
Journal of Theoretical and Applied Information Technology
15th November 2019. Vol.97. No 21

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

3144

 A METAHEURISTIC APPROACH FOR STATIC
SCHEDULING BASED ON CHEMICAL REACTION

OPTIMIZER

1OMAYYA MURAD, 2RIAD JABRI, 3BASEL A. MAHAFZAH

1,2,3 Computer Science Department, The University of Jordan, Amman 11942, Jordan

E-mail: 1umaiya.murad@gmailcom, 2jabri@ju.edu.jo, 3b.mahafzah@ju.edu.jo

ABSTRACT

Over the past several decades, scheduling has emerged as an area of critical research, thereby constituting a
requisite process for myriad applications in real life. In this regard, many researchers have experimented
and utilized various optimization algorithms to obtain optimized schedules. It is also noteworthy that the
concepts of some optimization algorithms are essentially derived from nature. This paper aims to augment a
compiler using a chemical reaction optimizer in order to identify an optimized instructions static schedule
capable of being used within both single and multicore computer systems. This scheduling algorithm,
which is denoted as SS-CRO (static scheduling using chemical reaction optimizer), is unique in that it
provides alternative schedules involving different costs. Subsequently, SS-CRO tests the schedules in
accordance with different types of instructions dependencies before making an appropriate selection. SS-
CRO demonstrates that it can not only provide different schedule orders, but also make a competent
selection of accepted solutions, whilst dismissing the inappropriate ones in a reasonable span of time. So,
this paper presents SS-CRO algorithm that is used to obtain an optimized static scheduling, where SS-CRO
has been implemented and evaluated analytically and experimentally. As analytical results, the number of
steps for the SS-CRO approximately is O(Num_iteration×CROFun), where CROFun is the number of steps
of the selected function. In the experiments results, SS-CRO achieved better execution time and higher
accepted solutions in comparison with other optimization algorithms such as; SS-DA (static scheduling
using duelist algorithm) and SS-GA (static scheduling using genetic algorithm). Furthermore, SS-CRO
achieved the maximum percentage of number of solutions with respect to the execution time of all
experiments for all proposed input cases, which is ranged as (10%-30%).

Keywords: Chemical Reaction Optimizer, Compiler, Instruction Set, Metaheuristic Approach, Static
Scheduling

1. INTRODUCTION

In recent times, the concept of optimized
scheduling gained prominence across a plethora of
applications. Within this overarching theme, the
computer architecture finds inclusion among such
applications wherein a number of approaches have
been adopted with a view to fulfil the onerous task
of enhancing the performance of computations.
Notably, the trend to improve the performance of
computer applications has it genesis in two distinct
avenues. First, the efficacy of dynamic scheduling
in augmenting the speed as well as capacity of the
hardware has been recognized. Second, static
scheduling is known to improve the quality of

software that exerts control over the hardware. In
fact, the primary application has been observed to
focus on software improvement issues, which then
leads to a reduction in the amount of time necessary
to run the application on the device. By functioning
intelligently and via an improvement in any of its
stages, a compiler can accelerate the pace of
computation. To illustrate, the generic parser was
proposed by authors of [1], whereas (a predictive
bottom-up parser was postulated by authors of [2].
Similarly, the authors of [3] put forward the notion
of compiler support pertaining to automatic
parallelization on multicore systems. Meanwhile,
the authors of [4] presented a scalable parser
framework for massive text-based file using

Journal of Theoretical and Applied Information Technology
15th November 2019. Vol.97. No 21

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

3145

graphic processing units. While the dynamic
scheduling has been known to be used more
frequently, the element of exorbitant cost has been
a matter of disappointment. It is for this reason that
static scheduling is utilized as a complementary
approach to dynamic scheduling. However, the
majority of existing static scheduling techniques is
premised on classical dependency analysis and is
characterized on the basis of its stymied
capabilities. Against this backdrop, this study is
aimed at meeting the need for a refreshing approach
to resolve this problem. Correspondingly, chemical
reaction optimizer has demonstrated its
efficaciousness in several fields and hence, can be
used to make improvements in a program’s static
scheduling at different levels, including tasks and
instruction. This, in turn, is justified by the
following facts:
 A program denotes a set of instructions that

are executed based on their inter-
dependencies. The compiler can be used to
generate an optimized static schedule of these
instructions [3]. Actually, the optimized
schedule is intended to feed the pipeline whilst
to simultaneously executing the instructions.
Thus, bridging the gap in pipeline stages, as
demonstrated by the authors of [5]. In
pipelining, the main predicament is to
maintain all the stages in their entirety with a
view to reduce latency to the maximum extent
possible using an intelligent compiler.
According to [6], this can be accomplished by
instruction reordering/serialization, and
multiple instruction issues.

 The chemical reaction is a natural process that
causes some substances from an unstable state
to become stable through a number of
iterations [7]. Concurrently, this process
necessitates energy preservation in accordance
with the conservation of energy law whilst
transferring it from one entity or form to
another. As a result, it becomes possible to
replicate these laws to resolve problems in
different regions; authors of [8] termed this
process as a nature-inspired computing.
Correspondingly, the authors of [7] presented
chemical reaction as a metaheuristic for
optimization. The chemical reaction optimizer
(from now CRO) algorithm begins with a set
of input values as an input vector,
Subsequently, the vector will be manipulated
by four types of operations (on-wall
ineffective collision; decomposition; inter-
molecular ineffective collision; and synthesis)

to obtain an optimized solution whilst
maintaining a set of constraints.

To reiterate, static scheduling and CRO
algorithm performs operations with similar effects.
Hence, a correspondence can be established
between their respective operations. Therefore, we
will incorporate chemical reaction optimizer as a
tool for a static scheduling in the proposed
algorithm static scheduling using chemical reaction
optimizer (from now SS-CRO), in this paper.
Notably, once we establish a correspondence
between molecules and program segments the four
types of chemical reactions are considered to be
ways of optimization. Subject to constraints
(instruction dependencies), such optimization is
reduced to instruction reordering/serialization and
decomposition into multiple issues (segments).

Meanwhile, three cases of a program

dependency graph (PDG) of a program segment
were proposed to test SS-CRO, which are varies in
the dependencies between their nodes (i.e. program
segment instructions). The less dependency a PDG
has, the more solutions achieved by SS-CRO. SS-
CRO is been compared with two distinct
optimization algorithms such as static scheduling
using duelist algorithm (from now SS-DA) and
static scheduling using genetic algorithm (from
now SS-GA). SS-CRO achieved the lowest
execution time for all proposed input cases, and for
all iteration numbers. On the other hand, SS-CRO
achieved the maximum percentage of accepted
solutions (from now PerSol) with respect to
execution time, which was ranged as (10%-30%),
while PerSol of the SS-DA achieved the moderate
range as (0%-21%), and the minimum values of
PerSol was for the SS-GA, which was ranged as
(0%-1%).
The main objectives of this paper are: define the
static scheduling of instructions, formalize the
program instructions dependencies, decompose the
program into basic blocks and reflect the program
dependencies using CRO, present and apply the
Chemical Reaction Optimizer to obtain an
optimized static scheduling, implement static
scheduling using CRO, evaluate analytically and
experimentally the SS-CRO algorithm.

Furthermore, SS-CRO can be used in many

modern devices to enhance their compilers; such as,
personnel computers and laptops, embedded
systems in smart devices, smart phones, super
computers, and special purpose computer in critical
systems.

Journal of Theoretical and Applied Information Technology
15th November 2019. Vol.97. No 21

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

3146

The remaining portion of this paper is
organized in the following manner: Section 2
undertakes a description of literature review, while
Section 3 presents a brief background of CRO, GA
and DA. Meanwhile, section 4 demonstrates
Instruction Static Scheduling and CRO. On the
other hand, Section 5 elucidates the proposed
algorithm SS-CRO pertaining to instructions static
scheduling in compilers. Section 6 outlines the
results of the experiment, whereas Section 7
summarizes the conclusions.

2. LITERATURE REVIEW

In an extensive body of extant study,
researchers have proposed a number of
evolutionary algorithms in order to solve complex
problems. These algorithms demonstrated their
ability to solve range of problems. One of the areas
that evidence the usage of evolutionary algorithms
is optimizing task schedules of various types of
problems. Most of the researchers have looked
toward nature to identify possible solutions. For
example, authors of [9] came up with the particle
swarm optimization (PSO), while the author of [10]
and the authors of [11] put forward the memetic
algorithm (MA). Similarly, differential evolution
(DE) was presented by authors of [12], ant colony
optimization (ACO) was the brainchild of the work
in [13], harmony search (HS) was postulated by
authors of [14], Sea Lion optimization algorithm
presented by authors of [15].

In the past, researchers have also used

evolutionary algorithms such as genetic algorithms
to optimize task scheduling as well as to solve the
problem of traveling salesman problem (TSP); for
this purpose, authors have adopted interesting
approaches to arrive at a feasible solution [16, 17].
In particular, authors of [16] used genetic
algorithms to provide optimal or near optimal
solutions for scheduling various tasks on several
processors. This evolutionary algorithm can be
helpful in augmenting the efficiency of executing
programs on multiprocessor scheduling problem in
parallel. They also extended their solution by
assigning the problem to appropriate processors and
focusing on the reduction of execution time of the
entire system. In addition to creating some genes to
present the tasks that can be configured in a
directed graph to underpin. the inter-dependencies
of tasks, author of [16] used three main operators in
order to manipulate their presented algorithm,
including selection, crossover, and mutation.
Finally, they implemented the entire genetic

algorithm scheduling precedence on constrained
task graphs.

In particular, many heuristic algorithms were

employed in different fields to solve range of
problems, such as; solving the travelling salesman
problem [18, 19]. Meanwhile, authors presented
performance evaluation for different parallel
heuristic algorithms as shown in [20-22]. Moreover,
many metaheuristic algorithms were proposed to
solve range of problems such as; task scheduling in
cloud computing using vocalization of humpback
whale optimization algorithm [23]; test Jordan
University Hospital Databases (JUH DBs)
exceptions by applying genetic algorithm [24];
using genetic algorithm as a test data generator
[25]; using multiple-population genetic algorithm
for branch coverage test data generation [26]; a
solution for traveling salesman problem using grey
wolf optimizer algorithm [27].

Meanwhile, the authors of [28] presented a

common model to schedule tasks with advance
reservation requests as well as computational batch
tasks. In addition, they lowered the effect of
advance reservations on a schedule quality by
putting forward unambiguous on-line scheduling
policies and generic advices.

Correspondingly, authors of [29] formulated

the (primal) problem as a nonlinear integer
programming model. In addition, they
demonstrated their ability to solve this problem by
resolving a corresponding dual problem using a
nonlinear relaxation. More specifically, they
utilized genetic algorithm since both primal and
dual problems are NP-hard. They observed that the
genetic algorithm consistently outperformed a
standard mathematical programming package with
regard to computation time and solution quality.

Analogously, authors of [30] put forth a three-

stage algorithm for resource-aware scheduling of
computational jobs within a large-scale
heterogeneous data center. Their algorithm aimed at
allocating job classes to machine configurations in
order to obtain an efficient mapping between
capacity profiles concerning machine resources and
request profiles relating to job resources.
Meanwhile, authors of [31] presented a task
scheduling framework considering both thermal
issues in 3D integration technology and power
supply noise interactions on different cores.

Journal of Theoretical and Applied Information Technology
15th November 2019. Vol.97. No 21

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

3147

Similarly, authors of [32] presented an
algorithm named as clusters dimension exchange
method (CDEM) in order to augment both the load
balancing technique and job scheduling within the
OTIS (Optical Transpose Interconnection System)-
hypercube interconnection network.

In [33], authors leveraged the efficacy of the

chemical reaction optimization algorithm for the
purpose of multi-objective optimization. By
premising their work on non-dominated sorting,
they were able to propose a new quasi-linear with
average time complexity concerning the quick non-
dominated sorting algorithm. Additionally, the
authors compared their findings with several multi-
objective algorithms on a gamut of benchmarks
problems, thus highlighting the efficiency and
effectiveness of their proposed algorithm.

Meanwhile authors of [34] utilized CRO to

resolve the printed circuit board drilling problem
(PCBDP), which is the primary component of
computers and electronic equipment (PCB). The
authors focused their attention to solving the
problem of controlling the drilling machine within
the drill holes in PCB. More specifically, they
aligned it as a TSP. Finally, they used CRO to solve
the problem, which was subsequently implemented
as an illustration of TSP.

In [1], authors presented a twofold generic
parser that simulated the behavior of multiple
parsing automata. This proposed parser, which was
an extended version of Position Parsing Automation
(PPA), accepted the strings drawn from regular tree
grammar, context-free grammar, or both of them.
Importantly, this parsing enhancement can help
compilers perform their jobs efficiently.

Correspondingly, authors of [35] presented a

hybrid load balancing algorithm that chained cubic
tree interconnection network. This algorithm
combines two common load balancing strategies:
dynamic load balancing and parallel scheduling. In
the study, the performance was measured using
several metrics. In addition, the presented algorithm
underpinned the importance of parallel scheduling
with dynamic load balancing.

Meanwhile, authors of [36] presented a system

that identifies transformation algorithms for an
input program where programs’ specific features is
been considered.

Finally, authors of [2] proposed the

implementation of a predictive bottom-up parser in

two versions. Both versions were used as
components of the proposed algorithm that
simulates the operation of a shift–reduce
automaton, which is defined and constructed by
integrating its parsing actions with conflict
resolution, reduction prediction, and error recovery.

3. BACKGROUND

This section introduces a brief background of
three optimization algorithms; namely, chemical
reaction optimizer (CRO), genetic algorithm (GA)
and duelist algorithm (DA).

First, the chemical reaction optimizer that is
presented by authors of [7], and it is inspired from
the chemical reaction between unstable molecules.
The molecular go through four different reactions
defined by the authors of [7], which are on-wall
ineffective collision; decomposition; inter-
molecular ineffective collision; and synthesis.
Subsequently, the unstable molecules are converted
to stable one. Importantly, this algorithm extracted
it's constrains from the low energy that is used in
the natural chemical reaction, which is based on
energy preservation where this energy should be
reserved before and after any reaction. Actually,
authors used CRO to solve several problems, and
the results achieved by CRO were competitive. For
more details in regards of CRO can be found in
[37-40].

Second, genetic algorithm (GA) is a well-

known metaheuristic algorithm presented by
authors of [41]. Basically, GA is been inspired from
the natural selection and used for solving
constrained and unconstrained optimization
problems. Mainly, GA modifies a population of
individual solutions periodically. In every iteration,
GA selects randomly two distinct individuals from
the available solutions in the current population.
Moreover, GA has three main steps: selection step,
crossover step and mutation step. In particular, in
the selection step, two distinct individuals denoted
as parents and will be used in next step. In the
crossover step, GA combines the parents from the
previous step to generate offspring for the new
population. In the mutation step, GA randomly
applies some changes for the parents to generate
new offspring. Furthermore, many researchers used
GA to solve optimization problems and their
experimental results showed that GA can achieve
optimal solutions. Thus, more details of GA can be
found in [16, 17, 24-26, 41-43].

Journal of Theoretical and Applied Information Technology
15th November 2019. Vol.97. No 21

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

3148

Third, duelist algorithm (DA) is a recent
optimization algorithm, which inspired by how the
duelist improve their skills in a duel [44], which is
considered as a pure random algorithm. Actually,
DA is based on human fight and how they improve
their capabilities from each duelist, where it starts
with a duelist population and chooses randomly two
duelists to fight. Thus, in every duel there is a
winner and a loser, where a loser learns from the
winner. On the other hand, the winner uses new
skills to improve its fighting capabilities, where the
duelist with highest capabilities will be noted as
champions. Subsequently, champions are
responsible to train new duelists and duelists with
worst capabilities will be eliminated. Thus, for
more details in regards of DA can be found in [44-
46]

4. INSTRUCTIONS STATIC SCHEDULING AND

CRO

In static scheduling, the compiler can
potentially reorder the program instructions in
varying orders to reduce the latency whilst
concurrently saving the inter-dependencies between
the instructions. Notably, these interdependencies
imply that the program yields the same results, at a
reduced cost (CPU time) [5]. Furthermore, it is
possible to perform static scheduling by
decomposing program segment into multiple ones,
with a proper serialization to maintain
interdependencies between instructions. The
multiple segments constitute code parallelization.
Such segments are appropriate for multicore and
multiple issue processors.

On the other hand, the primary objective of

CRO is to present an optimized solution for a
problem. This process is underscored by the
contours of different types of chemical reactions
such as: on-wall ineffective collision,
decomposition, inter-molecular ineffective
collision, and synthesis]7[. Each type entails its
own properties. However, these operations mimic
the static scheduling in terms of
reordering/serialization and generation of multiple
schedules.

The static scheduling and its reflection by CRO

are formalized as follows:
Let <I1,…, In> be a sequence of instructions

constituting a program P.
Let C = {ci,…, ci} be a set estimated execution

costs of the individual instructions.

Let D= {D12,…, Dij} be a set of instruction
dependencies as described in Section 3.1. Dij

represents the dependency between Ii and Ij.
Let a program dependency graph (PDG) be

defined as PDG = (N, E, C), where:
 N= {np1, np2, np3,…,npn}is a set of nodes

such that npi represents Ii . In [47], authors
pretended that there are two distinct kinds of
nodes in a PDG such as:

o Regular node that has a regular
statement such as; assignment
statement

o Control node that has a control
statement such as; a condition in
a loop or an if statement.

 E = {e11, e12 ,e3 ,…,eij }is a set of edges such
that eij represents Dij between the nodes npi
and npj and labeled by the cost cj. In [47],
authors pretended that there are two distinct
kinds of edges in a PDG such as:

o Solid edge that presents data a
dependency or a name
dependency

o Dashed edge that represents a
control dependency

Let an optimized static schedule S respective to

P be defined as PDG decomposition maintaining
the constraints implied by D. Such decomposition
constitutes specific order O(PDG) of the PDG
nodes. It is obtained through iterative application of
the following operations:
 Reordering/Serialization operation SRO

(PDG)S=O<np1, np2, np3,…,npn> is a
sequence of nodes in a specific order with
minimal cost and satisfying D.

 Multiple scheduling operation MS(PDG) S,
where S=S1, …, Sn is a decomposition of PDG
into multiple schedules S1= O<np1,np2,
np3,…,npm>,…, Sn=O< npl+1, npl+2 , npl+3 …,
npn> with minimal cost and satisfying D.

The reflection of static Scheduling is achieved
by establishing a correspondence between its four
reactions and the operations SRO
(reordering/serialization) and MS (multiple
scheduling). Reflected static scheduling is then
defined by the composite function
FCRO(PDG)=OCDCICSN(PDG)S, where OC,
DC, IC and SN are correspondent functions to the
CRO reactions: on wall ineffective collision;
decomposition, inter-molecular ineffective
collision; and synthesis, respectively. The
definitions of these functions with the illustrative
examples are given in Section 4.2, while the

Journal of Theoretical and Applied Information Technology
15th November 2019. Vol.97. No 21

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

3149

implementation of FCRO is given in Section 5. In
subsequent section we use words instruction and
node interchangeably. This is justified by the
definition of PDG.

4.1 Dependencies in Instructions Static
Scheduling

 This section includes the definition of the
primary types of dependencies, as defined by
authors of [5]. Instructions static scheduling
comprises of three types of dependencies: data
dependency, name dependency, and control
dependency. Dependencies manifest in a schedule
between two instructions Ii and Ij under specific
conditions, as enlisted below for each type of
dependencies. Once we define the sets
D={D12,…,Dij}and CONT={ContIi,…,ContIm}
respective to data (name) and control dependencies
a PDG respective to an input program P can be
constructed as given by the formal definition. In
addition, they will be used as the objective function
(from now OF) in the SS-CRO, which will be used
further to evaluate the effectiveness and the
acceptability of the solution. The construction of D
and CONT proceeds as given below.

Let P=<I1, …,In> denotes a sequential schedule
of n instructions of a program segment P we define:

 PRO(Ii) as the set of data operands
that hold the results from Ii, and

 USE(Ii) as the set of data operands
used in the instruction Ii. Let us
assume that USE(Ii), and PRO(Ii), ≠
∅, ∀i. Subsequently, an edge eij
between npi and npj in PDG will be
exists if and only if there is any kind
of dependencies such as dij∈D or
ContIi ∈ CONT. In addition, the cost
of eij is defined as cij, where cij∈C.

In congruence with the observation by authors

of [5], we will define the instruction dependencies
set D= {D12,…,Dij}in terms of

 Dij = USE(Ii) ∈ PRO(Ii)

 (1)

 Dij=USE(Ik)∈PRO(Ii) ≠ ∅, and
USE(Ij)∈PRO(Ik)≠ ∅,∃Ik (2)

Where dependencies defined in Equation 1 and 2
are used to represent data dependency (also referred
to as true data dependency), wherein, Ij signifies the
data dependent on Ii if any of the following
conditions holds:

 Instruction Ij uses a result produced by
instruction Ii, as illustrated in Equation 1, i.e.
in the PDG there is an edge eij between npi and
npj.

 Instruction Ij data meanwhile is predicated on
instruction Ik, while Ik data is dependent on
instruction Ii, as depicted in Equation 2, i.e. in
the PDG there are two edges eik between npi
and npk and ekj between npk and npj.

 Dij= ri∈PRO(Ii) and
ri∈USE(Ij),where ∃ri (3)

 Dij=(ri∈PRO(Ii)∩USE(Ii))and ri∈
(USE(Ij)∩PRO(Ij)),where ∃ri

 (4)

Meanwhile, dependencies defined in Equation

3 and 4 are used to represent name dependency
occurs in case there is an absence of data flow
between two instructions, but they make use of the
same registers or memory locations. Authors of [5]
presented the following two types of name
dependency:
 An anti-dependence between instruction Ii and

Ij takes place when Ii writes an operand ri that
is read by Ij. Therefore, the original order
needs to be preserved in order to ensure that
every instruction involves the correct value, as
illustrated in Equation 3, i.e. in the PDG there
is an edge eij between npi and npj.

 An output dependence occurs when two
instructions Ii and Ij are writing on the same
operand ri, which is why we should maintain
the order of the instructions in order to make
sure that the last value is written within the
register, as evidenced in Equation 4, i.e. in the
PDG there is an edge eij between npi and npj.

Control dependency takes place when an
instruction execution gets controlled by such a
branch. We define the set CONT as follows. Let us
assume that Ii in a program P features a control
instruction and subsequently dominant to the
sequence of dependent instructions<Ij+1,Ij+2,

…..,Im>. Then we define a control dependency
CONT such that ContIi = <ConIj+1, …,ConIm> ∈
CONT in schedule S. Assume ∀Ii ∈ S, ∃!O(Ii) where
O(Ii)is the order of Ii in P (where Ii refers to an
instruction or a nested of instructions such as nested
loop or nested if statements in P). In a PDG the
nested nodes will get two distinct kinds of edges
such as; the first edge is a regular solid edge which
connects two dependent instructions according to
the dependent operands and the second edge is a

Journal of Theoretical and Applied Information Technology
15th November 2019. Vol.97. No 21

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

3150

control dashed edge that controls the order of the
instruction according to the control node which
reflects a condition statement in the loop/if
statement. Analogously, the two constraints
pertaining to control dependency are as follows:

 An instruction controlled by a branch cannot

move before, which will prevent the branch
from controlling it, as illustrated in Equation
5. In a PDG, a control node should be
connected with all of its successors by dashed
edge.

ContIi=O(Iik)>O(Ii),∀Iik∈ContIi (5)

 An instruction out of the branch cannot be
made after the branch, which, in turn, will
control its execution, as depicted in Equation
6. In a PDG, a dependent node should be
connected with its predecessors by a dashed
edge.

ContIi=O(Iik)>O(Iim+1),∀Iik∈ContIi (6)

4.2 Definitions and Examples of Instructions
Static Scheduling Using CRO Reactions

This section defines chemical reaction in
accordance with the instructions of the static
scheduling problem. Four distinct reactions are
observed in the iterations made in CRO: (i) on wall
ineffective collision (OC); (ii) decomposition (DC);
(iii) inter-molecular ineffective collision (IC); and
(iv) synthesis (SN). Each of these reactions has its
own properties, such as the number of actual inputs
and the number of outputs needed. The following
subsections depict an example for each type of
reaction using two program sub-segments Seg1 and
Seg2. These sub-segments and their respective
PDGs, are shown in Figure 1 and Figure 2,
respectively. Notice that both sub-segments are
extracted from the same program segment P, for
illustrative purpose. One more, instruction number
10 is excluded from the PDG because its job is
been demonstrated in the PDG implicitly

Instructions Cost(c)
11: DIV.D F9,F10,F11; 0
12: ADD.D F12,F9,F10; 2
13: SUB.D F13,F12,F11; 2
14: MUL.D F13,F12,F11; 3
15: MUL.D F14,F15,F16 0
16: ADD.D F15, #8 1
17: MULD. F14,F15,F16 3

Total 11
(a) A program sequence Seg2

(b) PDG2 of Seg2
Figure 2: Seg2 and its respectiveDPG2

4.2.1 On wall ineffective collision

According to our purpose, we interpret the on
wall ineffective collision (OC) as a molecular S
(old schedule) hits an outer object. Subsequently, a
reordering of the instructions will be resulted. The
reflection of static scheduling by OC will be
reduced to altering the order of the instructions in

Instructions Cost(c)
1: DIV.D F1,F2,F3; 0
 2: ADD.D F2,F4,F1; 2
3: SUB.D F5,F1,F6; 1
4: MUL.D F7,F1,F8; 1
5: LOOP: L.D F0, 0(R1); 0
6: ADD.D F4,F0,F2; 2
7: S.D F4, 0(R1); 2
8: DADDUI R1,#-8; 1
9: BNE R1, 1
10: LOOPEND;
 Total 10

(a) A program sequence Seg1

(b) PDG1 of Seg1

Figure 1: S1 and its respective PDG1

Journal of Theoretical and Applied Information Technology
15th November 2019. Vol.97. No 21

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

3151

schedule S and providing a new schedule S’ (new
molecular). Where S’ has a new PDG’ that has the
same nodes of PDG, but reordered. Formally, we
define OC as a reordering operation SRO over a
given flow-graph, as given by Equation 7.

OC = SRO(PDG) → PDG′: S → S′

 (7)

Where S refers to a schedule of n instructions S
= O<I1,…,In>, such that each Ii has a specific order,
and the initial PDG of S has the dependency set D
and estimated cost c. The on wall ineffective
collision is then defined as a reordering process to
produce S′=O<I1, …,In>, where ∃Ik ∈S and ∃Ik ∈ S′
are two distinct instructions have the same order k
in both schedules S and S′, but they are not equal to
each other. Moreover, S′ preserves the data
dependency exists in S. On the other hand, PDG′ is
the flow-graph of S′ after applying OC on S. PDG′
has the same nodes of PDG, but in a different
order, where PDG′ preserves data dependency set D
of S. On the other hand, the estimated cost of PDG′
is c′, where c′ ≤ c.

Finally, if c′ >c or D is not preserved then

PDG′ will be dismissed. This, in turn, necessitates
its exclusion from the solution area. To illustrate,
the reaction moves one instruction like instruction 6
(node np6) from the LOOP command and extricates
it from the LOOP boundaries (it may be noted that
LOOP and BNE are used to signify the beginning
and ending boundaries of the instructions inside the
loop statement). Hence, if any instruction is moved
out of these boundaries, the solution needs to be
summarily dismissed, as illustrated in Figure 3,
wherein OC function has been applied on S1. In this
example, in the PDG′ a dashed edge is been broken
as a result a control node np5 lost one of its’
successors, which it is np6 and np6 lost its’ control
predecessor np5. i.e. PDG′ does not preserve the
dependency set D, so it will be dismissed.

This can be accomplished by ascertaining the

inter-dependencies between instructions in the
schedule prior to and after the reaction, that is, the
total new energy resulted by PDG’ such as the sum
of PE’ and KE’ should be less than or equal to the
total energy of the original PDG such as the sum of
PE and KE, as depicted in Equation 8.

PE’ + KE’ ≤ PE + KE (8)

Figure 3: PDG1 after on wall ineffective collision

4.2.2 Decomposition

In this paper, the decomposition (DC) occurs
when a molecular S (old schedule) collides with the
wall and yields two new molecules such as S′1and
S′2.The reflection of static scheduling by DC is
shown as the old schedule will be divided to create
new schedules. In the realm of static scheduling,
this can be considered as a multiple issue
scheduling, where a program segment can be split
into multiple pieces (sub-program segments) before
being distributed across more than one processor.
Formally, we define DC as a multiple scheduling
process MS of a given flow-graph, as given by
Equation 9.

DC= MS(PDG) → (PDG′1, PDG′2):
S→(S′1,S′2) (8)

Notably, S denotes a schedule of n instructions

S = O<I1, …,In> that has an initial flow-graph such
as PDG. Importantly, the decomposition reaction
signifies a multiple issue scheduling process carried
out by dividing S into two sub-schedules such as S′1

of k instructions S′1 =O<I1, …,Ik> as well as S′2 of
m instructions S′2 = O<I1, …,Im>, where m+k = n
and S′1 and S′2 preserve the data dependencies
existing in S. Moreover, PDG’1 and PDG’2 are the
flow-graphs of S′1 and S′2 respectively. PDG’1 and
PDG’2 should preserve the data dependency set of
PDG, unless they will be dismissed.

In the case of instructions static scheduling, we

will compute the total energy for the new schedules
and ascertain whether the dependencies between the
instructions and the total energy have been
reserved, as shown in Equation 10. If that is not the
case, we will not only obtain a higher cost, but also
risk computing wrong schedules. Therefore, we will
dismiss the new incorrect schedules from the
solution set, indicating that we will lose some data
dependency between the instructions.

Journal of Theoretical and Applied Information Technology
15th November 2019. Vol.97. No 21

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

3152

Consequently, energy conservation is not satisfied
in this analysis, which builds the case for excluding
the new particles. This will manifest in the division
and be determined based on whether it occurs in the
middle of a loop instruction or separates two
dependent instructions.

PE’1 + KE’1 + PE’2 + KE’2 ≤ PES + KES

 (9)

An example of an unacceptable decomposition
becomes apparent when new schedules are shown
to hold the dependent components presented by two
or more instructions and the reaction split them, as
illustrated in Figure 4, where it becomes evident
that decomposition reaction is been applied on S1.
In this example, the new flow graphs PDG’1 and
PDG’2 did not preserve the dependency D of PDG1,
where node np5 lost its dependent edge from node
np2, so the new flow-graphs will be dismissed.

Figure 4: PDG1 after decomposition

4.2.3 Inter-molecular ineffective collision

According to our approach, the inter-molecular
ineffective collision (IC) occurs when two distinct
schedules hit each other, resulting in two new
schedules. In this instance, the reflection of static
scheduling by IC on S1 and S2 will interchange the
instructions between them to provide two new
schedules S′1 and S′2. This reaction is unique in that
it will definitely find acceptance if the new
schedules save dependency sets and do not cost
more than their predecessors. Formally, we define
IC as two successive operations of multiple
scheduling MS and reordering SRO of given two
flow-graphs, as illustrated in Equation 11. On the
other hand, the data dependency and total energy
should be saved after this reaction, as shown in
Equation 12.

IC = MS(SRO(PDG1,PDG2))→

(PDG′1,PDG′2): (S1,S2) →(S′1,S′2) (10)

PE’1 + KE’1 + PE’2 + KE’2 ≤ PE1 + KE1 +
PE2 + KE2 (11)

Clearly, S1 signifies a schedule of k instructions

S1=O<I1, …,Ik> and S2 refers to a schedule of m
instructions S2 = O<I1, …,Im>, where m+k = n. The
respective flow-graphs of S1 and S2 are PDG1 and
PDG2, respectively. The reflection of static
scheduling by IC is essentially a combination of
reordering SRO and multiple scheduling MS
operations by combining both schedules, reordering
them, and finally re-dividing them into two new
schedules S′1 of g instructions S′1 = O<I1, …,Ig> in
addition to S′2 of h instructions S′2=O<I1, …,Ih>,
where g+h=n, and S′1 and S′2 will save the data
dependences existing in S1 and S2.

In this reaction, a scenario may arise wherein

two independent schedules impart two new
independent schedules after they hit each other
(before the reaction). Consequently, such a solution
should be aborted if the execution costs would be
higher or data dependency set is not saved, as
illustrated in Figure 5, where IC has been applied
on S1 and S2. In this reaction, both operations SRO
and MS will be used to get PDG’1and PDG’2, those
have same nodes of PDG1and PDG2, and preserve
dependency. In this Example, the dependency
between np2 and np5 was lost, while two new wrong
dependencies were been added between np2 and
np15, and between np8 and np11. Also one wrong
control dependency has been added between np5
and np11, i.e. a foreign instruction entered the loop
statement. This implies that PDG’1and PDG’2

should be dismissed.

Figure 5: PDG1 and PDG2 after IC

4.2.4 Synthesis

Synthesis (SN) reaction is the opposite of
decomposition reaction and refers to a scenario
where two schedules S1 and S2 hit each other to
yield a single schedule S’. In this instance,
reordering operation SRO will indeed reflect the

Journal of Theoretical and Applied Information Technology
15th November 2019. Vol.97. No 21

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

3153

issue in static scheduling. This solution can be
deemed safe if it does contribute towards energy
conservation, as shown above and illustrated in
Equation 14. Formally, we define SN as a
reordering SRO process of given two flow-graphs,
as shown above as illustrated in Equation 13.

SN=SRO(PDG1,PDG2) → PDG′:
(S1,S2) →(S′) (12)

PE’ + KE’ ≤ PE1 + KE1 + PE2 + KE2
 (13)

Clearly, S1 denotes a schedule of m instructions

S1 = O<I1, …,Im> and S2 be a schedule of k
instructions S2 = O<I1, …,Ik>. Synthesis reaction is
a reordering process that combines both schedules
S1 and S2 into a single schedule S′, such as S′= <I1,
…,In>, where n= m+k and S′ preserves the data
dependences existing in S1 and S2.

Figure 6 illustrates an example of rejected

solution resulted by synthesis between two
independent schedules and affect each other’s
results when they hit each other. Therefore, it is
necessary to ignore this particular solution. The
result of SRO operation over PDG1 and PDG2 in
this example is a new flow graph PDG’. In PDG’, a
new wrong control edge is been added between np5
and np11, which violates the existing dependency
set, and so PDG’ should be dismissed.

 Figure 6: PDG1 and PDG2 after Synthesis

4.3 CRO Meanings and Attributes in SS-CRO

Given a PDG respective to program P, the
implementation of static scheduling for P by CRO
is reduced to applying the composite function
FCRO(PDG), as depicted by Figure 7. FCRO is
implemented by the proposed algorithm SS-CRO as
illustrated in Algorithm 1, which is been inspired
from the CRO algorithm that posited by the authors
of [7]. SS-CRO has a PDG of a program segment

as its input. PDG is then manipulated by the four
different functions respective to CRO reactions as
depicted in Section 5.2, which will yield a distinct
set (solution set) of candidate solutions.
Subsequently, this algorithm will ascertain all types
of dependencies D to verify whether the solution is
correct or if it needs to be dismissed.

Table 1: Chemical meaning as used in SS-CRO algorithm

Chemical Meaning SS-CRO
Molecular structure Candidate solution

– PDG
Potential energy Value of

dependency
preserved of a PDG
for such candidate
solution (which
preserved all kinds
of dependencies)

Kinetic energy Measure of
tolerance of having
worse PDG

Minimum structure Current optimal
PDG

Based on CRO algorithm presented by the

author of [7], Table 1 enlists the meanings of
chemical reactions that will be used within the SS-
CRO algorithm, and Table 2 enlists the
interpretation of CRO attributes in SS-CRO.
Finally, the execution time complexity analysis will
be explained in section 5.3.

Table 2: CRO attributes in SS-CRO

Attribute name Attributes in SS-CRO
Molecular structure
(ω)

Denotes the solution to
our problem - PDG

Potential energy
(PE)

Refers to the objective
function that provides
feedback on the
accuracy of the solution
(ω) (ascertains whether
it is correct one). In our
situation, it constitutes
the constraints
achievements, including
instruction
dependencies.

Kinetic energy (KE) Signifies a type of
tolerance measurement
that prevents the
algorithm from devising
an inferior solution

Minimum structure
(Min-Sch)

Refers to a schedule
with minimum PE that

Journal of Theoretical and Applied Information Technology
15th November 2019. Vol.97. No 21

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

3154

represents the current
optimal solution

Minimum PE
(MinPE)

Is used when a
molecular attains its
Min-Sch state; for this
reason, its PE features
the minimum current
value such as MinPE

Minimum hit
number (MinHit)

Denotes the number of
hits that is necessary to
reach the Min-Sch of a
molecular

5. SS-CRO ALGORITHM

In this subsection, the implementation of SS-
CRO will be presented. As shown in Algorithm 1,
SS-CRO algorithm has three phases that operates in
the following order: initialization phase; iteration
phase; and solution confirmation phase. The
workflow of the algorithm is shown in Figure 7.
The following paragraphs will explain the SS-CRO
algorithm phases in details.

In the initialization phase, the algorithm

generates threshold values of some variables, which
includes PDG_size that equals the number of nodes
of the initial DPG, the number of iterations required
in the iteration phase. Initially, Min-Sch is assigned
to be the initial PDG that (PDG1) as the best
solution, and the solution set holds only PDG1. The
first seven lines in the algorithm make the entire
process evident. In particular, the step of calling the
objective function OF will ascertain the
dependency for each node and its’ corresponding
edge in its’ PDG (see Section 4.1), before returning
the nodes dependency state and its PE and KE
values. Thus, MinPE will get its initial value as the
PE of PDG1, and the MinHit equals to zero.
Furthermore, the algorithm checks if the initial
PDG1 has less than two nodes it will be terminated,
because it will be unable to apply any of its
functions.

In the iteration phase, the algorithm

commences with the consideration of the PDG1 as
the most optimal solution, as shown in SS-CRO
algorithm. Thereafter, this algorithm will select the
type of requisite collision by verifying molecule
(the available number of PDG in the solution set).
The algorithm forces PDG to be decomposed by
calling DC, when the molecule equals one and the
existing PDG is dividable. Subsequently, the
algorithm applies the SRO operations on one
particular PDG such as; calling OC or DC

functions. Since it will only feature one PDG in the
first instance with at least two nodes. Thus, the
algorithm selects the DC function in the event the
splitting option can be implemented. Importantly,
this new solution will ensconce two valid PDG’1
and PDG’2 that will be checked and evaluated to
determine their accept ability. Alternatively, the OC
function will be chosen if the splitting cannot be
accomplished, which may give one valid PDG’.
Clearly, the entry of any PDG’ resulted from either
OC or DC will be added into the solution set that is
predicted to be in the selection made by the
algorithm in next iterations. Once, the proposed
algorithm has two valid PDG in the solution set it
will be possible to apply both kinds of operations:
the SRO; and the MS operations. As an implication,
the algorithm makes a random selection between
SRO and MS operations. With regard to the SRO
operations, it undertakes an evaluation to determine
whether the PDG’j can be reordered or divided into
more than one PDG. With regard to the MS
operations - the process of selecting the reaction is
predicated on the ability to merge the two available
graphs such as PDG’j and PDG’h. Correspondingly,
the algorithm will select SN function if the merging
ability is found to exist. However, if that is not the
case, the algorithm will select the IC function.

Further iterations are performed to obtain an

optimal solution. However, the iteration phase will
commence if the number of iterations are ended or
it is unable to identify a better solution.

In the solution confirmation phase, the

algorithm evaluates the identified PDG in order to
project the ideal PDG on the basis of the functions
carried out in each run to finalize the SS-CRO.

Figure 7: Workflow of the SS-CRO

PDG

PDG’

FCRO
(OCDCICSN

(PDG))
{PDG’1 ,...,
PDG’n}

Journal of Theoretical and Applied Information Technology
15th November 2019. Vol.97. No 21

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

3155

Algorithm 1. SS-CRO Algorithm (Main)
Input: PDGint

Output: {PDGint}/{PDG′1} / {PDG’1,… , PDG’n},
MinPE, MinHit

/* initialization phase */
1: int Max_sch
2: Global Solution_set ={PDGint}
3: Global Min_Struct = PDGint, MinPE = PE,

MinHit = 0
4: Max_sch = PDG_size(PDG1)/2

 /* PDG_size is the number of node in a PDG
 Max_sch is used to be sure that a PDG is
dividable or not, but each PDG in the
Solution_set has at least two nodes*/
{Min_Struct, PE, KE}= OF(PDG1)

5: Generate molecule = 1
6: If (PDG_size(PDG1)< 2)

 exit;
/* Iteration phase */

7: for (int i=0;(i < Num_iteration) &&
(PDG_size(PDGi)> 1))

8: Generate b ∈ [0, Max_sch]
9: If (molecule == 1) || (molecule <= b) then

{
10: Randomly select PDGj from Solution_set

 /* SRO operation */
11: If PDG_size(PDGj) ≥ 2 then
12: if (divide (PDGj)) then

 /* PDGj can be divided */
13: Solution_set = DC(PDGj, PE, KE)
14: else
15: Solution_set = OC(PDGj, PE, KE)
16: end if

}
17: else

{
18: Randomly select PDGj and PDGh from

Solution_set
 /* MS operation*/

19: if (merge (PDG1 and PDG2)) then
20: Solution_set = SN(PDGj, PEj, KEj, PDGh,

PEh, KEh)
21: else
22: Solution_set = IC(PDGj, PEj, KEj, PDGh,

PEh, KEh)
23: end if
24: end if

/* Solution confirmation phase */
25: Check for any new solution
26: end for-loop

/* Final phase */
27: return Solution_set Min_Struct, MinPE, MinHit

5.1 Functions of SS-CRO

In this subsection we present Functions 1-5
that are used in SS-CRO algorithm. As shown in
Function 1, the OC function receives the PDG as an
input and makes an attempt to reorder its’ nodes.
When the new order is ready, the function sends it
to OF in order to validate the new order of these
nodes. Additionally, if the total energy of the new
order is found to be smaller than its older
counterpart, the latter is obliterated and the former
is returned to the solution set. Otherwise, the PDG’
created by the function gets destroyed and
consequently, status quo is maintained.

Function 1. OC() // On wall ineffective
collision function
Input: PDG, PE, KE
Output: Solution_set

1: PDG'j =generate new PDG randomly
2: Call Objective function for the PDG’j
3: {Min_struct, var PE’j, KE’j} =

OF(PDG'j)
 /*confirm the PDG’j or dismiss it*/
4: If (PE'j+KE’j≤ PE +KE) then

{
5: Solution_set = Solution_set – {PDG}
6: Solution_set = Solution_set ∪

{PDG'j}
}

7: else
8: dismiss PDG'j
9: end if

In Function 2, the IC function depicts the

reaction between two varying graphs such as PDGj

and PDGh. Thus, IC function will merge PDGj and
PDGh and randomly split them into PDG’j and
PDG’h. Subsequently, IC function will go through
each of PDG’j and PDG’h and try to reorder their
nodes and test if they are valid PDG or not. Upon
receiving PDG’j, it reorders its nodes, and
subsequently calculates its PE′j and KE′j through
the use of OF. Upon receiving PDG’h, the same
process gets repeated for PDG’h that IC reorders its
nodes and calculates its PE′h and KE′h through the
use of OF. Subsequently, the function gets the total
sum of the resultant values PE′j, PE′h, KE′j and KE′h

and compare it with the total sum of PEj, PEh, KEj

and KEh, if the new sum has smaller value then
PDG’j and PDG’h will be confirmed; otherwise,
they will be destroyed. Under this scenario, this

Journal of Theoretical and Applied Information Technology
15th November 2019. Vol.97. No 21

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

3156

function either adds two new flow-graphs to the
solution set and removes the original ones, or
retains the original ones in the event that the
splitting and the reordering do not preserve the
energy for both original flow-graphs.

Function 2. IC() // Inter-molecular ineffective
collision function
Input: PDGj, PDGh, PEj, PEh, KEj, KEh// two
molecules
Output: Solution_set
1: Merge both PDGj, PDGh then spilt them

randomly into PDG'j, PDG'h
2: PDG'j= randomly reorder PDG'j
3: {Min_struct, PE’j, KE’j } = OF(PDG'j)
4: PDG'h= randomly reorder PDG'h

5: {Min_struct, PE’h, KE’h} = OF(PDG'h)
6: If (PE'j+PE'h+KE'j+KE'h ≤

PEj+PEh+KEj+KEh) then /*new solutions
confirmed*/
{

7: Solution_Set = Solution_Set – {PDGj,
PDGh}

8: Solution_Set = Solution_set ∪ {PDG'j,
PDG'h}
}

9: else
10: dismiss PDG'j,PDG'h
11: end if

In Function 3, the DC function receives one

PDGj and divides it into two sub-graphs such as
PDG’j and PDG’h. At the beginning, DC checks the
ability of decomposing the PDGj, where if a PDGj
has less than two nodes the decomposition process
will be rejected. Subsequently, if a PDGj has more
than two nodes DC will randomly split the PDGj
into two new sub-graphs. Then it dispatches the
new sub-graphs PDG’j and PDG’h to the objective
function to obtain their PE′j, PE′h, KEj and KE′h

values, respectively. If the total sum of the resultant
values PE′j, PE′h, KEj and KE′h is found to be
smaller than the original total energy, the used
portions of the original PDG gets accepted and a
PDG′j and PDG′h will be added to the solution set,
and the original one will be removed from the
solution set, as illustrated in lines 4 up to11.

Moreover, the molecule will be incremented by

one, i.e. the available number of PDG in the
solution set is increased by one. Briefly, this
reaction takes a PDG and then divides it into two
sub-graphs (PDG’j and PDG’h) with smaller total
energy value.

Function 3. DC() // Decomposition Function
Input: PDGj, PEj, KEj

Output: Solution_set

: If PDG_size >2
2: Randomly split PDG into PDG’j,

PDG’h
3: else

 return Decomposition fail
4: {Min_struct, PE’j, KE’j } = OF(PDG'j)
5: {Min_struct, PE’h, KE’h} = OF(PDG'h)
6: If (PE’j+PE’h + KE’j+ KE’h ≤PEj +

KEj) then // PDG’j and PDG’h

confirmed
{

7: Solution_set = Solution_Set –
{PDGj}

8: Molecule ++
9: Solution_set = Solution_set ∪

{PDG’j, PDG’h}
}

10: else
11: destroy PDG’j, PDG’h
12: end if

As shown in Function 4, the SN function is a

very easy reaction. In particular, it takes two
distinct graphs such as PDGj and PDGh and merges
them in a new graph; such as PDG’j. Thus, SN calls
the objective function for PDG’j to get its
respective PE’j and KE’j. Subsequently, if the
resultant total energy of PE’j and KE′j is smaller
than the total of original energy PEj, PEh, KEj and
KEh, then SN adds PDG’j to solution set and
removes original ones; otherwise, the merger will
not occur. Moreover, the molecule will be
decremented by one, i.e. the number of available
PDG in the solution list is decreased by one.

As shown in Function 5, the objective function

OF is the most important function used in the
algorithm. This function has two phases the
dependency check phase and the cost evaluation
phase. In the dependency check phase, OF receives
the PDG and evaluates all types of dependencies,
including data dependency, name dependency, and
control dependency. Subsequently, it assigns a
value to the dependency status of the PDG such as
PE and computes the KE. The node or the edge
violation of any given dependency concept returns
a null value to suggest that the PDG should be

Journal of Theoretical and Applied Information Technology
15th November 2019. Vol.97. No 21

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

3157

dismissed. In the cost check phase, OF calculates
the cost of the PDG and compare it with the current
best solution (Min-Sch) which has the current
lowest cost. Therefore, if PDG has a lower cost
than the current best solution, then Min-Sch will be
replaced by the current PDG; otherwise Min-Sch
will not be changed.

Function 4. SN() // Synthesis Function
Input: PDGj, PDGh, PEj, PEh, KEj, KEh
Output: PDG’j, PE’j

1: Merge PDGj, PDGh as PDG’j

2: {Min_struct, PE’j, KE’j } =
OF(PDG’j)

3: If PEj+PEh+KEj+KEh<PE’j+KE’j
then

4: destroy PDG’j

5: /*invalid solution PDG’*/
6: else

 {
7: Solution_set = Solution_set - {

PDG1 ,PDG2};
8: Solution_set = Solution_set ∪

{PDG’};
9: Molecule --;

 }

Function 5. OF() // Objective Function
Input: PDG
Output: PE, KE
1: Int rand(b) ϵ [0, 1]

/* Dependency phase*/
2: D=Check_Data_Depedency() +

Check_Name_Dependency()
3: CONT =Check_Control_Dependency()
4: PE = D& CONT
5: KE =(PDG_size/1.5)*b

/* Cost Check phase */
6: Get cost(PDG)
7: If cost(PDG) < cost(Min_Struct) then

 {
8: Min_Struct = PDG
9: MinPE = PE
10: Minhit++

 }

5.2 Time Complexity of SS-CRO Algorithm

In this section, we present the number of steps
for SS-CRO algorithm, which depends mainly on
the number of iterations (see Num_iteration in line
7 of the SS-CRO algorithm), and the random
selection of the four functions. The number of steps
for the SS-CRO approximately is
O(Num_iteration×CROFun), where CROFun is the

number of steps of the selected function. Table 3
entails the number of steps for each function, where
c is a constant number, nd is the number of nodes
and ed is the number of edges. The execution time
complexity for any of the four functions
approximately is O(ed). On the other hand, the
worst case of the execution time complexity of SS-
CRO is when it has a solution in every iteration and
at each iteration it should check-out all kinds of
dependencies that each edge node should be
checked, which leads to O(Num_iteration×ed×nd).

Table 3: Number of steps for SS-CRO and its functions

Function name Number of steps
OC c+ nd+ed+1
IC 2c+ nd+ed+1
DC c+ nd+ed+1
SN c+ nd+ed+1
OF nd+ed
SS-CRO (Num_iteration)×(2c+ed+nd+1)

6. EXPERIMENTAL RESULTS

This section presents the experimental results
of the proposed algorithm. The experiments will be
done using the following three distinct cases of the
PDG of the program segment P, see section 4.2.
 First case: each node in a PDG implements an

instruction from the program segment.
 Second case: in the PDG, each control

statement such as the loop and the if
statements will be clustered into one
unbreakable node, and the rest will be the
same as the first case.

 Third case: each group of dependent
instructions will be clustered together into one
independent unbreakable node.

These three cases will be entered to the three
distinct algorithms SS-CRO algorithm, SS-GA
(static scheduling using genetic algorithm)
algorithm and SS-DA algorithm (static scheduling
using duelist algorithm). Finally, the results will be
shown and compared.

In the first case, program segment P illustrates

the initial state wherein it is the input program
segment that holds both segments in Seg1 and Seg2
and their PDG’s with their associated costs, see
Figure1 and Figure 2. Program segment P will be
entered into the main algorithm SS-CRO in order to
identify distinct valid schedules. In SS-CRO, when
the input PDG is presented as one molecular then it
will be forced to enter either decomposition
function (DC) or on-wall effective collision
function (OC), until it has at least two sub graphs

Journal of Theoretical and Applied Information Technology
15th November 2019. Vol.97. No 21

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

3158

such as PDG′1 and PDG′2 to enter the synthesis
(SN) and the intermolecular functions (IC).

For example, Figure 8 reveals a result of a

valid solution found, where the first case is used.
The result shows the multiple schedule of the
program segment P. The new multiple schedules
have three new schedules P′1, P′2 and P′3 with total
cost as 4, 7 and 10, respectively. Every schedule has
a specific cost. The minimum cost reached for the
multiple schedules is 4 for P′1, while the maximum
cost was 7 for P′3. This can lead us that SS-CRO
can divide a program segment into optimized
independent counter parts.

P′1
Instructions Cost(d)

15: MUL.D F14,F15,F16 0
16: ADD.D F15, #8 1
17: MULD. F14,F15,F16 3

 Total 4
P′2
Instructions Cost(d)

11: DIV.D F9,F10,F11; 0
12: ADD.D F12,F9,F10; 2
13: SUB.D F13,F12,F11; 2
14: MUL.D F13,F12,F11; 3

 Total 7
 P′3
Instructions Cost(d)

1: DIV.D F1,F2,F3; 0
2: ADD.D F2,F4,F1; 2
3: SUB.D F5,F1,F6; 1
4: MUL.D F7,F1,F8; 1
5: LOOP: L.D F0, 0(R1); 0
6: ADD.D F4,F0,F2; 2
7: S.D F4, 0(R1); 2
8: DADDUI R1,#-8; 1
9: BNE R1, 1
10: LOOPEND; 0

 Total 10

(a) P′1, P′2 and P′3 program segments

(b) PDG of P′1 ,P′2 and P′3
Figure 8: A valid solution based on multiple schedule
approach

Furthermore, Figure 9 depicts another valid
solution that illustrates the serialization/reordering
approach, which reordered the original schedule
and gives a new schedule with the same cost as 20,
but in different instructions’ order.

In the second case, the PDG of a program

segment is been improved by clustering the control
statements such as loop statements into one
unbreakable node, which maximizes the chance of
finding new acceptable solutions. In this case, the
PDG of a program P will be recreated as shown in
Figure 10. Notice that the SS-CRO algorithm will
not be allowed to break up the loop statement. In
other words, control dependency will be excluded
from the PDG, which will increase the chance of
finding more accepted solutions.

In the third case, the PDG is been improved
more than the second case, where dependent nodes
have been clustered in one unbreakable independent
component. In Figure 18, nodes 1-4 and the loop
node have been clustered in Comp1, nodes 11-14
have been clustered in Comp2, and nodes 15-17
have been clustered in Comp3.
In this improvement, all kinds of dependencies
have been excluded from the PDG, which increases
the chance of finding more acceptable solutions,
because of the reduction of PDG’s restrictions, i.e.
instructions’ dependencies.

Furthermore, the SS-CRO algorithm is
compared with two distinct optimization
algorithms, which is static scheduling based on
genetic algorithm is denoted as SS-GA, where it is
implemented based on the well-known genetic
algorithm presented by authors of [41]. Moreover,
static scheduling based on duelist algorithm and
denoted as SS-DA, which is implemented based on
the recent known algorithm duelist presented by
authors of [44]. The input of the three algorithms
will be the same, which it is the PDG of a program
segment in its three cases as shown above.

In SS-GA algorithm, the scenario of the

algorithm is inspired from the well-known genetic
algorithm posited in [41], which will be explained
as follows. First, SS-GA takes the PDG and
generates random population of chromosomes (a
chromosome is a binary vector that reflects the
dependencies between the PDG nodes) by
reordering the PDG nodes, let Pop be the size of
population. Second, SS-GA uses a probability of
crossover randomly choses two parents from the
population to be the parents of the new offspring,

Journal of Theoretical and Applied Information Technology
15th November 2019. Vol.97. No 21

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

3159

then it applies the crossover function over them to
get the new offspring. Third, SS-GA calls the
fitness function for each chromosome (the fitness
function here checks all nodes dependencies in the
chromosome relates to their PDG). Forth, SS-GA
uses a probability of mutation to mutate the nodes
of the new offspring. Fifth, SS-GA places the new
offspring in the population, after it is been accepted
(i.e. preserves the nodes dependencies). This
process will be repeated until the algorithm is been
terminated according to the number of iterations.

In SS-DA algorithm, the scenario of the

algorithm is inspired by the duelist algorithm
posited in [44], as follows. First, SS-DA generates a
random population by reordering the PDG nodes
the same way as SS-GA, see the above paragraph.
Second, SS-DA choses two duelist then it computes
the luck variable, which is done using the
dependency between the nodes some random
numbers for each duelist. The luck of each duelist
will be compared and the winner will have the
better luck. Third, SS-DA treats the winner and a
new solution will be added to the solution list, and
then SS-DA returns the looser back to the
population to give it a chance to reenter the
competition. SS-DA will repeat the process
according to its number of iterations

P′1
Instructions Cost(d)

11: DIV.D F9,F10,F11; 0
12: ADD.D F12,F9,F10; 2
13: SUB.D F13,F12,F11; 2
14: MUL.D F13,F12,F11; 3
1: DIV.D F1,F2,F3; 0
2: ADD.D F2,F4,F1; 2
3: SUB.D F5,F1,F6; 1
4: MUL.D F7,F1,F8; 1
5: LOOP: L.D F0, 0(R1); 0
6: ADD.D F4,F0,F2; 2
7: S.D F4, 0(R1); 2
8: DADDUI R1,#-8; 1
9: BNE R1, 1
10: LOOPEND; 0
15: MUL.D F14,F15,F16 0
16: ADD.D F15, #8 1
17: MULD. F14,F15,F16 3

 Total 20
(a) P′1 program segments

(b) PDG of P′1

Figure 9: A valid solution based on reordering approach

Figure 10: PDG in the second case

In the following figures, the experimental
results of the three algorithms will be shown. The
experiments were done using the three cases of the
PDG of the program segment that shown above.
Different numbers of iterations have been used for
each experiment such as; 50; 100; 150; 200; 300;
400; 500; 700; 1000; 2000; 3000 and 5000. The
number of population used in SS-GA and SS-DA
algorithms is 1000. The figures can be categories as
follows; Fig 11-13 illustrate the comparison
according to the number of solutions achieved

Journal of Theoretical and Applied Information Technology
15th November 2019. Vol.97. No 21

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

3160

(notice that solution duplication is allowed), while
Figures 14-16 illustrate the comparison according
to the execution time between the three algorithms,
and Figure 17 illustrates the percentage of accepted
solutions with respect to the execution time.

Meanwhile, Figures 11 and 12 illustrate the

comparison of how many accepted solutions does
each algorithm achieved. Clearly, SS-CRO has the
highest number of solutions in Figures 11 and 12,
because SS-CRO has the ability to give multiple
schedules using MS operation and reordering using
SRO operation, but neither SS-GA nor SS-DA can
give multiple schedules. Thus, SS-CRO has the
chance to achieve a higher number of solutions than
the other algorithms in these the proposed input
case such as; the first case and the second case.

In Figure 13, SS-DA has the highest number of
correct solutions because in every iteration there is
a winner, where all chromosomes in the population
are equally likely and are correct because they
always have no dependency restrictions, but they
may are different in their luck, which is the only
factor that determines the winner, so every iteration
there is a winner. On the other hand, SS-CRO has
the opportunity to lose a solution in some iterations,
when it chooses a PDG with one node (see
Algorithm 1). In general, the decreasing of program
segment dependency in the proposed cases of the
PDG gives the chance for all algorithms to achieve
more correct solutions.

Figure 11: Comparison of three algorithms according to
the number of solutions in first case

Figure 12: Comparison of three algorithms according to
the number of solutions in second case

Meanwhile, figures 14-16 illustrate the time
comparison between the three algorithms. Clearly,
SS-CRO has the lowest execution time because it
has fewer steps than the SS-DA and SS-GA. Both
SS-DA and SS-GA should generate a population of
solution candidates and a chromosome for every
candidate solution in the generated population to
start their work. In particularly, both SS-DA and
SS-GA should have at least two distinct solutions
due to do their job such as; the competition between
the duelists in SS-DA and cross-over between
parents in SS-GA. Put differently, SS-CRO can do
two distinct kinds of reaction even it has only one
candidate solution using OC and DC functions, also
it has the ability to work with more than one
candidate using SN and IC functions. Subsequently,
in our work, SS-CRO does not need to generate
neither a population of candidate solution to start it
job, nor a chromosome for each candidate solution,
it start its operation on the PDG directly using its
four distinct functions however the situation of the
number of candidate solutions.

Furthermore, one of the difficulties that were

confronted with the use of SS-CRO algorithm was
when the input code presented multiple loop
statements. In another experiment, two different
cases were used such as the first one has two loop
statements, while the second portion does not have
any loop statement. Additionally, both of them
constitute the same number of instructions. During
our experimental work, we used a number of
varying iterations, commencing from ten iterations
reaching all the way up to 1500 iterations for both
of the codes portions.

0

100

200

300

400

500

600

50 100 150 200 300 400 500 700 1000 2000 3000 5000

N
o
.
o
f
 s
o
l
u
t
i
o
n
s

No. of iterations

SS‐CRO SS‐DA SS‐GA

Journal of Theoretical and Applied Information Technology
15th November 2019. Vol.97. No 21

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

3161

Figure 13: Comparison of three algorithms according to
the number of solutions in third case

While the requisite time was too close in both

instances, the number of accepted solutions in the
code that is bereft of loops is always higher than the
number of accepted solutions relating to the code
with two loops. Thus, when the code was found to
have more than one loop statement, it caused
difficulties for SS-CRO algorithm. This particularly
occurs with an increase in the number of control
dependencies within the loop statements case. Put
differently, when an instruction from a particular set
of instructions inside of the loop statement is
moved outside, the loop statement will trigger a
control dependency violation. Inexorably, the
resulting solution will be dismissed. Meanwhile
when an instruction that does not pertain to the loop
statement gets inside loop statement and causes a
control violation, the resultant solution will also get
dismissed. Therefore, the findings reveal that the
number of accepted solutions goes up with an
increase in the number of iterations. The scenario
paves the way for more new solutions since there
are more chances to perform more reactions.

Figure 14: Time comparison between three algorithms
using the first case

Finally, in Figure 17 illustrates the comparison

according to the percentage of the average of
number of solutions (from now AvgSol) in each
case with respect to the average of the execution
time (from now AvgExe). This percentage that
denoted as PerSol and calculated by Equation 15,
showed that SS-CRO achieved the maximum
percentage values of all experiments’ for all
proposed input cases.

Figure 15: Time comparison between three algorithms
using the second case

0

5000

10000

15000

20000

25000

30000

50 100 150 200 300 400 500 700 1000 2000 3000 5000

T
i
m
e
/
m
i
l
l
i
s
e
c

Number of iterations

SS‐GA SS‐DA SS‐CRO

Journal of Theoretical and Applied Information Technology
15th November 2019. Vol.97. No 21

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

3162

Figure 16: Time comparison between three algorithms
using the third case

In particular, the PerSol of the SS-CRO

achieved the maximum range as (10%-30%), while
the PerSol of the SS-DA achieved the moderate
range as (0%-21%), and the percentage of PerSol of
the SS-GA has the lowest range as (0%-1%).

PerSol = (AvgSo/AvgExe)% (14)

The limitations of this research was in the

following: the environment used which may be
improved; that is more benchmarks can be used to
evaluate the SS-CRO algorithm.

Figure 17: Comparison between the three algorithms
according to the percentage of the number of solutions

7. CONCLUSIONS

Here in the current day and age, scheduling can
be utilized in several real-life areas, wherein the
main endeavor is time reduction. In this paper, we

proposed a solution in the form of CRO for
instructions static scheduling. In particular, we
leveraged the chemical reaction optimizer in order
to optimize instructions static scheduling.
According to the study’s findings, SS-CRO is
capable of generating several solutions and
determining their validity. These solutions are
based on two scheduling operations; multiple
scheduling (MS) and serialization (SRO) of
instructions. On the other hand, we observed that
when the program entails more than one loop
statement, the number of accepted solutions
decreases. This could possibly be attributed to the
fact that the loop statement is unbreakable and
therefore, should remain as one block, thereby
implying that no new instruction from the program
code should get inside or vice versa.

In the experimental results, we compared SS-
CRO with two metaheuristic algorithms; SS-DA
and SS-GA. Moreover, we proposed in a
preprocessing stage of the PDG three distinct cases,
where each case has fewer dependencies than its
predecessor. The PDG in its three cases have been
applied to the three algorithms. SS-CRO achieved
the lowest time in all experiments, and the highest
percentage of number of solutions with respect to
the execution time, which is ranged as (10%-30%).

REFRENCES:

[1]: Jabri, R. A Generic Parser for Strings

and Trees. Computer Science and
Information Systems, 9(1), 2012, 381-410.

[2]: Jabri, R. A predictive bottom-up parser.
Journal of Computing, 92(2), 2011, 123–
167.

[3]: Andión, M., Manuel, A., Gabriel, & R., Juan,
T. A novel compiler support for automatic
parallelization on Multicore systems. In
Proc. the Parallel Computing, 39, 2013,
442-460.

[4]: Jo, S., Jeong, Y., & Lee, S. GPU-Driven
Scalable Parser for OBJ Models. Journal
of Computer Science and Technology,
33(2), 2018, 417-428.

[5]: Hennessy, J., & Patterson, D. Computer
architecture: a quantitative approach,
2011, Elsevier.

[6]: Chang, P., Chen, W., Mahlke, S., & Hwu, W.
Comparing static and dynamic code
scheduling for multiple-instruction-issue
processors. In Proc. the 24thannual
international symposium on
Microarchitecture, 1991, 25-33, ACM.

Journal of Theoretical and Applied Information Technology
15th November 2019. Vol.97. No 21

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

3163

[7]: Lam, A., & Li, V. Chemical reaction
optimization: a Tutorial. Memetic
Computing, 4(1), 2012, 3-17.

[8]: Shadbolt, N. Nature-inspired computing .IEEE
Intell. Syst., 19(1), 2004, 2–3.

[9]: Kennedy, J., & Eberhart, R. Swarm,
Intelligence 2001, San Francisco: Morgan
Kaufmann, ISBN:1-55860-595-9.

[10]: Chen, X., Ong, Y., Lim, M., & Tan, K. A
Multi-facet Survey on Memetic
Computation. IEEE Trans Evolutionary
Computation, 15(5), 2011, 591–607.

[11]: Ong, Y., Lim, M., & Chen, X. Research
Frontier: Memetic Computation Past,
Present and Future. IEEE Computational
Intelligence Magazine, 5(2), 2010, 24–36.

[12]: Price, K., Storn, R., & Lampinen, J.
DifferentialEvolution: A Practical
Approach to Global Optimization, 2005,
Berlin: Springer.

[13]: Dorigo, M., & Stutzle, T. Ant Colony
Optimization, 2004, Cambridge, MA,
USA: The MIT Press.

[14]: Geem, Z., Kim, J., & Loganathan, G. A New
Heuristic Optimization Algorithm:
Harmony Search. Simulation, 76.2, 2001,
60-68.

[15]: Masadeh, R., Mahafzah, B., & Sharieh, A.
Sea lion optimization algorithm.
International Journal of Advanced
Computer Science and Applications, 10(5),
2019, 388-395.

[16]: Golub, M., & Kasapovic, S. Scheduling
multiprocessor tasks with genetic
algorithms. In Proc. of the Applied
Informatics-Proceedings, 2002, 273-278.

[17]: Potvin, J.-Y. Genetic algorithms for the
traveling salesman problem. Annals of
Operations Research, 63, 1996, 339-370.

[18]: Al-Adwan, A., Sharieh, A. & Mahafzah, B.
Parallel heuristic local search algorithm on
OTIS hyper hexa-cell and OTIS mesh of
trees optoelectronic architectures. Applied
Intelligence, 49(2), 2019, 661-688.

[19]: Al-Adwan, A., Mahafzah, B., & Sharieh A.
Solving traveling salesman problem using
parallel repetitive nearest neighbor
algorithm on OTIS-Hypercube and OTIS-
Mesh optoelectronic architectures. Journal
of Supercomputing, 74(1), 2018, 1-36.

[20]: Mahafzah B. Performance evaluation of
parallel multithreaded A* heuristic search
algorithm. Journal of Information Science,
40(3), 2014, 363-375.

[21]: Mahafzah, B. Parallel multithreaded IDA*
heuristic search: Algorithm design and
performance evaluation. International
Journal of Parallel, Emergent and
Distributed Systems, 26(1), 2011, 61-82.

[22]: Duwairi, R., Mahafzah, B., & Al-Ayyoub A.
A framework for performance assessment
of parallel bi-directional heuristic search.
The International Conference on Artificial
Intelligence (IC-AI'02), Las Vegas, USA,
June/2002, 24-27.

[23]: Masadeh, R., Sharieh, A., & Mahafzah B.
Humpback whale optimization algorithm
based on vocal behavior for task
scheduling in cloud computing.
International Journal of Advanced Science
and Technology, 13(3), 2019, 121-140.

[24]: Alshraideh, M., Jawabreh, E., Mahafzah, B.,
& Al Harahsheh, H. Applying genetic
algorithms to test JUH DBs exceptions.
International Journal of Advanced
Computer Science and Applications, 4(7),
2013, 8-20.

[25]: Alshraideh, M., Mahafzah, B., Eyal Salman,
H., & Salah I. Using genetic algorithm as
test data generator for stored PL/SQL
program units, Journal of Software
Engineering and Applications, 6(2), 2013,
65-73.

[26]: Alshraideh, M. , Mahafzah, B., & Al-Sharaeh.
S, A multiple-population genetic algorithm
for branch coverage test data generation,
Software Quality Journal, 19(3), 2011,
489-513.

[27]: Shaheen, A., Sleit A., Al-Sharaeh, S. A
Solution for Traveling Salesman Problem
Using Grey Wolf Optimizer Algorithm.
Journal of Theoretical and Applied
Information Technology, 96(18), 2018.

[28]: Kurowski, K., Oleksiak, A., Piątek, W., &
Weglarz, J. Hierarchical scheduling
strategies for paralleltasks and advance
reservations in grids. Journal
ofScheduling, 16(4), 2013, 349–368.

[29]: Xu, S., & Bean, J. C. Scheduling parallel-
machine batch operations to maximize on-
time delivery performance. Journal of
Scheduling, 19, 2016, 583–600.

[30]: Padmanabhan, M., Li, H., Tran, T., Zhang, P.,
Down, D., & Beck, J. Multi-stage
resource-aware scheduling for data centers
with heterogeneous servers. Journal of
Scheduling, 2017/07.

Journal of Theoretical and Applied Information Technology
15th November 2019. Vol.97. No 21

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

3164

[31]: Zhao, Y. L., Yang, J. L., Zhao, W. S., Todri-
Sanial, A., & Cheng, Y. Q. Power Supply
Noise Aware Task Scheduling on
Homogeneous 3D MPSoCs Considering
the Thermal Constraint. Journal of
Computer Science and Technology, 33(5),
2018, 966-983.

[32]: Mahafzah, B., & Jaradat, B. The load
balancing problem in OTIS-Hypercube
interconnection networks. Journal of
Supercomputing, 46(3), 2008, 276-297.

[33]: Bechikh, S., Chaabani, A., & Said, L. An
efficient chemical reaction optimization
algorithm for multi-objective optimization.
IEEE transactions on cybernetics, 45(10),
2015, 2051-2064.

[34]: Eldos, T., Kanan, A., Nazih, W., & Khatatbih,
A. Adapting the Chemical Reaction
Optimization Algorithm to the Printed
Circuit Board Drilling Problem. In Proc.
of the International Conference on
Computer, Computational and
Mathematical Sciences, 2015, Zürich-
Switzerland.

[35]: Mahafzah, B., & Jaradat, B. The hybrid
dynamic parallel scheduling algorithm for
load balancing on chained-cubic tree
interconnection networks. Journal of
Supercomputing, 52(3), 2010, 224-252.

[36]: Filho, J.F., Rodriguez, L.G.A. & da Silva,
A.F,Yet. Another Intelligent Code-
Generating System: A Flexible and Low-
Cost Solution. J. Comput. Sci. Technol, 33,
2018, 940–965.

 [37]: Alrezaamiri H., Ebrahimnejad A., &
Motameni H. Software requirement
optimization using a fuzzy artificial
chemical reaction optimization algorithm.
Soft Computing, 2018.

[38]: Dam TL., Li K., & Fournier-Viger P.
Chemical reaction optimization with
unified tabu search for the vehicle
routing problem. Soft Computing, 21,
2017, 6421–6433.

[39]: Islam MR., Saifullah CK., Asha ZT., &
Ahamed R. Chemical reaction
optimization for solving longest common
subsequence problem for multiple string.
Soft Computing, 2018, 1–25.

[40]: Barham, R., Sharieh, A., & Sliet, A. Chemical
reaction optimization for max flow
problem. IJACSA International Journal of
Advanced Computer Science and
Applications, 7(8), 2016.

[41]: Mitchell M. An Introduction to Genetic
Algorithms, 1996, Cambridge, MA: MIT
Press. ISBN 9780585030944.

[42]: Woo, K. Application of Fitness Switching

Genetic Algorithm for Solving 0-1
Knapsack Problem. Journal of Theoretical
and Applied Information Technology,
96(22), 2018, 7339-7348.

[43]: Fauzi, N., Jaya, A., Jarrah, M., Akbar, H.,
Yunos, A., Basari, A., Ahmad, N.,
Daimon, M., Rahman, A., Tahir & L.,
Madhusudhanarao, C. Thin film roughness
optimization in the TiN coatings using
genetic algorithms. Journal of Theoretical
and Applied Information Technology,
95(24), 2017, 6690-6698.

[44]: Biyanto T., Fibrianto H., Nugroho G., Hatta
A., Listijorini E., Budiati T., & Huda H.
Duelist Algorithm: An Algorithm Inspired
by How Duelist Improve Their
Capabilities in a Duel. In preceding of
International Conference in Swarm
Intelligence, Bali, Indonesia, 2016.

[45]: Biyanto, T. Optimization of Energy
Efficiency and Conservation in Green
Building Design Using Duelist, Killer-
Whale and Rain-Water Algorithms, 2017.
https://doi.org/10.31227/osf.io/x4srd.

[46]: Biyanto T., Sehamat N., Sordi N., & Zabiri
H. Optimization of PID controller tuning
parameters for multivariable system using
Duelist algorithm, IOP Conference Series:
Materials Science and Engineering, 458,
2018, 012053.

[47]: Kanemitsu, T., Higo, Y., & Kusumoto, S. A
visualization method of program
dependency graph for identifying extract
method opportunity. In Proceedings of the
4th Workshop on Refactoring Tools, 2011,
8-14, ACM.

Journal of Theoretical and Applied Information Technology
15th November 2019. Vol.97. No 21

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

3165

Component Clustered instrucitons in the component

Figure 18: PDG in the third case

