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ABSTRACT 

Studies pertaining to wireless sensor network deployment (WSND) have escalated in recent years due to 
its exceptional function in planning configurations for sensor networks in order to attain maximum 
coverage and lifetime in a cost-effective manner. Although the approach of meta-heuristic searching 
optimization has been commonly applied, it has failed in addressing several issues related to multiple 
objectives and intricate optimization surface. As such, this work developed a novel multi-objective 
optimization (MOO) called the lagged multi-objective jumping particle swarm optimization (LMOJPSO) 
in order to overcome the drawbacks of WSND. It aims at finding the best locations and configuration of 
sensors in 2D environment in order to prolong the life time of the network with obtaining the best 
coverage and other performance measures. Three types of Pareto front, which were global, iteration 
(including lag), and local, had been incorporated for optimization search. Upon application to WSND, the 
proposed algorithm appears to ascertain network coverage and connectivity. When the outcomes of 
LMOJPSO were compared with the state-of-the-art NSGA-II method, the proposed algorithm seemed to 
display superior outputs for (MOO). 
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1. INTRODUCTION    

 The wireless sensor network (WSN) refers to 
sensors that are connected wirelessly to collect data 
from a source and later transmitted to a 
predetermined sink node using multi-hop 
communication. A sensor node has several 
components; processor, sensor board, battery, and 
radio, to sense, process, and communicate data 
within certain radii. Hence, WSN need to operate 
for a longer time without any defect to maintain its 
efficiency in collecting and disseminating data. As 
such, a number of studies have examined the 
significant functions of WSNs in vast applications 
[1]. Some investigations that had been carried out 
are collecting data for structural health to perform 
rapid structural examination [2], remote monitoring 
using WSN in mine tunnels [3], and determining 
toxic organic substances from the environment [4]. 
Nevertheless, WSNs have several drawbacks, such 
as low energy storage, limited processing 
capabilities, and restricted communication ability. 
Additionally, the inability of replacing or charging 

the battery at constrained areas is another challenge. 
Thus, improvisation is sought to establish effective 
communication mechanisms and balanced 
consumption of energy for prolonged network 
lifetime and conservation of energy [5] [6]. Another 
typical method used to conserve energy in WSNs 
refers to the topology control technique that 
modifies the ranges of communication for the 
sensors [7]. The redundant sensor nodes for random 
deployment sense similar data and waste much 
energy. Thus, ranges of sensing and communication 
are essential parameters for WSN sensor nodes to 
ensure energy conservation [8]. Employing 
maximized communication and sensing ranges does 
not only provide redundant data, but also shortens 
the lifetime of nodes and network. Therefore, 
effective optimization of WSNs is highly sought. 
For instance, the sensor nodes in heterogeneous 
WSNs offer varied communication and sensing 
ranges that could be adjusted for optimum outputs 
[9]. Although reduction of these ranges can 
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effectively save energy, the efficiency of 
connectivity and coverage may be jeopardized. This 
makes energy conservation, amount of sensor 
nodes, and connectivity the primary issues in 
WSNs. Thus, an approach of multi-objective 
optimization (MOO) is required to overcome issues 
related to multiple contradicting objectives in 
optimization search. With that, this paper proposes 
a MOO approach based on jumping particle swarm 
optimization (JPSO) to not only address the 
abovementioned issues, but also to ensure 
maximum connectivity, coverage, and topology 
control. Additionally, the proposed approach 
embeds mobility rule based three factors; (1) best 
local, (2) best iteration, and (3) best global 
solutions. The proposed method can also adapt to 
the rates of crossover and mutation in a dynamic 
manner without demanding control from external in 
order to enhance the aspects of diversity and 
convergence in the optimization algorithm. The 
remaining sections that make up this paper are 
described in the following: Section 2 depicts related 
past studies, and section 3 background, while 
Section 4 presents the problem to be addressed and 
related formulation. Next, Section 5 details the 
methodology and the evaluation steps, whereas 
Section 6 reveals the experimental outcomes. 
Lastly, this study ends with Section 7 that provides 
the study conclusion and several recommendations 
for future investigations.  

2. RELATED STUDIES 

The issues of coverage control and quality that 
can affect the lifetime of WSNs have led to 
substantial development in this field. [10] 
developed an algorithm known as complex alliance 
strategy with multi-objective optimization of 
coverage (CASMOC) that enhanced coverage of 
node. The algorithm depicted a proportional 
correlation for conversion of energy amongst the 
working nodes and their neighbors, which was later 
applied to schedule low-energy mobile nodes. With 
that, the calculation steps were also offered to 
estimate the minimum sensor nodes required to 
reduce energy use and to cover all monitoring 
areas. Nevertheless, the study omitted coverage for 
multi-targets with nodes of nonlinear rule, as well 
as high use of energy to verify identities, complete 
data encryption and end all tasks in a reliable 
manner within a disoriented setting. [11] also 
disregarded coverage for sensing area with the 
required connectivity when applying meta-heuristic 
methods, wherein location of relay nodes was 
explained from the stance of three contradicting 
aims: network reliability, average energy & cost, 

and average sensitive area. Meanwhile, [12] 
maximized network lifetime by including several 
redundant nodes and taking into account  both 
connectivity and coverage excluding transmission 
and sensing ranges restriction. As such, an 
algorithm was proposed to maximize the sensor 
nodes disjoint sets for maintaining both 
connectivity and coverage (MDS-MCC) with the 
issue of incomplete NP. [13] developed a greedy 
algorithm (GA) for placement of lay nodes. This 
algorithm placed the minimum amount of relay 
nodes at certain target spots to connect all sensor 
nodes (targets) with the relay nodes. Nonetheless, 
the study only looked into the aspect of 
connectivity between relay and sensor nodes, while 
ignoring the connectivity between the relay nodes 
that were placed. The primary issue in WSNs is 
deployment of sensor with optimum locations 
subset for a cost-effective network. In fulfilling the 
demands of connectivity and coverage,[14] 
maximized coverage and sought optimum locations 
for placement of sensors, instead of choosing 
coverage sensor nodes from a sensor network with 
random deployment. Connectivity was omitted in 
this study. Next, [15] applied direction-adjustable 
directional sensors and Voronoi diagram features to 
develop a GA that enhanced directional sensor 
network coverage effectively without global 
information, while disregarding network lifetime. 
[16] developed a scheme for localization called 
Opportunistic Localization by Topology Control 
(OLTC) for sparse underwater sensor networks 
(UWSNs). Non-localized sensor nodes in UWSNs 
determine their locations using reference nodes 
with spatiotemporal relation. Hence, the study 
developed a model based on game theory 
specifically for control of topology, along with 
restricted communication range and adjustable 
sensing. Meanwhile, [17] examined the issue of 
sensor nodes placement in WSN by maximizing 
coverage and minimizing energy consumption via 
MOO of TPSMA (MOTPSMA), whereas only 
TPSMA for maximum coverage. However, this 
study ignored other parameters that might affect 
sensor nodes placement. [18] applied multi-
objective evolutionary algorithm based on 
decomposition (MOEA/D) to relocate mobile nodes 
in WSN to minimize energy usage and to maximize 
coverage for sensing area, while disregarding 
network connectivity. It appears that no study has 
simultaneously investigated the aspects of 
coverage, connectivity, lifetime, and cost or 
explored for viable solutions. Thus, this study 
proposes a MOO-based approach to concurrently 
optimize network lifetime and connectivity, area 
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coverage, cost, nodes adjustment, transmission 
range, and conservation of energy within a WSN. 
From the previous study we can observe many 
researchers ignore important factor in optimization 
some of them optimum balancing between the 
number of sensors and the coverage was not taken 
into consideration. Other problems to be 
investigated such as optimizing the algorithm to be 
scalable to larger areas, k-coverage sensor 
networks, sensor network with various sensing 
range. Another author Presented a Multi-Objective 
Genetic Algorithm to optimize the layout of WSN. 
Number of sensors has not been considered in the 
presented approach as a design variable, as well as 
account for the uncertainty in the position of the 
sensors due to the mode of deployment. The 
proposed our optimization attempts to overcome 
the limitations above, this study also incorporated 
three types of Pareto front to enable interaction 
with the solutions derived from prior iterations 
based on pre-defined lag for elitist elucidations. 

3. BACKGROUND 

Particle Swarm Optimization (PSO) algorithm 
refers to a modern computing method that takes 
after the social traits of birds flock [19]. In PSO, 
swarm denotes the solutions to optimization issue, 
wherein every possible solution is termed as a 
particle. The primary goal of PSO is to determine 
the best location of particles for a determined 
function. At the start of PSO, every particle is 
equipped with random parameters and ‘flown’ into 
the search space with many dimensions. The 
particle applies information regarding its best prior 
locations (individual and global) during every 
generation to obtain enhanced solution space, and 
thus, improvised fitness of function. The prior 
fitness is replaced with the better individual fitness 
and updates the potential solution. Originally, the 
PSO derived from Discrete Particle Swarm 
Optimization (DPSO), which was initiated by [20] 
to solve continuous optimization issues. In fact, 
numerous variations of DPSO have been developed 
to address multi-combinatorial issues. For instance, 
[21] initiated an algorithm based on DPSO called 
Jumping Particle Swarm Optimization (JPSO) to 
overcome issues related to combinatorial 
optimization. With absence of velocity, JPSO 
denotes varied jumps/moves for each particle from 
a position to another within hyperspace that is 
discrete [22]. [23] employed JPSO to address issues 
related to Steiner tree within continuous dimension, 
which can reduce redundant data in WSN, hence 
conserve energy. Next, [24] used JPSO to 
overcome a common NP-hard issue for 

communication network, which is multicast routing 
ssue. Thus, this present study proposes a novel 
algorithm from these stances: (1) incorporation of 
three Pareto fronts into LMOJPSO to explore 
continuous space, (2) the first MOO-based 
algorithm that embeds lag for iteration Pareto, (3) 
its functionality is effectively adapted to WSND. 

4. PROBLEM FORULATION 

The following is assumed: flat rectangular 
region A as the region of interest (ROI), sensors 
that are heterogeneous with initial energy, a static H 
sink with indefinite energy, sink located at the 
center of ROI without loss, and wireless sensor 
nodes that have the ability to sense all points with 

range, as well as the ability to communicate 
with other sensor nodes within range . These 
sensor nodes monitor ROI and transmit sensed data 
to the sink in a direct manner or by using multi-hop 
communication. The primary aim of this study is to 
determine the best sensor deployment and 
configuration within the environment. Deployment 
of the sensors is represented by Cartesian 
coordinates , where 𝑁 is the 
sensors quantity. Meanwhile, configuration of the 
sensors is represented by dual variables 

, where  refer to 
communication and sensing radii, respectively. As 
such, a set of Pareto front solutions (non-dominated 
solutions) is the best sensors configuration and 
deployment, in line with the objective functions 
presented in Equations 1 until 3. 
                                               (1) 

Where  
The intersection is minimized between the 

sensed areas, for example, is reduced as much as 
possible to conserve energy. 

          (2) 
Minimized intersection region refers to reduction in 

 while increment in nodes, and vice versa. 

                     (3)  

        

Where  stands for distance between sink and 
node, whereas  reflects standard deviation. The 

 ratio was minimized due to the heavy data 
load in nodes located closer to the sink than those 
further. SD was reduced to aid in decreasing the 
components of the sensors. A valid solution is 
obtained upon meeting two essential criteria: 
connectivity (every node must possess at least a 
path towards the sink), and coverage (assurance 
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that the nodes assigned cover the entire 
environment). 

5. METHODOLOGY  

Development of the proposed MOO framework 
to optimize the pre-defined issue of multiple 
objectives is presented in this section. Besides, the 
framework adopts the PSO-based algorithm, which 
is a meta-heuristic algorithm that seeks iteratively 
for the best Pareto front.  

5.1 MOJPSO  

In this section, we present lagging multi-
objective jumping particle swarm optimization. 
This algorithm is a multi-objective variant of PSO, 
which means that the output is not an optimum 
solution, rather, it is a set of non-dominated 
solutions are called as Pareto. The algorithm is 
similar to classical PSO in the aspect of moving 
solutions within the searching space toward the best 
solution. However, when we talk about multi-
objective optimization, there will be no single 
optimal solution, instead a Pareto where all other 
solutions will move toward the pareto. In 
LMOJPOS, there are three Pareto: global, local, 
and iteration. The global Pareto is calculated from 
the whole set of solutions for all iterations (or for 
the iteration within a previous lag). The local Pareto 
is calculated from the history of the solution itself, 
and the iteration Pareto is calculated from the 
current iteration. The combination of the three 
Pareto is where the solutions are attracted.  

The pseudocode of LMOJPSO is given in table 
(1), As it is shown the solution moves to one of the 
three Pareto according to the values given to the 
constant , .  Also, as the Pareto is not one 
solution, a random selection is done to select one 
solution from each Pareto in order to have the 
subject solution moving toward. After the solution 
is updated, its local Pareto is updated. Then we wait 
until finishing the entire solutions in the iteration in 
order to update the global Pareto and the iteration 
Pareto. The combination between two solution, 
which when logic of moving one subject solution 
toward the target solution is given in table-2-.  As it 
is seen, the solution moves toward the target with a 
random velocity. The total behavior is that ,  
are control parameters for how many solutions and 
how much speed every solution will move toward 
each of the local, global, and iteration Pareto. 

 

 

Table 1: The pseudo code of LMOJPSO 

Input: 
numberParticlesInTheSwarm,  
maximumNumberOfIterations, 
c1, c2 
Output 
Pareto  
Start 

1- Initialization() 
2- Evaluation() 
3-  globalParetoFront=[] 
4- localParetoFront=[] 
5- iterationParetoFront=[] 
6- ParticlesInTheSwarm 
7- loop =true 
8- iter =1 , sol =1 ,lag 
9- while loop 
10-  r= random 
11-  if 0<r<c1 
12-   Target=uniformRandomSelect 

(globalParetoFront,lag) 
13-  else 
14-   if c1<r<c2 
15-   

 Target=uniformRandomSelect 
(localParetoFront) 

16-   else 
17-    Target= 

uniformRandomSelect (iterationParetoFront) 
18-   end if 
19-  end if 
20-  NewSolution=Combine(particlesInTheS

warm(sol),Target) 
21-  Evaluate(NewSolution) 
22-  Update(localParetoFront) 
23-  sol = sol + 1 
24-  if sol > numberParticlesInTheSwarm 
25-              Update(globalParetoFront) 
26-              Update(iterationParetoFront) 
27-   iter= iter + 1 
28-   if iter > 

maximumNumberOfIterations 
29-    return 

globalParetoFront 
30-   else 
31-    sol = 1 
32-   end if 
33-  end if 
34- end while 
35- end 
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Table 2: The solution interaction or combination in 
general 

Input  
Solution  
Target 
LowerLimit 
UpperLimit  
Output  
NewSolution  
Start 
1. For index=1 until Solution.Dimension  
2. NewSolution(index)=Solution(index) 

+Const*rand()*(UpperLimit(index)-     
LowerLimit(index))+ LowerLimit(index)  

3. MutationChance=Rand; 
4. If(MutationChance>MutationRate)  
5. NewSolution(index)=Solution(index) 

+Const*rand()*(UpperLimit(index)-    
LowerLimit(index))+ LowerLimit(index)  

6. Endfor  
7. End 

8. End 

5.2 LMOJPSO for WSND  

The first step in the algorithm is to initialize the 
parameters of the algorithm where the parameters 
are the following 
- Number of solutions in the generation   
- Lower bounds and higher bounds of 

 
  

,
  

- Selection parameters  
- Time lag ƮGenerate Initial solutions 

Each new solution go through serial process, 
Firstly, we generate a random number of sensors 
then Generate random coordinates  for the 
sensors in the region of interest. Using Voronoi 
method  values will be generated for the 
sensors. i.e., Voronoi method guarantees the 
coverage of the whole environment. If one of the 
sensor  is bigger than  the solution will be 
refused and the initialization process will start 
again. After that If the solution satisfies the 
coverage constraint, a graph represents the sensors 
network will be built where two sensors are 
considered connected (neighbors) if the distance 
between them is less than . If the graph is 
connected,  values are generated, otherwise the 
solution is refused. The process of computing  
values starts from the sink node where its neighbors 
are determined. Each neighbor is assigned value 
equal to the distance between the sensor and the 

sink node. The process performed on the sink node 
is performed on each neighbor until all of the 
sensors are assigned  value. 
 

Initialization

sol = 1

Generate random 
number of sensors

Generate random 
location for each 

sensor

Use Voronoi 
diagram

The current 
deployment 

gives full 
coverage

Select sensing 
radius rs for each 
sensor based on 
Voronoi diagram

Create Graph

Is the graph 
connected?

Select connecting 
radius rc based on 

the graph

sol = sol + 1

Store the resulted 
solution

If sol>n

End

No

No

No

Yes

Yes

Yes

 
Figure 1: Flow chart for the Initialization procedure 

The process of combining between two 
solutions constitutes from various stages, for each 
sensor in the current solution, we shift each sensor 
to the nearest sensor in the target solution. Then the 
process of selection sensors for the new solution 
takes place when we make a set contains the 
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sensors of the two solutions then find the sensor 
which achieves the maximum coverage and gets 
access to the sink node and add this sensor to the 
new solution. While the environment is not 
covered, keep adding the sensor, which achieves 
the best coverage and gets access to the sink or a 
previously added sensor. This process of 
combination tries to minimize the number of 
sensors with guaranteeing full coverage and 
network connectivity. The pseudocode is given in 
Figure2. 
  

Combine

s = 1

Input:
SOLUTION, TARGET
maxS = number of 

sensor in SOLUTION

Find the nearest 
sensor from TARGET 

to sensor(s) in 
SOLUTION

Update the position of sensor(s):
x_new(s) = x_old(s)+rand(x_target - x_old(s))
y_new(s) = y_old(s)+rand(y_target - y_old(s))

If s>maxS
No

Yes

Merge:
array X contains the x position of the sensors in TARGET and the Updated SOLUTION
array Y contains the y position of the sensors in TARGET and the Updated SOLUTION

array RS contains the sensing radius rs of the sensors in TARGET and SOLUTION
array RC contains the connecting radius rc of the sensors in TARGET and SOLUTION

Starting from 
the Sink 

node

Find the set of 
sensors that 

guarantees the 
connectivity based 

on X,Y,RC

Find the sensor 
which guarantees 
the best coverage 

based on RS 

The environment is 
fully converged? 

No

Update the set of 
sensors according to 

the chosen sensor

Yes

Return the solution

End

 

Figure 2:Flow char for the combine procedure 

5.3 Evaluation Measures  

Some evaluation steps were required to address 
issues related to MOO. First, the set coverage 
metric (C-metric) was employed by taking two 
optimal sets as the input, while the C-metric as the 
output, as depicted in the following:  
 

             (4) 

C is equivalent to the non-dominated solutions ratio 
in , which is subjugated by solutions that are 
non-dominated in , to the total solutions in . 
Upon examining PS set, maximizing the  
value is essential with as the other Pareto set. In 
the second measure, the hyper-volume metric (HV-
metric/S-metric) that is commonly employed in 
MOO to examine search algorithm performance, is 
incorporated. This calculates the dominated portion 
volume of the objective space in relation to point of 
reference. Higher values signify viable solutions.  
The HV-metric examines the diversity of the gained 
solutions and the convergence to the real Pareto 
front. This is illustrated in the equation that follows:  
The HV-metric:  
 

                     (5) 

  Where      

The final measure refers to the quantity of 
solutions that are non-dominated to reflect the 
efficacy of the optimization algorithm in generating 
viable solutions. This is calculated by determining 
Ps size, as given below: 
 

                                      (6) 

Higher NDS values signify sufficient number of 
solutions. Table 3 presents the generated evaluation 
measures. 
 
Table 3: Description of evaluation measures 
 
Measure 
 

Class 

Set-Coverage  Capacity 

NDS Capacity 

Hypervolume Convergence and 
Diversity 
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6. WSN EVALUATION   

The performance of the proposed algorithm 
was compared with NSGA II, which is also an 
optimization algorithm within the similar arena. 
Two experimental works were carried out for 
varied dimensions. As such, 10 experiments were 
carried out for every scenario.  
 
Table 4: Description of scenario 

Scenario Environment 
dimension 

nmax 

1  1200  200 
2  1000  100 
 
Scenario 10 represents the proposed algorithm 
parameters, while Table 5 displays the benchmark 
algorithm parameters. 
 
Table 5: Benchmark algorithm parameters 

Number of solutions   200 
Number of generation s  100 
Crossover probability   0.85 
Mutation probability   0.01 
 
For further comparison, the two approaches were 
tested for WSND in two environments, the first one 
has a dimension of 1200 1200  and the second 

one has a dimension of 1000 1000 . In each 
scenario, ten experiments were performed. The 
measures that were generated, hyper-volume, 
hyper-volume average, NDS, NDS average, 
average of set coverage.  
 
For the first scenario:  
The first one in figure-3- the hyper volume for the 
two approaches LMOJPSO and NSGA-II for the 
environment with dimension of 1200 1200  is 
shown. Apparently, the hyper-volume of our 
developed approach LMOJPSO is superior over the 
benchmark for all experiment. For summarizing the 
results, the hyper-volume average for each of the 
two developed approaches is obtained, as it is 
observed in figure-3-: the average hypervolume of 
LMOJPSO for the ten experiments is higher than 
the hyper-volume average of NSGA-II. 
 

Hyper Volume: LMOJPSO VS NSGA II

1 2 3 4 5 6 7 8 9 10

Experiment Number

0

0.5

1

1.5

2

2.5

3

3.5

H
yp

er
vo

lu
m

e

LMOJPSO
NSGA II

 
 

 

 

Figure 3: Show hypervolume for the benchmark and the 

developed algorithm 1200 1200  
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Another aspect of the performance is NDS which is 
also generated for each of the ten experiments for 
the first environment type figure-4- and the average 
of all NDS of ten experiments in figure-4-.  Results 
show an obvious superiority of LMOJPSO over 
NSGA-II for the individual experiments and for the 
overall experiments. 
 

NDS: LMOJPSO Vs NSGA II 

1 2 3 4 5 6 7 8 9 10

Experiment Number

0

20

40

60

80

100

120

140

N
D

S

LMOJPSO
NSGA II

 

 

Figure 4: Show NDS values for the benchmark   and the 

developed algorithm 1200 1200  

 
The final measure to generate is the average set 
coverage for the ten experiments, as it is shown in 
figure-5-, only 5% of the solutions in LMOJPSO 
were dominated by NSGA-II. 
 

 
Figure 5: Show set coverage values For the benchmark 

and the developed algorithm 

             For the second scenario: 
The same sequence of experiments was repeated for 
second scenario an environment with different size 
1000 1000  similar results were obtained: a 
superiority of LMOJPSO in most experiments and 
in the overall results for hyper-volume in figures-6-
.  
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Figure 6: Show Hypervolume for the benchmark and the 

developed algorithm 1000 1000  

 
 Furthermore, NDS for all ten experiments have 
shown a superiority of LMOJPSO over NSGA-II in 
figure-7- and the average of NDS is shown in figure 
with obvious superiority of LMOJPSO over 
NSGA-II 
 
 

NDS: LMOJPSO Vs NSGA II 

1 2 3 4 5 6 7 8 9 10

Experiment Number

0

20
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80

100

120

N
D

S

LMOJPSO
NSGA II

 

 

 

 

Figure 7: Show NDS values for the benchmark and 
the developed algorithm 1000 1000  

 
In addition, the set coverage for the two approaches 
is calculated as an average of the ten experiments 
and presented in figure-8- to show that only close to 
5% of the solutions of LMOJPSO are dominated by 
NSGA-II.   
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Figure 8: Show set coverage values for the benchmark 

and the developed algorithm 1000 1000  

7. CONCLUSION AND FUTURE WORK  

This study proposes a newly-developed MOO 
framework that incorporated connectivity, 
coverage, and topology control in WSNs by 
embedding three Pareto fronts, primarily to explore 
the generation of viable solutions and to conserve 
energy. Additionally, the proposed algorithm 
ascertains network coverage and connectivity. The 
outcomes of this study signify that LMOJPSO 
appears to be superior in terms of some measures, 
apart from being competitive with other algorithms, 
such as NSGA II. The research conducted in this 
area is to perform wireless sensor deployment in 
2D environment with fixed number of sensors. As 
such, future studies may look into the use of other 
accurate frameworks with multiple objectives, 
which may substantially affect the sensor nodes in 
terms of lifespan and placement. Besides, the 
interaction between the solutions could be further 
enhanced to generate wider exploration within the 
search space. 
 
 
REFERENCES 
 
[1] A. Mainwaring, D. Culler, J. Polastre, R. 

Szewczyk, and J. Anderson, “Wireless 
sensor networks for habitat monitoring,” 
Proc. 1st ACM Int. Work. Wirel. Sens. 
networks Appl.  - WSNA ’02, p. 88, 2002. 

[2] D. Mascarenas, E. Flynn, C. Farrar, G. 
Park, and M. Todd, “A mobile host 
approach for wireless powering and 
interrogation of structural health monitoring 
sensor networks,” IEEE Sens. J., vol. 9, no. 
12, pp. 1719–1726, 2009. 

[3] H. Jiang, J. Wu, L. Chen, S. Chen, and H. 
Leung, “A Reliable and High-Bandwidth 
Multihop Wireless Sensor Network for 
Mine Tunnel Monitoring,” IEEE Sens. J., 
vol. 9, no. 11, pp. 1511–1517, 2009. 

[4] F. Tsow et al., “A Wearable and Wireless 
Sensor System for Real-Time Monitoring 
of Toxic Environmental Volatile Organic 
Compounds,” IEEE Sens. J., vol. 9, no. 12, 
pp. 1734–1740, 2009. 

[5] W. Dargie, X. Chao, and M. K. Denko, 
“Modelling the energy cost of a fully 
operational wireless sensor network,” 
Telecommun. Syst., vol. 44, no. 1–2, pp. 3–
15, 2010. 

[6] J. C. Lim and C. J. Bleakley, “Trading 
sensing coverage for an extended network 
lifetime,” Telecommun. Syst., vol. 52, no. 4, 
pp. 2667–2675, 2013. 

[7] M. Younis, I. F. Senturk, K. Akkaya, S. 
Lee, and F. Senel, “Topology management 
techniques for tolerating node failures in 
wireless sensor networks: A survey,” 
Comput. Networks, vol. 58, no. 1, pp. 254–
283, 2014. 

[8] W. K. Lai, C. S. Fan, and C. S. Shieh, 
“Efficient cluster radius and transmission 
ranges in corona-based wireless sensor 
networks,” KSII Trans. Internet Inf. Syst., 
vol. 8, no. 4, pp. 1237–1255, 2014. 

[9] X. Chen et al., “ProHet: A probabilistic 
routing protocol with assured delivery rate 
in wireless heterogeneous sensor 
networks,” IEEE Trans. Wirel. Commun., 
vol. 12, no. 4, pp. 1524–1531, 2013. 

[10] Z. Sun, Y. Zhang, Y. Nie, W. Wei, J. 
Lloret, and H. Song, “CASMOC: a novel 
complex alliance strategy with multi-
objective optimization of coverage in 
wireless sensor networks,” Wirel. 
Networks, vol. 23, no. 4, pp. 1201–1222, 
2017. 

[11] J. M. Lanza-Gutierrez and J. A. Gomez-
Pulido, “Assuming multiobjective 
metaheuristics to solve a three-objective 
optimisation problem for Relay Node 
deployment in Wireless Sensor Networks,” 
Appl. Soft Comput. J., vol. 30, pp. 675–687, 
2015. 



Journal of Theoretical and Applied Information Technology 
31st January 2019. Vol.97. No 2 

 © 2005 – ongoing  JATIT & LLS    

 

ISSN: 1992-8645                                                         www.jatit.org                                                        E-ISSN: 1817-3195  

 
433 

 

[12] C. P. Chen, S. C. Mukhopadhyay, C. L. 
Chuang, M. Y. Liu, and J. A. Jiang, 
“Efficient coverage and connectivity 
preservation with load balance for wireless 
sensor networks,” IEEE Sens. J., vol. 15, 
no. 1, pp. 48–62, 2015. 

[13] S. K. Gupta, P. Kuila, and P. K. Jana, 
“Genetic algorithm approach for k-
coverage and m-connected node placement 
in target based wireless sensor networks,” 
Comput. Electr. Eng., vol. 56, pp. 544–556, 
2016. 

[14] J. N. Al-Karaki and A. Gawanmeh, “The 
Optimal Deployment, Coverage, and 
Connectivity Problems in Wireless Sensor 
Networks: Revisited,” IEEE Access, vol. 5, 
pp. 18051–18065, 2017. 

[15] T. W. Sung and C. S. Yang, “Voronoi-
based coverage improvement approach for 
wireless directional sensor networks,” J. 
Netw. Comput. Appl., vol. 39, no. 1, pp. 
202–213, 2014. 

[16] S. Misra, T. Ojha, and A. Mondal, “Game-
Theoretic Topology Control for 
Opportunistic Localization in Sparse 
Underwater Sensor Networks,” IEEE 
Trans. Mob. Comput., vol. 14, no. 5, pp. 
990–1003, 2015. 

[17] H. Z. Abidin and S. Alam, “Multi-objective 
Optimization ( MOO ) approach for sensor 
node placement in WSN Multi-objective 
Optimization ( MOO ) Approach for Sensor 
Node Placement in WSN,” no. December 
2013, 2015. 

[18] Qingfu Zhang and Hui Li, “MOEA/D: A 
Multiobjective Evolutionary Algorithm 
Based on Decomposition,” IEEE Trans. 
Evol. Comput., vol. 11, no. 6, pp. 712–731, 
2007. 

[19] J. Kennedy and R. Eberhart, “Particle 
swarm optimization,” Neural Networks, 
1995. Proceedings., IEEE Int. Conf., vol. 4, 
pp. 1942–1948 vol.4, 1995. 

[20] J. Kennedy and R. C. Eberhart, “Dc 
20212,” Eng. Technol., pp. 4–8, 1997. 

[21] M. Sevkli, R. Mamedsaidov, and F. Camci, 
“A novel discrete particle swarm 
optimization for p-median problem,” J. 
King Saud Univ. - Eng. Sci., vol. 26, no. 1, 
pp. 11–19, 2014. 

[22] S. Consoli, J. A. Moreno-Pérez, K. Darby-
Dowman, and N. Mladenović, “Discrete 
particle swarm optimization for the 
minimum labelling steiner tree problem,” 
Nat. Comput., vol. 9, no. 1, pp. 29–46, 

2010. 
[23] Y. Lu, J. Chen, I. Comsa, P. Kuonen, and 

B. Hirsbrunner, “Construction of data 
aggregation tree for multi-objectives in 
wireless sensor networks through jump 
particle swarm optimization,” Procedia 
Comput. Sci., vol. 35, no. C, pp. 73–82, 
2014. 

[24] Y. Marinakis and A. Migdalas, “A particle 
swarm optimization algorithm for the 
multicast routing problem,” Springer Proc. 
Math. Stat., vol. 104, no. October, 2014. 

  
 
 
 
 
 
 
 


