
Journal of Theoretical and Applied Information Technology 
31st January 2019. Vol.97. No 2 

 © 2005 – ongoing  JATIT & LLS    

 

ISSN: 1992-8645                                                         www.jatit.org                                                        E-ISSN: 1817-3195  

 
409 

 

CALIBRATING THE NELSON-SIEGEL MODEL CLASSES 
AND THEIR ESTIMATION USING HYBRID-GENETIC 

ALGORITHM APPROACH: CASE STUDY OF INDONESIAN 
GOVERNMENT BONDS  

1MUSLIM, 2DEDI ROSADI, 3GUNARDI, 4ABDURAKHMAN 
1Math Education, Jambi University, Jambi, Indonesia 

2,3,4Mathematics, Gadjah Mada University,  Yogyakarta, Indonesia 

E-mail:  1aliem_h@yahoo.co.id, dedirosadi@gadjahmada.edu   

   
 

ABSTRACT 
 

In this paper, we consider the problem of modelling the yield curve using Nelson-Siegel model classes. 
Nelson-Siegel model classes discussed here are NS model, BL model, NSS model, RF model, and our 
proposed NSSE models. NSSE model is a model which extends the standard NS model as  Nelson-Siegel 
model class by adding some linear and non-linear parameters in which form the fourth hump of the model 
class. The purpose of adding the hump is to accommodate the possibility of having the following cases: the 
first, the condition when the short term and the medium term yields are higher than the long term yield. The 
second, the condition when the upper-value short term yields are higher than both the short term yields on 
average and the long term yields. The third, the case when the upper-value medium term yields are higher 
than both the medium term yields on average and the long term yields. These considered cases make the 
yield curve more likely to have minimum locals and therefore, the Nelson-Siegel model classes become 
more difficult to be estimated. To overcome this problem, in this paper we estimate the model using the 
hybrid-genetic algorithm approach and compare it with the standard estimation based on NLS method. We 
provide an empirical study using Indonesian Government-Bond Yield Curve (IGYC) data, and found that 
the best model for IGYC is 6-factors model. 

Keywords: Yield Curve, Nelson-Siegel Model, Hybrid Method, Genetic Algorithm, Nonlinear Least 
Square, and Constrained Optimization 

 
1. INTRODUCTION  
 

 Yield curve describes how much yields are 
obtained against time to maturity. It can be 
determined using various approaches, i.e., 
parametric and nonparametric methods (Stander 
[22]). In this paper, we consider a parametric model 
class called as Nelson-Siegel model. Nelson-Siegel 
(NS) model is NS model introduced by Charles R. 
Nelson and Andrew F. Siegel (Nelson-Siegel, [3]). 
The three factors are flat, hump, and S shaped 
curves. The NS model is extended in Svenson [15] 
by adding the second hump and it is known as 
Nelson-Siegel-Svensson or four factors model. 
Further extensions are available. In Diebold et.al. 
[8], it has been shown the connection between the 
dynamic factors and latent factor in NS model and 
resulting no-arbitrage model. Diebold et.al. [7] have 
studied NS model by comparing the yields in every 
country against the factors that influence the yields. 

After that, Pooter [17] discuss the extension of no-
arbitrage NS model for the purpose of forecasting 
the interest rate. Christensen et.al. [13] have studied 
and compared dynamic NS model, no-arbitrage NS 
model, and the extended NS model. Rezende and 
Ferreira [21] proposed RF model by adding the 
second and the third hump into the model. In this 
paper, we propose the extension of Nelson-Siegel 
model class by adding the fourth hump into the RF, 
hence this model becomes NSSE model. The 
purpose of adding the hump is to accommodate the 
possibility of having the following cases in 
practical application: the first, the condition when 
the short term and the medium term yields are 
higher than the long term yield. The second, the 
condition when the upper-value short term yields 
are higher than both the short term yields on 
average and the long term yields. The third, the 
case when the upper-value medium term yields are 
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higher than both the medium term yields on 
average and the long term yields.   

In the above we mention various extensions of 
the standard NS model, that is NSS, 5-factors, and 
NSSE  model. These extensions are more difficult 
to estimate due to the existence of multiple local 
minimum (maximum) values. To estimate the 
parameters, various approaches are available in the 
literature. Bolder and Streliski [4] considered full 
model estimation algorithm based on Sequential 
Quadratic Programming (SQP) approach and partial 
estimation by separating the linear and non linear 
parameters. Annaert et.al. [12] estimated the model 
classes by considering the multicollinearity 
problem and grid search method based OLS. 
Diebold et.al. [8] estimated the model class using 
Linear Least Square (LLS) with Kalman filter 
approach, while Landschoot [2], Diebold et.al. [10] 
consider the maximum likelihood method. Krippner 
[16], Maria, et.al. [1], Gilli et.al [18], Rezende and 
Ferreira [21],   proposed the estimate of the model 
classes by Least Square methods. An example of 
implementation of estimation using R is provided, 
for instance, in Rosadi [5]. 

 
In the classic estimation methods mentioned 

above, it is necessary to specify the initial values of 
every parameters, in which their optimal starting 
points are in general different for each different 
data. In this paper we consider more flexible 
method based on genetic algorithm approach, 
which combines Nonlinear Least Square (NLS) 
estimation and constrained optimization and it is 
not required to specify the starting values of the 
parameters. More detail discussions about NLS, 
constrained optimization genetic algorithm can be 
found in for instance Björck [23], Sun and Yuan 
[25], Gimeno and the Nave [20], or Mitchell [19]. 

The rest of this paper is organized as follows. In 
the next section we describe NS model class and 
introduce our proposed 6-factors model.  In section 
3, we outline the estimation method which is the 
hybrid-genetic algorithm approach, where in section 
4, we provide empirical studies using Indonesia 
Government Bond Data. In this part we also 
compare the performance of our estimation 
approach with the estimate based on the standard 
NLS method. Section 5 concludes. 

2. NELSON-SIEGEL MODEL CLASS 

Before we discuss the NS class model, 
we shall be given the basic concept of yield curve 
model. Let 𝑃(𝑡, 𝑇) be the price of zero coupon bond 
at time t with maturity time T, often referred to as 
discount function and 𝑅(𝑡, 𝑇) be the value of spot 

rate (i.e. the continuously compounded zero-coupon 
nominal yield to maturity). The discount curve can 
be obtained from the yield curve using the relation 
𝑃(𝑡, 𝑇) = 𝑒𝑥𝑝[−𝑅(𝑡, 𝑇)(𝑇 − 𝑡)], thus we obtain 

𝑅(𝑡, 𝑇) = −
୪୬[௉(௧,்)]

்ି௧
. Let 𝑓(𝑡, 𝑇, 𝑇 + ∆𝑡) be the 

forward rate of a contract specified at time t with 
reporting period 𝑇 and time to maturity 𝑇 + ∆𝑡. The 
instantaneous forward rate function 𝑦(𝑡, 𝑇, 𝑇 +
∆𝑡)௜௡௦௧  defined as the value of forward rate with 
∆𝑡 → 0, and we denote it as 𝑓(𝑡, 𝑇). The 
relationship between price of zero coupon bond 
with instantaneous forward rate be given by 

equation 𝑃(𝑡, 𝑇) = exp (− ∫ 𝑦(𝑡, 𝑢)𝑑𝑢)
்

௧
 or 

𝑦(𝑡, 𝑇) = −
ௗ

ௗ௧
ln 𝑃(𝑡, 𝑇) so that we obtain 

relationship between yield to maturity value and 

forward rate as 𝑅(𝑡, 𝑇) = ∫ 𝑦(𝑡, 𝑢)𝑑𝑢 (𝑇 − 𝑡)⁄
்

௫ୀ௧
. 

Thus, the value of zero coupon yields can be 
expressed as form the weighted average of forward 
rate. In a similar way, the value of coupon bond can 
be expressed as the sum of present value of all 
future cash flow (in the form of coupon and 
principal value payments), if the yield curve or 
forward rate curve is known (Stander [22]) .  

One of the popular forward rate models is 
NS class model. The first model considered in the 
literature is Nelson-Siegel/NS model (Nelson and 
Siegel, [3]). In the NS model there are three factors 
to form the yield curve, namely flat, a slope, and 
hump, which comes the name 3-factors model. This 
model is formulated as  

𝑓௧(𝜆;  𝜷, 𝜏) = 𝛽଴ + 𝛽ଵ 𝑒𝑥𝑝 ቀ−
ఒ

ఛ
ቁ + 𝛽ଶ

ఒ

ఛ
exp ቀ−

ఒ

ఛ
ቁ ,  

                                                                              (1) 

where ft denote the yield of bonds, 𝜆 =
𝑇 − 𝑡 is time to maturity, 𝜷 is linear parameter 
vector, 𝜏 is nonlinear parameter thatdetermines the 
position of the hump,𝛽଴ represents the long-run 
level of interest rate,  𝛽ଵ the short-run component, 
and 𝛽ଶ the medium-term component. If the time to 
maturity goes to infinity, the forward rate 
converges to 𝛽଴. If the time to maturity goes to 
zero, the forward rate converges to 𝛽଴ + 𝛽ଵ. To 
avoid negative forward rates, 𝛽଴ and 𝛽଴ + 𝛽ଵ 
should be positive,𝛽଴ can be interpreted as the long-
run interest rate and 𝛽଴ + 𝛽ଵ as the instantaneous 
forward rate. This implies that −𝛽ଵ can be 
interpreted as the slope of the yield curve. The 
curve will have a negative slope if 𝛽ଵ is positive 
and vice versa,𝛽ଵ also indicates the speed with 
which the curve evolves towards its long-run 
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trend,𝛽ଶ determines the magnitude and the direction 
of the hump or through in the yield curve. The 
parameter 𝜏 is a time constant that should be 
positive in order to assure convergence to the long-
term value 𝛽଴. This parameter specifies the position 
of the hump of the yield curve (Nelson-Siegel, [3]). 
This model can be illustrated as figure 1. 

 

 
 

Figure 1: Yield Curve of NS model with 𝜏 = 1.54 
 

Bliss [27] proposes extension of NS model 
with distinguishing slope and hump parameters. 
This model is formed as follows 

𝑓௧(𝜆;  𝜷, 𝜏) = 𝛽଴ + 𝛽ଵ 𝑒𝑥𝑝 ቀ−
ఒ

ఛభ
ቁ +                                     

                       𝛽ଶ
ఒ

ఛమ
exp ቀ−

ఒ

ఛమ
ቁ ,                           (2) 

𝜏ଵ determine the form slope, if 𝜏ଵ toward 
infinite than slope decrease and if 𝜏ଵ toward zero 
than slope form U. 𝜏ଶ determine hump position, if 
𝜏ଶ toward zero than hump in short term and if 𝜏ଶ 
toward infinite than hump in middle term. This 
model can be described as follows 

 

 
Figure 2: Yield Curve of Bliss model with 𝜏ଵ =
1.07 and 𝜏ଶ = 1.17. 
 

Svensson [15] has expanded the NS model 
by adding the second hump such that it becomes 

NSS or Nelson-Siegel-Svensson/NSS model. The 
NSS model has the following form 

𝑓௧(𝜆; 𝜷̇, 𝝉) = 𝛽଴ + 𝛽ଵ exp ൬−
𝜆

𝜏ଵ

൰

+ 𝛽ଶ ൤
𝜆

𝜏ଵ

exp ൬−
𝜆

𝜏ଵ

൰൨ 

                         +𝛽ଷ ቂ
ఒ

ఛమ
exp ቀ−

ఒ

ఛమ
ቁቃ,                       (3)

 
where 𝜷̇ is linear parameter vector that 

𝜷̇ =  (𝛽଴, 𝛽ଵ, 𝛽ଶ,   𝛽ଷ)′, 𝝉 =  (𝜏ଵ, 𝜏ଶ )′ nonlinear 
parameter that determines the position of the first 
and second hump and the other parameters are the 
same as NS model, 𝛽଴ must be positive, it is the 
asymptotic value of  𝑓௧(𝜆; 𝜷̇, 𝝉). The curve will 
tend towards the asymptote as the 𝜆 approaches 
infinity,𝛽ଵ determines the starting (short-term) 
value of the curve in terms of deviation from the 
asymptote. It also defines the basic speed with 
which the curve tends toward its long-term trend. 
The curve will have a negative slope if this 
parameter is positive and vice versa. Note that the 
sum of 𝛽଴ and 𝛽ଵis the vertical intercept,𝜏ଵ must be 
positive, specifies the position of the first hump or 
U-shape on the curve,𝛽ଶ determines the magnitude 
and direction of the hump. If 𝛽ଶ is positive, a hump 
will occur at 𝜏ଵ whereas, if 𝛽ଶ negative, a U-shaped 
value will occur at 𝜏ଵ,𝜏ଶ must also be positive, 
specifies the position of the second hump or U-
shape on the curve. And 𝛽ଷ analogous to 𝛽ଶ, 
determines the magnitude and direction of the 
second hump (Bolder and Streliski [4]). This curve 
model can be illustrated as Figure 3. 

 
 
 
Figure 3: Yield Curve Component of NSS model 
with 𝜏ଵ = 1.68 and 𝜏ଶ = 3.01. 
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Rezende and Ferreira [21] have added the 

second slope into NSS model such that it becomes 
5-factors model, as follows: 

𝑓௧(𝜆; 𝜷̈, 𝝉̈) = 𝛽଴ + 𝛽ଵ exp ൬−
𝜆

𝜏ଵ

൰

+ 𝛽ଶ ൤
𝜆

𝜏ଵ

exp ൬−
𝜆

𝜏ଵ

൰൨ 

                          +𝛽ଷ ൤
𝜆

𝜏ଶ

exp ൬−
𝜆

𝜏ଶ

൰൨

+ 𝛽ସ ൤
𝜆

𝜏ଷ

exp ൬−
𝜆

𝜏ଷ

൰൨ 

+𝛽ହ ൤
𝜆

𝜏ସ

exp ൬−
𝜆

𝜏ସ

൰൨ ,           (4) 

where 𝑓௧ is shape of the curve the 
instantaneous forward rate in time t, 𝜆 is time to 
maturity, 𝜷̈ is linear parameter that 𝜷̈ =
(𝛽଴, 𝛽ଵ, 𝛽ଶ, 𝛽ଷ, 𝛽ସ, 𝛽ହ)′, 𝝉̈ is nonlinear parameter that 
𝝉̈ = (𝜏ଵ, 𝜏ଶ, 𝜏ଷ, 𝜏ସ)′. In this model, 𝛽଴ is constant 
value of forward rate function and it will always be 
constant if the maturity is close to zero. 𝛽ଵ 
determines the beginning of the curve (short term) 
in various forms of deviation where the curve will 
be negatively skewed if 𝛽ଵ is positive and vice 
versa.  𝛽ଶ determines the first hump where the 
curve will be positively skewed if  𝛽ଶ  is positive 
and negatively skewed if  𝛽ଶ is negative.  𝛽ଷ 
determines the second hump where the curve will 
be positively skewed if  𝛽ଷ is positive and in  S 
shape if  𝛽ଷ  is negative.  𝛽ସ determines the third 
hump where the curve will be positively skewed if 
𝛽ସ is positive and in S shape if  𝛽ସ is negative. 𝛽ହ 
determines the shape of the fourth hump where the 
curve will be positively skewed if  𝛽ହ is positive 
and S if 𝛽ହis negative. 𝜏ଵ, 𝜏ଶ, 𝜏ଷ  and 𝜏ସ determine 
the position of first hump, the second hump, the 
third hump and the fourth hump, respectively. This 
model can be illustrated as follows 

 

 

Figure 4: Yield Curve Component of RF Model 
with 𝜏ଵ = 3.98and 𝜏ଶ = 1.36. 
 

In this paper, we propose NSSE model, by 
adding the first and the second hump into the third 
factor of NSS model, and this model can be defined 
as follows:   

𝑓
𝑡
(𝜆;  𝜷̇, 𝝉) = 𝛽

0
+ 𝛽

1
𝑒𝑥𝑝 ൬−

𝜆

𝜏1

൰ + 

                     𝛽
2

ቂ
𝜆

𝜏1
exp ቀ−

𝜆

𝜏1
ቁ +

𝜆

𝜏2
exp ቀ−

𝜆

𝜏2
ቁቃ + 

                        +𝛽ଷ ቂ
ఒ

ఛమ
exp ቀ−

ఒ

ఛమ
ቁቃ                    (5) 

 
where 𝑦 is yield of bond, 𝜆 is time to 

maturity, 𝜷̇ is linear parameter,  𝝉 is nonlinear 
parameter. In this model, 𝛽଴ is constant value of 
forward rate function and it will always be constant 
if the maturity is close to zero,𝛽ଵ determines the 
beginning of the curve (short term) in various forms 
of deviation where the curve will be negatively 
skewed if 𝛽ଵ is positive and vice versa,𝛽ଶ 
determines the first hump where the curve will be 
positively skewed if  𝛽ଶ  is positive and negatively 
skewed if  𝛽ଶ is negative,𝛽ଷ determines the second 
hump where the curve will be positively skewed if  
𝛽ଷ is positive and in  U shape if  𝛽ଷ  is negative. 𝜏ଵ 
determines slope position and the first hump, if 𝜏ଵ 
toward zero than slope and the first hump will 
approach zero and 𝜏ଵ toward infinite than slope will 
negatively skewed while the first hump will be 
located in medium term, 𝜏ଶ toward zero than the 
second hump will approach zero and the first hump 
will form S curve and if 𝜏ଶ toward infinite than the 
first hump will be in medium term and the second 
hump will be positively skewed. The NSSE model 
is illustrated in Figure 5 below: 

 

 
Figure 5:Yield Curve Components of the NSSE 
model with 𝜏ଵ = 2.35 and 𝜏ଶ = 2.14 

 
From Figure 5 we can see the effect of 

each factor of NSSE. The flat curve is the first 
factor. The slope is the second factor, this curve 
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will be negatively skewed if 𝛽ଵ positive and vice 
versa. Combination of the first and the second 
hump is the third factor of the NSSE model, and the 
fourth factor, the second hump, is the factor 
proposed in Svensson [15]. 
 
3. ESTIMATION AND OPTIMIZATION 
 
 To determines the parameters in NS, BL, NSS, RF 
and NSSE models as equation (1), (2), (3), (4), and 
(5). These models estimate using nonlinear least 
square by GA approach, in the estimation, we 
obtain the sum of square error (SSE) with it have 
conditional based on the parameters in the model 
class, the SSE conditional resolved optimization. 
We discuss estimation and optimization as follows. 
Estimation Method 
In section previous, we discussed that Nelson-
Siegel class model has four models and adding with 
one model extended. The model has parameters and 
constraints different. Respectively, can be 
explained that NS model has the four parameters 
and three constraints, BL model has five parameters 
and four constraint, NSS model have the six 
parameters and four constraints, while RF model 
have the eight parameters and five constraints, and 
NSSE model have the six parameters and four 
constraints. In this section, we only discuss the 
estimate of NSSE model. Let 
𝑦(𝜃) = 𝑓(𝜃) + 𝜀,                                               (6)  
where 𝜃 is the parameters of models and 𝜀 is 
residual,  
and let 
𝑔௝(𝜃) > 0, 𝑗 = 1,2, ⋯,                                             (7)                                                     
where 𝑔 is the constrain of models, so estimation 
NLS of equation (6) subject to (7) is  

𝜓(𝜃) = 𝑚𝑖𝑛
1

2
෍൫𝑦௜(𝜃) − 𝑓(𝜃)൯

ଶ

௣

௜ୀଵ

,                 (8) 

subject to 
g୨(θ) > 0 

where ψ is function of the sum square error, and θ 
is parameters of model. To minimize equation (8), 
we do optimization as follows. 
To minimize equation (8), we use optimization with 
inequality constraint arediscussedas follows. 
3.2 Optimization Method 
To minimize equation (8), we use inequality 
constrain optimization, discussion 
ofthisoptimization in Chong and Zak [26]. The 
optimization is performed by transforming the 
inequality constraint become equality constraint. 
This problem discussed Rao [24]. Constraint in 
equation (8) can be transformed by adding slack 

variable into constraints, then the constraints 
became; 

𝑔௝(𝜃) − 𝑠௝
ଶ = 0,                                                (9) 

for s୨ ≥ 0. Thus, equation (6) can be optimized 
subject to (9) as follows; 

ℒ(𝜃, 𝜇, 𝑠) =
1

2
෍൫𝑦௜(𝜃) − 𝑓(𝜃)൯

ଶ

௣

௜ୀଵ

− ෍ 𝜇௝൫𝑔௝(𝜃)

௡

௝ୀଵ

− 𝑠௝
ଶ൯,                        (10) 

where ℒ is Lagrange function, μis Lagrange 
constant with 𝜇 ≤ 0, and s is slack variable. 
Equation (10) is minimized on the parameters, 
Lagrange constant and slack variable. To minimize 
equation (10), we use genetics algorithm approach. 
This algorithm satisfy the condition: 𝜇 ≤ 0, ; 𝑠 ≥
0,  ; ∂ℒ(θ, μ, s) ∂θ⁄  = 0′; ∂ℒ(θ, μ, s) ∂μ⁄ = 0′;  and 
∂ℒ(θ, μ, s) ∂s⁄ = 0′. 
The stages of this approach are discussed in Chong 
and Zak [26] as follows.   

 
1. Initializing the population  
In this step, we optimize Equation (6) for the four 
models; they are 3-factors, 4-factors, 5-factors, and 
6-factors models. These models have 3 Lagrange 
constants and 3 slack variables, 4 Lagrange 
constants and 4 slack variables, 5 Lagrange 
constants and 5 slack variables, as well as 6 
Lagrange constants and 6 slack variables, 
respectively. We obtain the total number of 
parameters to be optimized, including Lagrange 
constants and slack variables of each model are 10, 
14, 18, and 22, respectively. For each parameter, we 
encode it into 20 bits of real number [0,1] which are 
chosen randomly, and all parameters together form 
one chromosome.  We generate 50 chromosomes 
for optimization here. 

 
2. Convert of the chromosome code to real number 
For each chromosome, we convert the [0,1] 
encoded values of each parameter into real number, 
which is called the fitness value, using the 
following formula:   

𝑓𝑖𝑡𝑛𝑒𝑠𝑠 𝑣𝑎𝑙𝑢𝑒 =  𝑏௕ + (𝑏௔ − 𝑏௕)    (11)    

where 𝑏௔ and 𝑏௕  denote the lower and the upper 
bound of the interval of parameter, 𝑐 = the value of 
bits, k is the position of bits. The interval of 
parameters used here are     [-20, 20] for linear 
parameters, [0, 15] for nonlinear parameters and [-
1,1] for Lagrange constants and slack variables. 
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From this step we obtain the fitness value of every 
parameter in each chromosome. 
 
3. Individual Evaluation 
For every chromosome, we calculate the value of 
the following function 

𝑓௘௩௔௟ =
1

ℒ(𝜃, 𝜇) + 𝑑
,                                       (12) 

where 𝑑 is an arbitrary small number and ℒ(𝜃, 𝜇) is 
obtained from (6). Based on their values from this 
step, we rank the fitness values from the biggest to 
the smallest. 
 
4. Elitism 
If the fitness values and their ranks have been 
obtained, in this stage, we select two chromosomes 
with the smallest rank and saving the 
chromosomes.  

 
5. Linear Fitness Ranking (LFR); 
In this step, we scale the fitness values obtained 
from individual evaluation (step 3). The purpose is 
to avoid the convergence tendency in local optima 
by obtaining the new fitness values that have 
greater variance. The formula is presented below:  

𝑔(𝑗) = 𝑔௠௔௞௦ − (𝑔௠௔௞௦ − 𝑔௠௜௡) ቆ
𝑅(𝑗) − 1

𝑁 − 1
ቇ , (13) 

𝑔(𝑗) denotes the new fitness value of chromosome 
𝑗, 𝑔௠௔௞௦  is the maximum fitness value from step 2, 
𝑔௠௜௡ is the minimum fitness value from step 2, 
𝑅(𝑗) is the chromosome rank and N is number of 
chromosomes (N=50 in this case).  
For each chromosome, we calculate the value of 
relative fitness value (i.e. 𝑔௥௘௟(𝑗) = 𝑔(𝑗)/ ∑ 𝑔(𝑖)ହ଴

௜ୀଵ  
and its cumulative values).  
 
7. Selection  
From step 4, we obtain two chromosomes (first pair 
of the chromosomes) to be the parent. We select the 
rest of the pairs (24 pairs in our case) using what so 
called the Roulette-Wheel scheme. For selection of 
the pairs, we generate 2 random numbers in [0,1] 
consecutively. The pairs of chromosome numbers 
are obtained by matching the random numbers 
generated here with the closest values of 
cumulative fitness values obtained from step 6. 
Repeat the process until we obtain all 24 
chromosome pairs. 
 
 

  

8. Crossover 
In this step, 25 pairs of chromosomes in step 7 
serve as parents. The crossover process occurs with 
certain probability (denoted by pcross). We expect 
the crossover process always occurs by specifying 
large crossover probability, e.g. we use 0.8 in our 
application. One of methods used in crossover 
process is called one-cut point crossover. The cut 
point is obtained by generating random integer 
from one to L-1=19, here L denotes the length of 
chromosomes (20 in our case). In the crossover 
operation we exchange substrings of the parents to 
the left of the cut points. The crossover process will 
generate the two new chromosomes called as 
offspring. 

 
9. Mutation 
This step changes one of the genes in a 
chromosome to be its inverse. The mutation process 
occurs with the specified mutation probability. 
Typically, the process of mutation is not always 
expected to happen, so that the mutation probability 
value (pmut) is specified to be very small, e.g. 0.1.  

 
10. Population Replacement  
In this step, we replace the members of initial 
population using the chromosomes obtained from 
step 2-9 above.  
 

These steps (step 2 to 10) are repeated 
until it converges or the maximum iteration number 
is reached. 

 
4. EMPIRICAL STUDIES 

To illustrate the empirical application of the results 
discussed in the previous section, in this part we 
use empirical data of Indonesian government’s 
bonds observed on May 2010. It consists of data 
about yields and maturity time. This data can be 
obtained from http://www.idx.co.id.   
Based on Nelson-Siegel class model in section 2, 
we apply hybrid method estimation with genetics 
algorithm approach and compare it with the 
performance of estimation based on SQP method. 
The estimation is implemented in software R.2.15.2 
using function ga in the package GA and function 
optim in package stats. The GA method is 
implemented using 100 iterations, with replication 
50 times.  
The comparison of mean square error (MSE) 
between various optimum Nelson-Siegel class 
models where we apply hybrid-genetic algorithm 
estimation method is shown in Table 1 below. In 
Table 1, it shows the MSE of NSSE model smaller 
than NS, BL, NSS, and RF models.  We also 
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compare the MSE using SQP method, as shown in 
the Table 2. It shows that NSSE model also have 
MSE smaller than other models. Here, we found 
that MSE of SQP method in general is smaller than 
MSE with GA method. On the other hand, we 
found that the optimal choice for the starting value 
of the SQP method strictly depends on the data, 
where for GA, it does not depend on the starting 
value. 
 

Table 1. MSE of NS class model with GA 
 

Model 
May 

5 6 19 24 25 26 
NS 0.096 0.084 0.072 0.119 0.136 0.076 
BL 0.070 0.076 0.072 0.096 0.086 0.067 
NSS 0.065 0.073 0.237 0.096 0.081 0.065 
RF 0.062 0.072 0.061 0.095 0.082 0.065 
NSSE 0.051 0.069 0.054 0.088 0.077 0.057 
 

Table 2. MSE of NS class model with SQP 
Method 

 

Model 
May 

5 6 19 24 25 26 

NS 0.023 0.049 0.023 0.045 0.045 0.029 
BL 0.020 0.029 0.017 0.026 0.026 0.015 
NSS 0.019 0.049 0.023 0.026 0.026 0.013 
RF 0.023 0.049 0.023 0.045 0.045 0.029 
NSSE 0.014 0.027 0.009 0.0251 0.025 0.0130 

 
In the following tables, we summarize the 

AIC and BIC values from both methods. In Table 3 
it is shown that AIC/BIC of NSSE model smaller 
than other models. The same result is also obtained 
using SQP method, see Table 3.  

 
Table 3.  AIC/BIC of NS Class Model with GA 

Method 

Model 
May 

5 6 19 24 25 26 

NS 
-1.435 -1.533 -1.752 -1.066 -0.977 -1.637 

-2.329 -2.426 -2.657 -1.936 -1.835 -2.560 

BL 
-1.719 -1.604 -1.661 -1.279 -1.368 -1.758 
-2.586 -2.542 -2.542 -2.117 -2.190 -2.662 

NSS 
-1.676 -1.606 -0.252 -1.240 -1.369 -1.758 
-2.516 -2.533 -1.027 -2.045 -2.155 -2.643 

RF 
-1.746 -1.640 -1.795 -1.251 -1.340 -1.730 
-2.559 -2.554 -2.629 -2.057 -2.091 -2.597 

NSSE 
-1.926 -1.665 -1.874 -1.332 -1.431 -1.836 
-2.739 -2.591 -2.708 -2.138 -2.218 -2.721 

Table 4.  AIC/BIC of NS class model with SQP 
Method 

Model 
May 

5 6 19 24 25 26 

NS 
-2.678 -1.999 -2.724 -1.984 -2.1458 -2.505 
-3.571 -2.949 -3.629 -2.854 -3.004 -3.428 

BL 
-2.826 -2.500 -3.033 -2.433 -3.133 -3.138 
-3.719 -3.450 -3.938 -3.103 -3.191 -4.062 

NSS 
-2.636 -1.985 -2.689 -2.493 -2.902 -2.480 
-3.476 -2.911 -3.547 -3.299 -3.688 -3.365 

RF 
-2.595 -1.972 -2.655 -1.868 -2.008 -2.455 
-3.381 -2.874 -3.465 -2.609 -2.724 -3.302 

NSSE -3.117 -2.559 -3.647 -2.508 -3.2641 -3.267 

-3.957 -3.485 -4.505 -3.314 -4.051 -4.152 

 

To give overview of the shape of the yield curve 
obtained from data, we provide the empirical curve 
estimated using GA method as shown, for instance, 
in Figure 6.  It shows that the NSSE model in 
general can model the shape of the data better than 
other methods. 

 

Figure 6. Yield curve of Nelson-Siegel model 
Classes 

 
In figure 6. We show that the yield curve of each 
model is on the distribution of bond data. The first 
curve is the NS model which is a black curve, we 
can see that the beginning of the curve lies outside 
the distribution of bond data, the curve 
monotonically through some data and ends with the 
curve below the spread of bond data. The second 
curve is the BL model represented by red curve, we 
can see the curve of the BL model that starts from 
outside the distribution of data and rises up on the 
distribution of data. This curve is not too curved 
compared to the other curves, the next third curve is 
the NSS model, the curve of this model is 
represented by a green curve, this curve starts 
outside the data distribution and curves down after 
it rises and ends below the spread of bond data. The 
fourth curve is the RF model which is represented 
by a blue curve, the curve of this model starts from 
the bottom of the data obstruction and the curve 
rises beyond the distribution of data and ends below 
the bond data distribution, the last NSSE model 
curve, this curve is represented by a yellow curve, 
this model curve starts with the right movement on 
the bond data and curves following the bond data 
and ends with a fixed end on the bond data, this 
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curve shows that the NSSE model has precise 
accuracy in determining the yield curve, with AIC, 
BIC, and MSE having a value smaller than other 
models, from the comparison of these curves, we 
conclude that the NSEE model is the best model in 
determining the yield curve.  
 
5. CONCLUSION 
 

In this paper, we already consider a 
parametric model class for modelling yield curve, 
called as Nelson-Siegel model. Various NS models 
have been considered here, where in particular we 
propose a new 6-factors model. This model 
intended to increase the accuracy of the previous 
considered models in the literature. To estimate the 
model class, we already considered the hybrid-GA 
approach. This method does not require the initial 
value of the parameter and it is able to multiple 
local optimum of the model. We provide 
application of various NS model (i.e., 3-factors, 4-
factors, 5-factors and 6-factors models) to model 
Indonesian Government bond data. From this study, 
we conjectures 6-factors model is the best model 
that can be used as a tool to determine the yield 
curve. 
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APPENDIX 
 
1. List R program of the NS model 
 
rm(list=ls()) #  
library(GA) 
par(mfrow=c(1, 2)) 
setwd("D:/Data") 
#dataall<-

read.table("Datamei08.txt",header=TRUE) 
#colnames(dataall)<-c("Tgl.Transaksi", 

"seri","yield","maturity") 
#data=dataall[which(dataall$Tgl.Transaksi=="30-

May-08"),] 
data<-

read.table("D:/Disertasi/Data/obligasi24.txt",hea
der=TRUE) 

attach(data) 
f<- function(x1,x2,x3,x4,x5,x6,x7,x8,x9,x10){1/ 
       (0.5*sum((yield-x1-x2*exp(-maturity/x4)-

x3*maturity/x4*exp(-maturity/x4))^2)+ 
           x5*(x1-x8^2)+x6*(x1+x2-x9^2)+x7*(x4-

x10^2)) 
       }  
x1 <- x4 <- c(0,15) 
x2 <- x3 <- c(-15, 15) 
x5 <- x6 <- x7 <- c(-1,0) 
x8 <- x9 <- x10 <- c(0,1) 
GA <- ga(type = "real-valued", fitness = 

function(x) -1/(f(x[1], x[2], x[3], x[4], 
       x[5], x[6], x[7], x[8], x[9], x[10])), 
min = c(0, -15, -15, 0, -1, -1, -1, 0, 0, 0), max = 

c(15, 15, 15, 15, 
       0, 0, 0, 1, 1, 1), 
popSize = 50, maxiter = 100,keepBest = TRUE) 
summary(GA) 
plot(GA) 
 
NS=function(data,N){ 
attach(data) 
f<- function(x1,x2,x3,x4,x5,x6,x7,x8,x9,x10){1/ 
       (0.5*sum((yield-x1-x2*exp(-maturity/x4)-

x3*maturity/x4*exp(-maturity/x4))^2)+ 
           x5*(x1-x8^2)+x6*(x1+x2-x9^2)+x7*(x4-

x10^2)) 
       }  
x1 <- c(0,15) 
x2 <- x3 <- c(-15, 15) 
x4 <- c(0,15) 
x5 <- x6 <- x7 <- c(-1,0) 
x8 <- x9 <- x10 <- c(0,1) 
GA <- ga(type = "real-valued", fitness = 

function(x) -1/(f(x[1], x[2], x[3], x[4], 
       x[5], x[6], x[7], x[8], x[9], x[10])), 

 min = c(0, -15, -15, 0, -1, -1, -1, 0, 0, 0), max = 
c(15, 15, 15, 15, 

       0, 0, 0, 1, 1, 1), 
 popSize = 50, maxiter = 100,keepBest = TRUE) 
x=GA@solution 
 
for(i in 2:50){ 
GA <- ga(type = "real-valued", fitness = 

function(x) -1/(f(x[1], x[2], x[3], x[4], 
       x[5], x[6], x[7], x[8], x[9], x[10])), 
min = c(0, -15, -15, 0, -1, -1, -1, 0, 0, 0), max = 

c(15, 15, 15, 15, 
       0, 0, 0, 1, 1, 1), 
popSize = 50, maxiter = 100,keepBest = TRUE) 
x=rbind(x,GA@solution) 
colnames(x)<-

c("beta0","beta1","beta2","tau","mu1","mu2","
mu3","a1","a2","a3")} 

print(x) 
yfit=matrix(0,nc=nrow(x),nr=length(maturity)) 
mse=mae=mape=aic=bic=NULL 
for(i in 1:50){ 
yfit[,i]=x[i,1]+x[i,2]*exp(-

maturity/x[i,4])+x[i,3]*maturity/x[i,4]*exp(-
maturity/x[i,4]) 

mse[i]=mean((yield-yfit[,i])^2) 
mae[i]=mean(sum(abs(yield-yfit[,i]))) 
mape[i]=mean(sum(abs((yield-yfit[i])/yield)))*100 
aic[i]=log(mse[i])+((length(yield)+8)/length(yield)) 
bic[i]=log(mse[i])+(4*log(length(yield))/length(yiel

d)) 
 
} 
plot(maturity,yield, 
ylim=c(min(c(yield,yfit)),max(c(yield,yfit))),xlab="

Maturity (year)", 
     ylab="Yield (%)", main="Yield Curve of 

Nelson-Siegel Model") 
lines(maturity,rowMeans(yfit),col=2) 
 
output=data.frame(MSE=mse, AIC=aic, BIC=bic) 
output 
} 
NS(data) 
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2. List R program of the BL model 
 
rm(list=ls()) # membersih direktori 
library(GA) 
par(mfrow=c(1, 2)) 
#setwd("D:/Disertasi/Data") 
#dataall<-

read.table("obligasimay2010.txt",header=TRUE
) 

#colnames(dataall)<-c("date", 
"seri","yield","maturity","ihsg","kurs") 

#data=dataall[which(dataall$date=="5-May-10"),] 
setwd("D:/Data") 
dataall<-read.table("Datamei08.txt",header=TRUE) 
colnames(dataall)<-c("Tgl.Transaksi", 

"seri","yield","maturity") 
data=dataall[which(dataall$Tgl.Transaksi=="30-

May-08"),] 
#data<-

read.table("D:/Disertasi/Data/obligasi31.txt",hea
der=TRUE) 

attach(data) 
f<- 

function(x1,x2,x3,x4,x5,x6,x7,x8,x9,x10,x11,x1
2,x13){1/ 

       (0.5*sum((yield-x1-x2*exp(-maturity/x4)-
x3*maturity/x5*exp(-maturity/x5))^2)- 

           x6*(x1-x10^2)-x7*(x1+x2-x11^2)-x8*(x4-
x12^2)-x9*(x5-x13^2)) 

       }  
GA <- ga(type = "real-valued", fitness = 

function(x) -1/(f(x[1], x[2], x[3], x[4], 
       x[5], x[6], x[7], x[8], x[9], 

x[10],x[11],x[12],x[13])), 
min = c(0,-15,-15,0,0,0,-1,-1,-1,-1,0,0,0), max = 

c(15, 15, 15, 15,15,0,0,0,0,1,1,1,1), 
popSize = 50, maxiter = 50,keepBest = TRUE) 
summary(GA) 
plot(GA) 
 
BL=function(data,N){ 
attach(data) 
f<- 

function(x1,x2,x3,x4,x5,x6,x7,x8,x9,x10,x11,x1
2,x13){1/ 

       (0.5*sum((yield-x1-x2*exp(-maturity/x4)-
x3*maturity/x5*exp(-maturity/x5))^2)- 

           x6*(x1-x10^2)-x7*(x1+x2-x11^2)-x8*(x4-
x12^2)-x9*(x5-x13^2)) 

       }  
GA <- ga(type = "real-valued", fitness = 

function(x) -1/(f(x[1], x[2], x[3], x[4], 
       x[5], x[6], x[7], x[8], x[9], 

x[10],x[11],x[12],x[13])), 

min = c(0,-15,-15,0,0,0,-1,-1,-1,-1,0,0,0), max = 
c(15, 15, 15, 15,15,0,0,0,0,1,1,1,1), 

popSize = 50, maxiter = 50,keepBest = TRUE) 
x=GA@solution 
 
for(i in 2:50){ 
GA <- ga(type = "real-valued", fitness = 

function(x) -1/(f(x[1], x[2], x[3], x[4], 
       x[5], x[6], x[7], x[8], x[9], 

x[10],x[11],x[12],x[13])), 
min = c(0,-15,-15,0,0,0,-1,-1,-1,-1,0,0,0), max = 

c(15, 15, 15, 15,15,0,0,0,0,1,1,1,1), 
popSize = 50, maxiter = 50,keepBest = TRUE) 
x=rbind(x,GA@solution) 
colnames(x)<-

c("beta0","beta1","beta2","tau1","tau2","mu1","
mu2","mu3","mu4","a1","a2","a3","a4") 

} 
print(x) 
yfit=matrix(0,nc=nrow(x),nr=length(maturity)) 
mse=mae=mape=aic=bic=NULL 
for(i in 1:50){ 
yfit[,i]=x[i,1]+x[i,2]*exp(-

maturity/x[i,4])+x[i,3]*maturity/x[i,5]*exp(-
maturity/x[i,5]) 

mse[i]=mean((yield-yfit[,i])^2) 
mae[i]=mean(sum(abs(yield-yfit[,i]))) 
mape[i]=mean(sum(abs((yield-yfit[i])/yield)))*100 
aic[i]=log(mse[i])+((length(yield)+10)/length(yield

)) 
bic[i]=log(mse[i])+(5*log(length(yield))/length(yiel

d)) 
 
} 
plot(maturity,yield, 
ylim=c(min(c(yield,yfit)),max(c(yield,yfit))),xlab="

Maturity (year)", 
     ylab="Yield (%)", main="Yield Curve of Bliss 

Model") 
lines(maturity,rowMeans(yfit),col=2) 
 
output=data.frame(MSE=mse, AIC=aic, BIC=bic) 
output 
} 
BL(data) 
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3. List R program of the NSS model 
 
rm(list=ls()) 
library(GA) 
#par(mfrow=c(1, 2)) 
#setwd("D:/Data") 
#dataall<-

read.table("Datamei08.txt",header=TRUE) 
#colnames(dataall)<-c("Tgl.Transaksi", 

"seri","yield","maturity") 
#data=dataall[which(dataall$Tgl.Transaksi=="30-

May-08"),] 
data<-

read.table("D:/Disertasi/Data/obligasi19.txt",hea
der=TRUE) 

attach(data) 
f<- 

function(x1,x2,x3,x4,x5,x6,x7,x8,x9,x10,x11,x1
2,x13,x14){ 

       0.5*sum((yield-x1-x2*exp(-maturity/x5)-
x3*maturity/x5*exp(-maturity/x5)- 

            x4*maturity/x6*exp(-maturity/x6))^2)-
x7*(x1-x11^2)-x8*(x1+x2-x12^2)- 

            x9*(x5-x13^2)-x10*(x6-x14^2) 
       }  
x1 <- c(0,15) 
x2 <- x3 <- x4 <- c(-15, 15) 
x5 <- x6 <- c(0,15) 
x7 <- x8 <- x9 <- x10 <- c(-1,0) 
x11 <- x12 <- x13 <- x14 <- c(0,1) 
GA <- ga(type = "real-valued", fitness = 

function(x) -f(x[1], x[2], x[3], x[4], 
x[5],x[6],x[7],x[8],x[9],x[10],x[11],x[12],x[13],x[1

4]), 
min = c(0, -15, -15, -15, 0, 0, -1, -1, -1, -1, 0, 0, 0, 

0),  
max = c(15, 15, 15, 15,15,15,0,0,0,0,1,1,1,1), 
popSize = 50, maxiter = 100,keepBest = TRUE) 
summary(GA) 
plot(GA) 
 
NSS=function(data,N){ 
attach(data) 
f<- 

function(x1,x2,x3,x4,x5,x6,x7,x8,x9,x10,x11,x1
2,x13,x14){ 

       0.5*sum((yield-x1-x2*exp(-maturity/x5)-
x3*maturity/x5*exp(-maturity/x5)- 

            x4*maturity/x6*exp(-maturity/x6))^2)-
x7*(x1-x11^2)-x8*(x1+x2-x12^2)- 

            x9*(x5-x13^2)-x10*(x6-x14^2) 
       }  
x1 <- c(0,15) 
x2 <- x3 <- x4 <- c(-15, 15) 
x5 <- x6 <- c(0,15) 

x7 <- x8 <- x9 <- x10 <- c(-1,0) 
x11 <- x12 <- x13 <- x14 <- c(0,1) 
GA <- ga(type = "real-valued", fitness = 

function(x) -f(x[1], x[2], x[3], x[4], 
x[5],x[6],x[7],x[8],x[9],x[10],x[11],x[12],x[13],x[1

4]), 
min = c(0, -15, -15, -15, 0, 0, -1, -1, -1, -1, 0, 0, 0, 

0),  
max = c(15, 15, 15, 15,15,15,0,0,0,0,1,1,1,1), 
popSize = 50, maxiter = 100,keepBest = TRUE) 
x = GA@solution 
 
for(i in 2:50){ 
GA <- ga(type = "real-valued", fitness = 

function(x) -f(x[1], x[2], x[3], x[4], 
x[5],x[6],x[7],x[8],x[9],x[10],x[11],x[12],x[13],x[1

4]), 
min = c(0, -15, -15, -15, 0, 0, -1, -1, -1, -1, 0, 0, 0, 

0),  
max = c(15, 15, 15, 15,15,15,0,0,0,0,1,1,1,1), 
popSize = 50, maxiter = 100,keepBest = TRUE) 
x=rbind(x,GA@solution) 
colnames(x)=c("beta0","beta1","beta2","beta3","tau

1","tau2","mu1","mu2","mu3","mu4","a1", 
              "a2","a3","a4") 
} 
print(x) 
yfit=matrix(0,nc=nrow(x),nr=length(maturity)) 
mse=mae=mape=aic=bic=NULL 
for(i in 1:50){ 
yfit[,i]=x[i,1]+x[i,2]*exp(-

maturity/x[i,5])+x[i,3]*maturity/x[i,5]*exp(-
maturity/x[i,5])+ 

     x[i,4]*maturity/x[i,6]*exp(-maturity/x[i,6]) 
 
mse[i]=mean((yield-yfit[,i])^2) 
aic[i]=log(mse[i])+((length(yield)+12)/length(yield

)) 
bic[i]=log(mse[i])+(6*log(length(yield))/length(yiel

d)) 
} 
plot(maturity,yield,ylim=c(min(c(yield,yfit)),max(c

(yield,yfit))),xlab="Maturity (year)", 
     ylab="Yield (%)",main="Yield Curve of 

Svensson Model") 
lines(maturity,rowMeans(yfit),col=2) 
output=data.frame(MSE=mse, AIC=aic, BIC=bic) 
output 
} 
NSS(data) 
 
4. List R program of the RF model 
 
rm(list=ls 
require("GA") 



Journal of Theoretical and Applied Information Technology 
31st January 2019. Vol.97. No 2 

 © 2005 – ongoing  JATIT & LLS    

 

ISSN: 1992-8645                                                         www.jatit.org                                                        E-ISSN: 1817-3195  

 
421 

 

par(mfrow=c(1, 2)) 
#setwd("D:/Disertasi/Data") 
#dataall<-

read.table("obligasi2012.txt",header=TRUE) 
#colnames(dataall)<-

c("date","code","yield","maturity","kurs","ihsg"
) 

#data=dataall[which(dataall$date=="3-Jan-12"),] 
setwd("D:/Data") 
dataall<-read.table("Datamei08.txt",header=TRUE) 
colnames(dataall)<-c("Tgl.Transaksi", 

"seri","yield","maturity") 
data=dataall[which(dataall$Tgl.Transaksi=="30-

May-08"),] 
#data<-

read.table("D:/Disertasi/Data/obligasi7.txt",head
er=TRUE) 

attach(data) 
f<- 

function(x1,x2,x3,x4,x5,x6,x7,x8,x9,x10,x11,x1
2,x13,x14,x15){1/ 

       (0.5*sum((yield-x1-x2*exp(-maturity/x6)-
x3*exp(-maturity/x7)-x4*maturity/x6*exp(-
maturity/x6)- 

                x5*maturity/x7*exp(-maturity/x7))^2)- 
       x8*(x1-x12^2)-x9*(x1+x2+x3-x13^2)-

x10*(x6-x14^2)-x11*(x7-x15^2)) 
       }  
x1 <- c(0,15) 
x2 <- x3 <- x4 <-x5<- c(-15,15) 
x6 <- x7<-c(0,15) 
x8<-x9<-x10<-x11<- c(-1,0) 
x12<-x13<-x14<-x15<- c(0,1) 
GA <- ga(type = "real-valued", fitness = 

1(function(x) -f(x[1], x[2], x[3], x[4], 
x[5],x[6],x[7],x[8],x[9],x[10],x[11],x[12],x[13],x[1

4],x[15])), 
min = c(0,-15,-15,-15,-15,0,0,-1,-1,-1,-1,0,0,0,0),  
max = c(15,15,15,15,15,15,15,0,0,0,0,1,1,1,1), 
popSize = 50, maxiter = 100,keepBest = TRUE) 
summary(GA) 
plot(GA) 
 
RF=function(data,N){ 
attach(data) 
f<- 

function(x1,x2,x3,x4,x5,x6,x7,x8,x9,x10,x11,x1
2,x13,x14,x15){1/ 

       (0.5*sum((yield-x1-x2*exp(-maturity/x6)-
x3*exp(-maturity/x7)-x4*maturity/x6*exp(-
maturity/x6)- 

                x5*maturity/x7*exp(-maturity/x7))^2)- 
            x8*(x1-x12^2)-x9*(x1+x2-x13^2)-

x10*(x6-x14^2)-x11*(x7-x15^2)) 
       }  

x1 <- c(0,15) 
x2 <- x3 <- x4 <-x5<- c(-15,15) 
x6 <- x7<-c(0,15) 
x8<-x9<-x10<-x11<- c(-1,0) 
x12<-x13<-x14<-x15<- c(0,1) 
GA <- ga(type = "real-valued", fitness = 

function(x) -1/(f(x[1], x[2], x[3], x[4], 
x[5],x[6],x[7],x[8],x[9],x[10],x[11],x[12],x[13],x[1

4],x[15])), 
min = c(0,-15,-15,-15,-15,0,0,-1,-1,-1,-1,0,0,0,0),  
max = c(15,15,15,15,15,15,15,0,0,0,0,1,1,1,1), 
popSize = 50, maxiter = 100,keepBest = TRUE) 
x = GA@solution 
 
for(i in 2:50){ 
GA <- ga(type = "real-valued", fitness = 

function(x) -1/(f(x[1], x[2], x[3], x[4], 
x[5],x[6],x[7],x[8],x[9],x[10],x[11],x[12],x[13],x[1

4],x[15])), 
min = c(0,-15,-15,-15,-15,0,0,-1,-1,-1,-1,0,0,0,0),  
max = c(15,15,15,15,15,15,15,0,0,0,0,1,1,1,1), 
popSize = 50, maxiter = 100,keepBest = TRUE) 
x=rbind(x,GA@solution) 
colnames(x)<-

c("beta0","beta1","beta2","beta3","beta4","tau1
","tau2","mu1","mu2", 

                "mu3","mu4","a1","a2","a3","a4") 
} 
print(x) 
yfit=matrix(0,nc=nrow(x),nr=length(maturity)) 
mse=mae=mape=aic=bic=NULL 
for(i in 1:50){ 
yfit[,i]=x[i,1]+x[i,2]*exp(-

maturity/x[i,6])+x[i,3]*exp(-maturity/x[i,7])+ 
     x[i,4]*maturity/x[i,6]*exp(-

maturity/x[i,6])+x[i,5]*maturity/x[i,7]*exp(-
maturity/x[i,7]) 

mse[i]=mean((yield-yfit[,i])^2) 
aic[i]=log(mse[i])+((length(yield)+14)/length(yield

)) 
bic[i]=log(mse[i])+(7*log(length(yield))/length(yiel

d)) 
} 
plot(maturity,yield,ylim=c(min(c(yield,yfit)),max(c

(yield,yfit))),xlab="Maturity (year)", 
     ylab="Yield (%)",main="Yield Curve of 

Rezende & Ferreira Model") 
lines(maturity,rowMeans(yfit),col=2) 
 
output=data.frame(MSE=mse, AIC=aic, BIC=bic) 
output 
} 
RF(data) 
5. List R program of the NSSE model 
rm(list=ls()) # membersih direktori 
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library(GA) 
par(mfrow=c(1, 2)) 
#setwd("D:/Disertasi/Data") 
#dataall<-read.table("opdes12.txt",header=TRUE) 
#colnames(dataall)<-

c("date","code","yield","maturity","kurs","ihsg"
) 

#data=dataall[which(dataall$date=="3-Jan-2012"),] 
#setwd("D:/Data") 
#dataall<-

read.table("Datamei08.txt",header=TRUE) 
#colnames(dataall)<-c("Tgl.Transaksi", 

"seri","yield","maturity") 
#data=dataall[which(dataall$Tgl.Transaksi=="30-

May-08"),] 
data<-

read.table("D:/Disertasi/Data/obligasi19.txt",he
ader=TRUE) 

attach(data) 
f<- 

function(x1,x2,x3,x4,x5,x6,x7,x8,x9,x10,x11,x1
2,x13,x14){ 

       0.5*sum((yield-x1-x2*exp(-maturity/x5)-
x3*(maturity/x5*exp(-
maturity/x5)+maturity/x6*exp(-maturity/x6))- 

            x4*maturity/x6*exp(-maturity/x6))^2)-
x7*(x1-x11^2)-x8*(x1+x2-x12^2)- 

            x9*(x5-x13^2)-x10*(x6-x14^2) 
       }  
GA <- ga(type = "real-valued", fitness = function(x) 

-f(x[1], x[2], x[3], x[4], 
x[5],x[6],x[7],x[8],x[9],x[10],x[11],x[12],x[13],x[14

]), 
min = c(0, -15, -15, -15, 0, 0, -0.1, -0.1, -0.1, -0.1, 0, 

0, 0, 0),  
max = c(15, 15, 15, 15,15,15,0,0,0,0,0.1,0.1,0.1,0.1), 
popSize = 50, maxiter = 100,keepBest = TRUE) 
summary(GA) 
plot(GA) 
SVE=function(data,N){ 
attach(data) 
f<- 

function(x1,x2,x3,x4,x5,x6,x7,x8,x9,x10,x11,x1
2,x13,x14){ 

       0.5*sum((yield-x1-x2*exp(-maturity/x5)-
x3*(maturity/x5*exp(-
maturity/x5)+maturity/x6*exp(-maturity/x6))- 

            x4*maturity/x6*exp(-maturity/x6))^2)-
x7*(x1-x11^2)-x8*(x1+x2-x12^2)- 

            x9*(x5-x13^2)-x10*(x6-x14^2) 

       }  
GA <- ga(type = "real-valued", fitness = function(x) 

-f(x[1], x[2], x[3], x[4], 
x[5],x[6],x[7],x[8],x[9],x[10],x[11],x[12],x[13],x[14

]), 
min = c(0, -15, -15, -15, 0, 0, -0.1, -0.1, -0.1, -0.1, 0, 

0, 0, 0),  
max = c(15, 15, 15, 15,15,15,0,0,0,0,0.1,0.1,0.1,0.1), 
popSize = 50, maxiter = 100,keepBest = TRUE) 
x = GA@solution 
 
for(i in 2:50){ 
GA <- ga(type = "real-valued", fitness = function(x) 

-f(x[1], x[2], x[3], x[4], 
x[5],x[6],x[7],x[8],x[9],x[10],x[11],x[12],x[13],x[14

]), 
min = c(0, -15, -15, -15, 0, 0, -0.1, -0.1, -0.1, -0.1, 0, 

0, 0, 0),  
max = c(15, 15, 15, 15,15,15,0,0,0,0,0.1,0.1,0.1,0.1), 
popSize = 50, maxiter = 100,keepBest = TRUE) 
x=rbind(x,GA@solution) 
colnames(x)=c("beta0","beta1","beta2","beta3","tau

1","tau2","mu1","mu2","mu3","mu4","a1", 
              "a2","a3","a4") 
} 
print(x) 
yfit=matrix(0,nc=nrow(x),nr=length(maturity)) 
mse=mae=mape=aic=bic=NULL 
for(i in 1:50){ 
yfit[,i]=x[i,1]+x[i,2]*exp(-maturity/x[i,5])+ 
         x[i,3]*(maturity/x[i,5]*exp(-

maturity/x[i,5])+maturity/x[i,6]*exp(-
maturity/x[i,6]))+ 

         x[i,4]*maturity/x[i,6]*exp(-maturity/x[i,6]) 
mse[i]=mean((yield-yfit[,i])^2) 
aic[i]=log(mse[i])+((length(yield)+12)/length(yield)

) 
bic[i]=log(mse[i])+(6*log(length(yield))/length(yiel

d)) 
} 
plot(maturity,yield,ylim=c(min(c(yield,yfit)),max(c(

yield,yfit))),xlab="Maturity (year)", 
     ylab="Yield (%)",main="Yield Curve of 

Svensson Extended Model") 
lines(maturity,rowMeans(yfit),col=2) 
output=data.frame(MSE=mse, AIC=aic, BIC=bic) 
output 
} 
SVE(data) 


