′, but they are not equal to 
each other. Moreover, S′ preserves the data 
dependency exists in S. On the other hand, PDG′ is 
the flow-graph of S′ after applying OC on S. PDG′ 
has the same nodes of PDG, but in a different 
order, where PDG′ preserves data dependency set D 
of S. On the other hand, the estimated cost of PDG′ 
is c′, where c′ ≤ c. 

 
Finally, if c′ >c or D is not preserved then 

PDG′ will be dismissed. This, in turn, necessitates 
its exclusion from the solution area. To illustrate, 
the reaction moves one instruction like instruction 6 
(node np6) from the LOOP command and extricates 
it from the LOOP boundaries (it may be noted that 
LOOP and BNE are used to signify the beginning 
and ending boundaries of the instructions inside the 
loop statement). Hence, if any instruction is moved 
out of these boundaries, the solution needs to be 
summarily dismissed, as illustrated in Figure 3, 
wherein OC function has been applied on S1. In this 
example, in the PDG′ a dashed edge is been broken 
as a result a control node np5 lost one of its’ 
successors, which it is np6 and np6 lost its’ control 
predecessor np5. i.e. PDG′ does not preserve the 
dependency set D, so it will be dismissed.   

 
This can be accomplished by ascertaining the 

inter-dependencies between instructions in the 
schedule prior to and after the reaction, that is, the 
total new energy resulted by PDG’ such as the sum 
of PE’ and KE’ should be less than or equal to the 
total energy of the original PDG such as the sum of 
PE and KE, as depicted in Equation 8. 

 
PE’ + KE’ ≤ PE + KE                    (8) 

 

 

 

 

  
 
 
 
 
 
 
 

Figure 3: PDG1 after on wall ineffective collision 

4.2.2 Decomposition  

In this paper, the decomposition (DC) occurs 
when a molecular S (old schedule) collides with the 
wall and yields two new molecules such as S′1and 
S′2.The reflection of static scheduling by DC is 
shown as the old schedule will be divided to create 
new schedules. In the realm of static scheduling, 
this can be considered as a multiple issue 
scheduling, where a program segment can be split 
into multiple pieces (sub-program segments) before 
being distributed across more than one processor. 
Formally, we define DC as a multiple scheduling 
process MS of a given flow-graph, as given by 
Equation 9. 

DC= MS(PDG) → (PDG′1, PDG′2): 
S→(S′1,S′2)                                                         (8) 

 
Notably, S denotes a schedule of n instructions 

S = O<I1, …,In> that has an initial flow-graph such 
as PDG. Importantly, the decomposition reaction 
signifies a multiple issue scheduling process carried 
out by dividing S into two sub-schedules such as S′1 

of k instructions S′1 =O<I1, …,Ik> as well as S′2  of 
m instructions S′2 = O<I1, …,Im>, where m+k = n 
and S′1 and S′2 preserve the data dependencies 
existing in S. Moreover, PDG’1 and PDG’2 are the 
flow-graphs of S′1 and S′2 respectively. PDG’1 and 
PDG’2 should preserve the data dependency set of 
PDG, unless they will be dismissed. 

 
In the case of instructions static scheduling, we 

will compute the total energy for the new schedules 
and ascertain whether the dependencies between the 
instructions and the total energy have been 
reserved, as shown in Equation 10. If that is not the 
case, we will not only obtain a higher cost, but also 
risk computing wrong schedules. Therefore, we will 
dismiss the new incorrect schedules from the 
solution set, indicating that we will lose some data 
dependency between the instructions. 
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Consequently, energy conservation is not satisfied 
in this analysis, which builds the case for excluding 
the new particles. This will manifest in the division 
and be determined based on whether it occurs in the 
middle of a loop instruction or separates two 
dependent instructions. 

 
PE’1 + KE’1 + PE’2 + KE’2 ≤ PES + KES 

                                                                         (9) 

An example of an unacceptable decomposition 
becomes apparent when new schedules are shown 
to hold the dependent components presented by two 
or more instructions and the reaction split them, as 
illustrated in Figure 4, where it becomes evident 
that decomposition reaction is been applied on S1. 
In this example, the new flow graphs PDG’1 and 
PDG’2 did not preserve the dependency D of PDG1, 
where node np5 lost its dependent edge from node 
np2, so the new flow-graphs will be dismissed. 

 

Figure 4: PDG1 after decomposition 

4.2.3 Inter-molecular ineffective collision 

According to our approach, the inter-molecular 
ineffective collision (IC) occurs when two distinct 
schedules hit each other, resulting in two new 
schedules. In this instance, the reflection of static 
scheduling by IC on S1 and S2 will interchange the 
instructions between them to provide two new 
schedules S′1 and S′2. This reaction is unique in that 
it will definitely find acceptance if the new 
schedules save dependency sets and do not cost 
more than their predecessors. Formally, we define 
IC as two successive operations of multiple 
scheduling MS and reordering SRO of given two 
flow-graphs, as illustrated in Equation 11. On the 
other hand, the data dependency and total energy 
should be saved after this reaction, as shown in 
Equation 12. 

 
IC = MS(SRO(PDG1,PDG2))→ 

(PDG′1,PDG′2): (S1,S2) →( S′1,S′2)               (10) 

PE’1 + KE’1 + PE’2 + KE’2 ≤ PE1 + KE1 + 
PE2 + KE2                                                   (11) 

 
Clearly, S1 signifies a schedule of k instructions 

S1=O<I1, …,Ik> and S2 refers to a schedule of m 
instructions S2 = O<I1, …,Im>, where m+k = n. The 
respective flow-graphs of S1 and S2 are PDG1 and 
PDG2, respectively. The reflection of static 
scheduling by IC is essentially a combination of 
reordering SRO and multiple scheduling MS 
operations by combining both schedules, reordering 
them, and finally re-dividing them into two new 
schedules S′1 of g instructions S′1 = O<I1, …,Ig> in 
addition to S′2 of h instructions S′2=O<I1, …,Ih>, 
where g+h=n, and S′1 and S′2 will save the data 
dependences existing in S1 and S2. 

 
In this reaction, a scenario may arise wherein 

two independent schedules impart two new 
independent schedules after they hit each other 
(before the reaction). Consequently, such a solution 
should be aborted if the execution costs would be 
higher or data dependency set is not saved, as 
illustrated in Figure 5, where IC has been applied 
on S1 and S2. In this reaction, both operations SRO 
and MS will be used to get PDG’1and PDG’2, those 
have same nodes of PDG1and PDG2, and preserve 
dependency. In this Example, the dependency 
between np2 and np5 was lost, while two new wrong 
dependencies were been added between np2 and 
np15, and between np8 and np11. Also one wrong 
control dependency has been added between np5 
and np11, i.e. a foreign instruction entered the loop 
statement. This implies that PDG’1and PDG’2 

should be dismissed. 
 

Figure 5: PDG1 and PDG2 after IC 

4.2.4 Synthesis 

Synthesis (SN) reaction is the opposite of 
decomposition reaction and refers to a scenario 
where two schedules S1 and S2 hit each other to 
yield a single schedule S’. In this instance, 
reordering operation SRO will indeed reflect the 
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issue in static scheduling. This solution can be 
deemed safe if it does contribute towards energy 
conservation, as shown above and illustrated in 
Equation 14. Formally, we define SN as a 
reordering SRO process of given two flow-graphs, 
as shown above as illustrated in Equation 13.  

 
SN=SRO(PDG1,PDG2) → PDG′:         
(S1,S2) →( S′)                                (12) 
 
PE’ + KE’ ≤ PE1 + KE1 + PE2 + KE2          
                                                     (13) 

 
Clearly, S1 denotes a schedule of m instructions 

S1 = O<I1, …,Im> and S2 be a schedule of k 
instructions S2 = O<I1, …,Ik>. Synthesis reaction is 
a reordering process that combines both schedules 
S1 and S2 into a single schedule S′, such as S′= <I1, 
…,In>, where n= m+k and S′ preserves the data 
dependences existing in S1 and S2. 

 
Figure 6 illustrates an example of rejected 

solution resulted by synthesis between two 
independent schedules and affect each other’s 
results when they hit each other. Therefore, it is 
necessary to ignore this particular solution. The 
result of SRO operation over PDG1 and PDG2 in 
this example is a new flow graph PDG’. In PDG’, a 
new wrong control edge is been added between np5 
and np11, which violates the existing dependency 
set, and so PDG’ should be dismissed. 

 

 Figure 6: PDG1 and PDG2 after Synthesis 
 
4.3 CRO Meanings and Attributes in SS-CRO 

Given a PDG respective to program P, the 
implementation of static scheduling for P by CRO 
is reduced to applying the composite function 
FCRO(PDG), as depicted by Figure 7. FCRO is 
implemented by the proposed algorithm SS-CRO as 
illustrated in Algorithm 1, which is been inspired 
from the CRO algorithm that posited by the authors 
of [7]. SS-CRO has a PDG of a program segment 

as its input. PDG is then manipulated by the four 
different functions respective to CRO reactions as 
depicted in Section 5.2, which will yield a distinct 
set (solution set) of candidate solutions. 
Subsequently, this algorithm will ascertain all types 
of dependencies D to verify whether the solution is 
correct or if it needs to be dismissed.  

 
Table 1: Chemical meaning as used in SS-CRO algorithm 

Chemical Meaning SS-CRO 
Molecular structure Candidate solution 

– PDG 
Potential energy Value of  

dependency 
preserved of a PDG 
for such candidate 
solution (which 
preserved all kinds 
of dependencies)  

Kinetic energy Measure of 
tolerance of having 
worse PDG 

Minimum structure Current optimal 
PDG 

 
Based on CRO algorithm presented by the 

author of [7], Table 1 enlists the meanings of 
chemical reactions that will be used within the SS-
CRO algorithm, and Table 2 enlists the 
interpretation of CRO attributes in SS-CRO. 
Finally, the execution time complexity analysis will 
be explained in section 5.3. 
 
Table 2: CRO attributes in SS-CRO 

Attribute name Attributes in SS-CRO 
Molecular structure 
(ω) 

Denotes the solution to 
our problem - PDG 

Potential energy 
(PE) 

Refers to the objective 
function that provides 
feedback on the 
accuracy of the solution 
(ω) (ascertains whether 
it is correct one). In our 
situation, it constitutes 
the constraints 
achievements, including 
instruction 
dependencies. 

Kinetic energy (KE) Signifies a type of 
tolerance measurement 
that prevents the 
algorithm from devising 
an inferior solution 

Minimum structure 
(Min-Sch) 

Refers to a schedule 
with minimum PE that 
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represents the current 
optimal solution 

Minimum PE 
(MinPE) 

Is used when a 
molecular attains its 
Min-Sch state; for this 
reason, its PE features 
the minimum current 
value such as MinPE 

Minimum hit 
number (MinHit) 

Denotes the number of 
hits that is necessary to 
reach the Min-Sch of a 
molecular 

5. SS-CRO ALGORITHM 

In this subsection, the implementation of SS-
CRO will be presented. As shown in Algorithm 1, 
SS-CRO algorithm has three phases that operates in 
the following order: initialization phase; iteration 
phase; and solution confirmation phase. The 
workflow of the algorithm is shown in Figure 7. 
The following paragraphs will explain the SS-CRO 
algorithm phases in details. 

 
In the initialization phase, the algorithm 

generates threshold values of some variables, which 
includes PDG_size that equals the number of nodes 
of the initial DPG, the number of iterations required 
in the iteration phase. Initially, Min-Sch is assigned 
to be the initial PDG that (PDG1) as the best 
solution, and the solution set holds only PDG1.  The 
first seven lines in the algorithm make the entire 
process evident. In particular, the step of calling the 
objective function OF will ascertain the 
dependency for each node and its’ corresponding 
edge in its’ PDG (see Section 4.1), before returning 
the nodes dependency state and its PE and KE 
values. Thus, MinPE will get its initial value as the 
PE of PDG1, and the MinHit equals to zero. 
Furthermore, the algorithm checks if the initial 
PDG1 has less than two nodes it will be terminated, 
because it will be unable to apply any of its 
functions. 

  
In the iteration phase, the algorithm 

commences with the consideration of the PDG1 as 
the most optimal solution, as shown in SS-CRO 
algorithm. Thereafter, this algorithm will select the 
type of requisite collision by verifying molecule 
(the available number of PDG in the solution set). 
The algorithm forces PDG to be decomposed by 
calling DC, when the molecule equals one and the 
existing PDG is dividable. Subsequently, the 
algorithm applies the SRO operations on one 
particular PDG such as; calling OC or DC 

functions. Since it will only feature one PDG in the 
first instance with at least two nodes. Thus, the 
algorithm selects the DC function in the event the 
splitting option can be implemented. Importantly, 
this new solution will ensconce two valid PDG’1 
and PDG’2 that will be checked and evaluated to 
determine their accept ability. Alternatively, the OC 
function will be chosen if the splitting cannot be 
accomplished, which may give one valid PDG’. 
Clearly, the entry of any PDG’ resulted from either 
OC or DC will be added into the solution set that is 
predicted to be in the selection made by the 
algorithm in next iterations. Once, the proposed 
algorithm has two valid PDG in the solution set it 
will be possible to apply both kinds of operations: 
the SRO; and the MS operations. As an implication, 
the algorithm makes a random selection between 
SRO and MS operations. With regard to the SRO 
operations, it undertakes an evaluation to determine 
whether the PDG’j can be reordered or divided into 
more than one PDG. With regard to the MS 
operations - the process of selecting the reaction is 
predicated on the ability to merge the two available 
graphs such as PDG’j and PDG’h. Correspondingly, 
the algorithm will select SN function if the merging 
ability is found to exist. However, if that is not the 
case, the algorithm will select the IC function. 

 
Further iterations are performed to obtain an 

optimal solution. However, the iteration phase will 
commence if the number of iterations are ended or 
it is unable to identify a better solution. 

 
In the solution confirmation phase, the 

algorithm evaluates the identified PDG in order to 
project the ideal PDG on the basis of the functions 
carried out in each run to finalize the SS-CRO. 

 
 

 
Figure 7: Workflow of the SS-CRO 

 
 
 
 
 
 
 

PDG 
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FCRO 
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Algorithm 1. SS-CRO Algorithm (Main) 
Input: PDGint 

Output: {PDGint}/{PDG′1} / {PDG’1,… , PDG’n}, 
MinPE, MinHit 

/* initialization phase */ 
1: int Max_sch  
2: Global Solution_set ={PDGint} 
3: Global Min_Struct = PDGint, MinPE = PE, 

MinHit = 0 
4: Max_sch = PDG_size(PDG1)/2  

  /* PDG_size is the number of node in a PDG 
    Max_sch is used to be sure that a PDG is 
dividable or not, but each PDG in the 
Solution_set has at least two nodes*/  
{Min_Struct, PE, KE}= OF(PDG1)   

5: Generate molecule = 1  
6: If (PDG_size(PDG1)< 2) 

   exit; 
/* Iteration phase */ 

7: for (int i=0;(i < Num_iteration) && 
(PDG_size(PDGi)> 1))  

8:      Generate b ∈ [0, Max_sch] 
9: If (molecule == 1) || (molecule <= b) then 

{ 
10:    Randomly select PDGj from Solution_set  

   /* SRO operation */ 
11:    If PDG_size(PDGj) ≥ 2 then 
12:         if (divide (PDGj)) then  

   /* PDGj can be divided */ 
13:             Solution_set = DC(PDGj, PE, KE) 
14:         else 
15:             Solution_set = OC(PDGj, PE, KE) 
16:     end if 

} 
17:   else 

{ 
18:    Randomly select PDGj and PDGh from 

Solution_set 
 /* MS operation*/  

19:     if (merge (PDG1 and PDG2)) then 
20:        Solution_set = SN(PDGj, PEj, KEj, PDGh, 

PEh, KEh) 
21:     else  
22:        Solution_set = IC(PDGj, PEj, KEj, PDGh, 

PEh, KEh) 
23:    end if 
24:   end if 

/* Solution confirmation phase */ 
25:   Check for any new solution 
26:  end for-loop  

/* Final phase */  
27: return Solution_set Min_Struct, MinPE, MinHit 

 

 
 

5.1 Functions of SS-CRO 

In this subsection we present Functions 1-5 
that are used in SS-CRO algorithm. As shown in 
Function 1, the OC function receives the PDG as an 
input and makes an attempt to reorder its’ nodes. 
When the new order is ready, the function sends it 
to OF in order to validate the new order of these 
nodes. Additionally, if the total energy of the new 
order is found to be smaller than its older 
counterpart, the latter is obliterated and the former 
is returned to the solution set. Otherwise, the PDG’ 
created by the function gets destroyed and 
consequently, status quo is maintained. 

 

Function 1. OC() // On wall ineffective 
collision function 
Input: PDG, PE, KE 
Output: Solution_set 

1: PDG'j =generate new PDG randomly   
2: Call Objective function for the PDG’j 
3: {Min_struct, var PE’j, KE’j} = 

OF(PDG'j) 
 /*confirm the PDG’j or dismiss it*/ 
4: If (PE'j+KE’j≤ PE +KE) then 

{ 
5:    Solution_set = Solution_set  –  {PDG} 
6:    Solution_set = Solution_set  ∪  

{PDG'j} 
} 

7: else 
8:     dismiss PDG'j 
9: end if 

 
In Function 2, the IC function depicts the 

reaction between two varying graphs such as PDGj 

and PDGh. Thus, IC function will merge PDGj and 
PDGh and randomly split them into PDG’j and 
PDG’h. Subsequently, IC function will go through 
each of PDG’j and PDG’h and try to reorder their 
nodes and test if they are valid PDG or not. Upon 
receiving PDG’j, it reorders its nodes, and 
subsequently calculates its PE′j and KE′j through 
the use of OF. Upon receiving PDG’h, the same 
process gets repeated for PDG’h that IC reorders its 
nodes and calculates its PE′h and KE′h through the 
use of OF. Subsequently, the function gets the total 
sum of the resultant values PE′j, PE′h, KE′j and KE′h 

and compare it with the total sum of PEj, PEh, KEj 

and KEh, if the new sum has smaller value then 
PDG’j and PDG’h will be confirmed; otherwise, 
they will be destroyed. Under this scenario, this 
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function either adds two new flow-graphs to the 
solution set and removes the original ones, or 
retains the original ones in the event that the 
splitting and the reordering do not preserve the 
energy for both original flow-graphs. 

 

Function 2. IC() // Inter-molecular ineffective 
collision function 
Input: PDGj, PDGh, PEj, PEh, KEj, KEh// two 
molecules 
Output: Solution_set  
1: Merge both PDGj, PDGh then spilt them 

randomly into PDG'j, PDG'h 
2: PDG'j= randomly reorder PDG'j 
3: {Min_struct, PE’j, KE’j } = OF(PDG'j) 
4: PDG'h= randomly reorder PDG'h 

5: {Min_struct, PE’h, KE’h} = OF(PDG'h) 
6: If (PE'j+PE'h+KE'j+KE'h ≤ 

PEj+PEh+KEj+KEh) then  /*new solutions 
confirmed*/ 
{ 

7:    Solution_Set = Solution_Set – {PDGj, 
PDGh} 

8:    Solution_Set = Solution_set ∪ {PDG'j, 
PDG'h} 
} 

9: else 
10:    dismiss PDG'j,PDG'h 
11: end if 

 
In Function 3, the DC function receives one 

PDGj and divides it into two sub-graphs such as 
PDG’j and PDG’h. At the beginning, DC checks the 
ability of decomposing the PDGj, where if a PDGj 
has less than two nodes the decomposition process 
will be rejected. Subsequently, if a PDGj has more 
than two nodes DC will randomly split the PDGj 
into two new sub-graphs. Then it dispatches the 
new sub-graphs PDG’j and PDG’h to the objective 
function to obtain their PE′j, PE′h, KEj and KE′h 

values, respectively. If the total sum of the resultant 
values PE′j, PE′h, KEj and KE′h is found to be 
smaller than the original total energy, the used 
portions of the original PDG gets accepted and a 
PDG′j and PDG′h will be added to the solution set, 
and the original one will be removed from the 
solution set, as illustrated in lines 4 up to11. 

 
Moreover, the molecule will be incremented by 

one, i.e. the available number of PDG in the 
solution set is increased by one. Briefly, this 
reaction takes a PDG and then divides it into two 
sub-graphs (PDG’j and PDG’h) with smaller total 
energy value. 

 

 

Function 3. DC() // Decomposition Function  
Input: PDGj, PEj, KEj 

Output: Solution_set 
 

: If PDG_size >2 
2:     Randomly split PDG into PDG’j, 

PDG’h 
3: else  

    return Decomposition fail  
4: {Min_struct, PE’j, KE’j } = OF(PDG'j) 
5: {Min_struct, PE’h, KE’h} = OF(PDG'h) 
6: If (PE’j+PE’h + KE’j+ KE’h ≤PEj + 

KEj) then // PDG’j and PDG’h 

confirmed 
{ 

7:       Solution_set = Solution_Set – 
{PDGj} 

8:       Molecule ++ 
9:       Solution_set = Solution_set  ∪ 

{PDG’j, PDG’h} 
} 

10: else 
11:     destroy PDG’j, PDG’h 
12: end if 

 
As shown in Function 4, the SN function is a 

very easy reaction. In particular, it takes two 
distinct graphs such as PDGj and PDGh and merges 
them in a new graph; such as PDG’j. Thus, SN calls 
the objective function for PDG’j to get its 
respective PE’j and KE’j. Subsequently, if the 
resultant total energy of PE’j and KE′j is smaller 
than the total of original energy PEj, PEh, KEj and 
KEh, then SN adds PDG’j to solution set and 
removes original ones; otherwise, the merger will 
not occur. Moreover, the molecule will be 
decremented by one, i.e. the number of available 
PDG in the solution list is decreased by one. 

 
As shown in Function 5, the objective function 

OF is the most important function used in the 
algorithm. This function has two phases the 
dependency check phase and the cost evaluation 
phase. In the dependency check phase, OF receives 
the PDG and evaluates all types of dependencies, 
including data dependency, name dependency, and 
control dependency. Subsequently, it assigns a 
value to the dependency status of the PDG such as 
PE and computes the KE. The node or the edge 
violation of any given dependency concept returns 
a null value to suggest that the PDG should be 
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dismissed. In the cost check phase, OF calculates 
the cost of the PDG and compare it with the current 
best solution (Min-Sch) which has the current 
lowest cost. Therefore, if PDG has a lower cost 
than the current best solution, then Min-Sch will be 
replaced by the current PDG; otherwise Min-Sch 
will not be changed. 

 

Function 4. SN() // Synthesis Function  
Input: PDGj, PDGh, PEj, PEh, KEj, KEh 
Output: PDG’j, PE’j 

1: Merge PDGj, PDGh as PDG’j 

2: {Min_struct, PE’j, KE’j } = 
OF(PDG’j) 

3: If PEj+PEh+KEj+KEh<PE’j+KE’j 
then  

4:   destroy PDG’j 

5: /*invalid solution PDG’*/ 
6: else  

   { 
7:      Solution_set = Solution_set  - { 

PDG1 ,PDG2}; 
8:      Solution_set = Solution_set  ∪ 

{PDG’}; 
9:      Molecule --; 

    } 
 

Function 5. OF() // Objective Function 
Input: PDG 
Output: PE, KE 
1: Int rand(b) ϵ [0, 1] 

/* Dependency phase*/  
2: D=Check_Data_Depedency() + 

Check_Name_Dependency() 
3: CONT =Check_Control_Dependency() 
4: PE = D& CONT 
5: KE =(PDG_size/1.5)*b 

/* Cost Check phase */ 
6: Get cost(PDG) 
7: If cost(PDG) < cost(Min_Struct) then  

     { 
8:        Min_Struct = PDG 
9:        MinPE = PE 
10:        Minhit++ 

      } 

5.2 Time Complexity of SS-CRO Algorithm 

In this section, we present the number of steps 
for SS-CRO algorithm, which depends mainly on 
the number of iterations (see Num_iteration in line 
7 of the SS-CRO algorithm), and the random 
selection of the four functions. The number of steps 
for the SS-CRO approximately is 
O(Num_iteration×CROFun), where CROFun is the 

number of steps of the selected function. Table 3 
entails the number of steps for each function, where 
c is a constant number, nd is the number of nodes 
and ed is the number of edges. The execution time 
complexity for any of the four functions 
approximately is O(ed). On the other hand, the 
worst case of the execution time complexity of SS-
CRO is when it has a solution in every iteration and 
at each iteration it should check-out all kinds of 
dependencies that each edge node should be 
checked, which leads to O(Num_iteration×ed×nd). 

 
Table 3: Number of steps for SS-CRO and its functions 

Function name Number of steps 
OC c+ nd+ed+1  
IC 2c+ nd+ed+1  
DC c+ nd+ed+1 
SN c+ nd+ed+1  
OF nd+ed 
SS-CRO (Num_iteration)×(2c+ed+nd+1) 

6. EXPERIMENTAL RESULTS 

This section presents the experimental results 
of the proposed algorithm. The experiments will be 
done using the following three distinct cases of the 
PDG of the program segment P, see section 4.2.  
 First case: each node in a PDG implements an 

instruction from the program segment.  
 Second case: in the PDG, each control 

statement such as the loop and the if 
statements will be clustered into one 
unbreakable node, and the rest will be the 
same as the first case.  

 Third case: each group of dependent 
instructions will be clustered together into one 
independent unbreakable node. 
 

These three cases will be entered to the three 
distinct algorithms SS-CRO algorithm, SS-GA 
(static scheduling using genetic algorithm) 
algorithm and SS-DA algorithm (static scheduling 
using duelist algorithm). Finally, the results will be 
shown and compared. 

 
In the first case, program segment P illustrates 

the initial state wherein it is the input program 
segment that holds both segments in Seg1 and Seg2 
and their PDG’s with their associated costs, see 
Figure1 and Figure 2. Program segment P will be 
entered into the main algorithm SS-CRO in order to 
identify distinct valid schedules. In SS-CRO, when 
the input PDG is presented as one molecular then it 
will be forced to enter either decomposition 
function (DC) or on-wall effective collision 
function (OC), until it has at least two sub graphs 
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such as PDG′1 and PDG′2 to enter the synthesis 
(SN) and the intermolecular functions (IC).  

 
For example, Figure 8 reveals a result of a 

valid solution found, where the first case is used. 
The result shows the multiple schedule of the 
program segment P. The new multiple schedules 
have three new schedules P′1, P′2 and P′3 with total 
cost as 4, 7 and 10, respectively. Every schedule has 
a specific cost. The minimum cost reached for the 
multiple schedules is 4 for P′1, while the maximum 
cost was 7 for P′3. This can lead us that SS-CRO 
can divide a program segment into optimized 
independent counter parts. 

 
P′1 
Instructions Cost(d) 

15: MUL.D  F14,F15,F16 0 
16: ADD.D  F15, #8 1 
17: MULD. F14,F15,F16 3 

 Total 4 
P′2  
Instructions   Cost(d) 

11: DIV.D    F9,F10,F11; 0 
12: ADD.D  F12,F9,F10; 2 
13: SUB.D   F13,F12,F11; 2 
14: MUL.D  F13,F12,F11; 3 

 Total  7 
 P′3  
Instructions  Cost(d) 

1: DIV.D    F1,F2,F3; 0 
2: ADD.D   F2,F4,F1; 2 
3: SUB.D    F5,F1,F6; 1 
4: MUL.D   F7,F1,F8; 1 
5: LOOP:    L.D  F0, 0(R1); 0 
6: ADD.D    F4,F0,F2; 2 
7: S.D       F4, 0(R1);     2 
8: DADDUI  R1,#-8; 1 
9: BNE      R1, 1 
10: LOOPEND; 0 

 Total  10 

(a) P′1, P′2 and P′3 program segments 
 

(b) PDG of P′1 ,P′2 and P′3 
Figure 8: A valid solution based on multiple schedule 
approach 

Furthermore, Figure 9 depicts another valid 
solution that illustrates the serialization/reordering 
approach, which reordered the original schedule 
and gives a new schedule with the same cost as 20, 
but in different instructions’ order. 

 
In the second case, the PDG of a program 

segment is been improved by clustering the control 
statements such as loop statements into one 
unbreakable node, which maximizes the chance of 
finding new acceptable solutions. In this case, the 
PDG of a program P will be recreated as shown in 
Figure 10. Notice that the SS-CRO algorithm will 
not be allowed to break up the loop statement. In 
other words, control dependency will be excluded 
from the PDG, which will increase the chance of 
finding more accepted solutions. 
 

In the third case, the PDG is been improved 
more than the second case, where dependent nodes 
have been clustered in one unbreakable independent 
component. In Figure 18, nodes 1-4 and the loop 
node have been clustered in Comp1, nodes 11-14 
have been clustered in Comp2, and nodes 15-17 
have been clustered in Comp3. 
In this improvement, all kinds of dependencies 
have been excluded from the PDG, which increases 
the chance of finding more acceptable solutions, 
because of the reduction of PDG’s restrictions, i.e. 
instructions’ dependencies. 
 

Furthermore, the SS-CRO algorithm is 
compared with two distinct optimization 
algorithms, which is static scheduling based on 
genetic algorithm is denoted as SS-GA, where it is 
implemented based on the well-known genetic 
algorithm presented by authors of [41]. Moreover, 
static scheduling based on duelist algorithm and 
denoted as SS-DA, which is implemented based on 
the recent known algorithm duelist presented by 
authors of [44]. The input of the three algorithms 
will be the same, which it is the PDG of a program 
segment in its three cases as shown above. 

 
In SS-GA algorithm, the scenario of the 

algorithm is inspired from the well-known genetic 
algorithm posited in [41], which will be explained 
as follows. First, SS-GA takes the PDG and 
generates random population of chromosomes (a 
chromosome is a binary vector that reflects the 
dependencies between the PDG nodes) by 
reordering the PDG nodes, let Pop be the size of 
population. Second, SS-GA uses a probability of 
crossover randomly choses two parents from the 
population to be the parents of the new offspring, 
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then it applies the crossover function over them to 
get the new offspring. Third, SS-GA calls the 
fitness function for each chromosome (the fitness 
function here checks all nodes dependencies in the 
chromosome relates to their PDG). Forth, SS-GA 
uses a probability of mutation to mutate the nodes 
of the new offspring. Fifth, SS-GA places the new 
offspring in the population, after it is been accepted 
(i.e. preserves the nodes dependencies). This 
process will be repeated until the algorithm is been 
terminated according to the number of iterations. 

 
 
In SS-DA algorithm, the scenario of the 

algorithm is inspired by the duelist algorithm 
posited in [44], as follows. First, SS-DA generates a 
random population by reordering the PDG nodes 
the same way as SS-GA, see the above paragraph. 
Second, SS-DA choses two duelist then it computes 
the luck variable, which is done using the 
dependency between the nodes some random 
numbers for each duelist. The luck of each duelist 
will be compared and the winner will have the 
better luck. Third, SS-DA treats the winner and a 
new solution will be added to the solution list, and 
then SS-DA returns the looser back to the 
population to give it a chance to reenter the 
competition. SS-DA will repeat the process 
according to its number of iterations 

 
 

P′1 
Instructions Cost(d) 

11: DIV.D    F9,F10,F11; 0 
12: ADD.D   F12,F9,F10; 2 
13: SUB.D   F13,F12,F11; 2 
14: MUL.D   F13,F12,F11; 3 
1: DIV.D    F1,F2,F3; 0 
2: ADD.D   F2,F4,F1; 2 
3: SUB.D   F5,F1,F6; 1 
4: MUL.D   F7,F1,F8; 1 
5: LOOP:   L.D F0, 0(R1); 0 
6:   ADD.D   F4,F0,F2; 2 
7:   S.D      F4, 0(R1);     2 
8:   DADDUI R1,#-8; 1 
9:   BNE     R1, 1 
10:   LOOPEND; 0 
15: MUL.D  F14,F15,F16 0 
16: ADD.D  F15, #8 1 
17: MULD. F14,F15,F16 3 

 Total  20 
(a) P′1 program segments 

 
 

(b) PDG of P′1 
 
Figure 9: A valid solution based on reordering approach 
 
 
 

Figure 10: PDG in the second case 
 

In the following figures, the experimental 
results of the three algorithms will be shown. The 
experiments were done using the three cases of the 
PDG of the program segment that shown above. 
Different numbers of iterations have been used for 
each experiment such as; 50; 100; 150; 200; 300; 
400; 500; 700; 1000; 2000; 3000 and 5000. The 
number of population used in SS-GA and SS-DA 
algorithms is 1000. The figures can be categories as 
follows; Fig 11-13 illustrate the comparison 
according to the number of solutions achieved 
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(notice that solution duplication is allowed), while 
Figures 14-16 illustrate the comparison according 
to the execution time between the three algorithms, 
and Figure 17 illustrates the percentage of accepted 
solutions with respect to the execution time.    

 
Meanwhile, Figures 11 and 12 illustrate the 

comparison of how many accepted solutions does 
each algorithm achieved. Clearly, SS-CRO has the 
highest number of solutions in Figures 11 and 12, 
because SS-CRO has the ability to give multiple 
schedules using MS operation and reordering using 
SRO operation, but neither SS-GA nor SS-DA can 
give multiple schedules. Thus, SS-CRO has the 
chance to achieve a higher number of solutions than 
the other algorithms in these the proposed input 
case such as; the first case and the second case. 

In Figure 13, SS-DA has the highest number of 
correct solutions because in every iteration there is 
a winner, where all chromosomes in the population 
are equally likely and are correct because they 
always have no dependency restrictions, but they 
may are different in their luck, which is the only 
factor that determines the winner, so every iteration 
there is a winner. On the other hand, SS-CRO has 
the opportunity to lose a solution in some iterations, 
when it chooses a PDG with one node (see 
Algorithm 1). In general, the decreasing of program 
segment dependency in the proposed cases of the 
PDG gives the chance for all algorithms to achieve 
more correct solutions. 

 

 

Figure 11: Comparison of three algorithms according to 
the number of solutions in first case 

Figure 12: Comparison of three algorithms according to 
the number of solutions in second case 

Meanwhile, figures 14-16 illustrate the time 
comparison between the three algorithms. Clearly, 
SS-CRO has the lowest execution time because it 
has fewer steps than the SS-DA and SS-GA. Both 
SS-DA and SS-GA should generate a population of 
solution candidates and a chromosome for every 
candidate solution in the generated population to 
start their work. In particularly, both SS-DA and 
SS-GA should have at least two distinct solutions 
due to do their job such as; the competition between 
the duelists in SS-DA and cross-over between 
parents in SS-GA. Put differently, SS-CRO can do 
two distinct kinds of reaction even it has only one 
candidate solution using OC and DC functions, also 
it has the ability to work with more than one 
candidate using SN and IC functions. Subsequently, 
in our work, SS-CRO does not need to generate 
neither a population of candidate solution to start it 
job, nor a chromosome for each candidate solution, 
it start its operation on the PDG directly using its 
four distinct functions however the situation of the 
number of candidate solutions. 

 
Furthermore, one of the difficulties that were 

confronted with the use of SS-CRO algorithm was 
when the input code presented multiple loop 
statements. In another experiment, two different 
cases were used such as the first one has two loop 
statements, while the second portion does not have 
any loop statement. Additionally, both of them 
constitute the same number of instructions. During 
our experimental work, we used a number of 
varying iterations, commencing from ten iterations 
reaching all the way up to 1500 iterations for both 
of the codes portions. 
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Figure 13: Comparison of three algorithms according to 
the number of solutions in third case 

 
While the requisite time was too close in both 

instances, the number of accepted solutions in the 
code that is bereft of loops is always higher than the 
number of accepted solutions relating to the code 
with two loops. Thus, when the code was found to 
have more than one loop statement, it caused 
difficulties for SS-CRO algorithm. This particularly 
occurs with an increase in the number of control 
dependencies within the loop statements case. Put 
differently, when an instruction from a particular set 
of instructions inside of the loop statement is 
moved outside, the loop statement will trigger a 
control dependency violation. Inexorably, the 
resulting solution will be dismissed. Meanwhile 
when an instruction that does not pertain to the loop 
statement gets inside loop statement and causes a 
control violation, the resultant solution will also get 
dismissed. Therefore, the findings reveal that the 
number of accepted solutions goes up with an 
increase in the number of iterations. The scenario 
paves the way for more new solutions since there 
are more chances to perform more reactions. 

 

Figure 14: Time comparison between three algorithms 
using the first case 

 
Finally, in Figure 17 illustrates the comparison 

according to the percentage of the average of 
number of solutions (from now AvgSol) in each 
case with respect to the average of the execution 
time (from now AvgExe). This percentage that 
denoted as PerSol and calculated by Equation 15, 
showed that SS-CRO achieved the maximum 
percentage values of all experiments’ for all 
proposed input cases. 

 

Figure 15: Time comparison between three algorithms 
using the second case 
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Figure 16: Time comparison between three algorithms 
using the third case 

 
In particular, the PerSol of the SS-CRO 

achieved the maximum range as (10%-30%), while 
the PerSol of the SS-DA achieved the moderate 
range as (0%-21%), and the percentage of PerSol of 
the SS-GA has the lowest range as (0%-1%).  

 
PerSol = (AvgSo/AvgExe)%             (14) 

 
The limitations of this research was in the 

following: the environment used which may be 
improved; that is more benchmarks can be used to 
evaluate the SS-CRO algorithm.    

 

Figure 17: Comparison between the three algorithms 
according to the percentage of the number of solutions 

7. CONCLUSIONS 

Here in the current day and age, scheduling can 
be utilized in several real-life areas, wherein the 
main endeavor is time reduction. In this paper, we 

proposed a solution in the form of CRO for 
instructions static scheduling. In particular, we 
leveraged the chemical reaction optimizer in order 
to optimize instructions static scheduling. 
According to the study’s findings, SS-CRO is 
capable of generating several solutions and 
determining their validity. These solutions are 
based on two scheduling operations; multiple 
scheduling (MS) and serialization (SRO) of 
instructions. On the other hand, we observed that 
when the program entails more than one loop 
statement, the number of accepted solutions 
decreases. This could possibly be attributed to the 
fact that the loop statement is unbreakable and 
therefore, should remain as one block, thereby 
implying that no new instruction from the program 
code should get inside or vice versa.  
 

In the experimental results, we compared SS-
CRO with two metaheuristic algorithms; SS-DA 
and SS-GA. Moreover, we proposed in a 
preprocessing stage of the PDG three distinct cases, 
where each case has fewer dependencies than its 
predecessor. The PDG in its three cases have been 
applied to the three algorithms. SS-CRO achieved 
the lowest time in all experiments, and the highest 
percentage of number of solutions with respect to 
the execution time, which is ranged as (10%-30%). 
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Figure 18: PDG in the third case 


