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ABSTRACT 
 

This paper proposes an adaptive tuning of Proportional-Integrate-Derivative (PID) controller. This 
approach is developed to address a class of Multi-Input Multi-Output (MIMO) nonlinear systems. The 
adaptive PID controller is built based on neural networks combining the PID control and explicit neural 
structure. The strategy of training consists of on-line tuning of the neural controller weights using the back-
propagation (BP) algorithm to select the suitable combination of PID gains such that the error between the 
reference signal and the actual system output converges to zero. The control scheme is based on a neural 
network model, using a variable learning rate, of the system that is adapted by gradient descent (GD) 
method to learn system dynamic. The results of simulation show that improved and stable tracking is 
achieved with the proposed adaptive PID controller. 

Keywords: Adaptive PID Controller; Neural Network; Multivariable Nonlinear Systems. 
 
1. INTRODUCTION  
 

In recent years the interest of researchers in the 
field of system control has seen significant 
growth. Among the control methods, the model 
reference adaptive control [1, 2, 3, and 4], the 
indirect control [5], the proportional-integrate-
derivative (PID) controller [1, 2, 6-19] and other.  

The PID controller is one of the popular 
methods used for systems control for its 
simplicity. Although this advantage, it is difficult 
to regulate linear or nonlinear systems using the 
linear PID controller based on a constant gains. 
For nonlinear systems, PID performance 
diminishes under a great deal of tuning effort of 
constant gains to ensure local stability. To 
overcome this problem, lot of efforts has been 
dedicated to synthesize experimental and 
analytical techniques to tune the PID parameters. 

For instance, in [1], the adaptive PID controller 
and the model reference adaptive control are 
proposed for improving the response time and 
tracking performance of the hydraulic actuator 
control system. In [6], an adaptive PID controller 
is proposed using the recursive least square (RLS) 
algorithm and is applied on SISO stable and 
unstable systems considering the presence of 
changes in the systems parameters. 

In [7], based on adaptive wavelet neural networks, 
a PID discrete control scheme for induction motor 
drives is presented. An adaptive PID control 
based on radial basis function neural network for 
quadrotor is presented in [8]. The author, in [2], 
proposes a model reference adaptive control and 
PID control to suppress the effect of nonlinear and 
time-varying mass unbalance torque disturbance 
on the dynamic performances of an aerial 
inertially stabilized platform. In [10], to solve the 
problems of low loading precision, slow response 
speed, and poor adaptive ability of a mobile 
dynamometer in a tractor traction test, a PID 
control strategy based on a radial basis function 
neural network with self-learning and adaptive 
ability is proposed. An on-line tuning of a neural 
PID controller based on plant hybrid modeling is 
proposed in [11] and is applied for a nonlinear 
model describing the response of Saccharomyces 
cerevisiae. In [12], a PID-type fuzzy logic 
controller tuning strategy is proposed using a 
particle swarm optimization approach and is 
applied to an electrical DC drive benchmark.   

Therefore, there is continuous interest for 
researchers to develop the control methods with 
higher accuracy and stability by various 
disturbances rejection. Moreover, there is a great 
demand to study the general multi-input multi-
output (MIMO) systems as the design of 
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multivariable control system is highly applicable 
in industry since it can handle more real 
processes. Motivated by the above discussion, an 
on-line adaptive PID controller is proposed in this 
paper to control a MIMO nonlinear system based 
on on-line identification algorithm via neural 
networks using a variable learning rate to get fast 
response time and good tracking performance. 
Results show better performance those with better 
identification properties, because using tuning 
depends on the quality of the identification 
system. 

This paper is organized as follows. Section 2 
briefly introduces the problem under 
consideration. In section 3, the adaptive auto-
tuning of the PID is detailed. Indeed, in this 
section the neural network model is demonstrated 
and a multivariable adaptive PID controller and 
its adaptation mechanism using GD method are 
introduced. In section 4, the proposed algorithm is 
proposed. In section 5, an example of a nonlinear 
system is presented to illustrate the proposed 
efficiency of the methods. At last, concluding 
remarks are in Section 6. 

 

2. PROBLEM DESCRIPTION 
 
Consider the above discrete nonlinear 
multivariable system with n  inputs and n  
outputs expressed in terms of its difference 
equation in the following form [3] 
                    

... ...( 1) ( ), , ( ), ( ), , ( )
Y U

Y k f Y k Y k n U k U k n      (1) 

where 

1,..,
( ) ( )

T

i i n
Y k y k


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1,..,
( ) ( )

T

i i n
U k u k


     

( ( ) nY k  R , nU(k)R ), are respectively the 

input and output vectors, 
Y

n  and 
U

n  are the 

number of past system input and output 

respectively, 
1,..,i i n

f f


    is the nonlinear 

function mapping specified by the model and k is 
the discrete time index. 

The problem is to find a controller ( )U k  to ensure 

that the system output ( )Y k tracks as possible the 

desired reference ( )R k as
1,..,

( ) ( )
T

i i n
R k r k


    . 

To overcome this control problem, we propose an 

adaptive PID controller output which can be 

expressed as follows: 

( ) ( 1) ( ) ( 1) ( )

( ) 2 ( 1) ( 2)
P c c I c

D c c c
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where ,n n
P I

K K R R  and n
D

K  R are the 

proportional, integral and derivative gains vectors 
of the PID controllers and 

1,..,1,..,
( ) ( ) ( ) ( )

i

T T

c c i i i ni n
E k e k r k y k



       
 is the 

tracking error vector. Therefore, the adaptive 
mechanism is used for self-adjustment of the PID 
gains to achieve the best tracking performance. 
 
3. ADAPTIVE AUTO-TUNING OF PID 

CONTROLLER 
 

The control structure of the PID auto-tuner 
embedded into the control loop will be presented 
in this section. This structure is applied to general 
MIMO control system defined in equation (1). 
This structure, shown in Figure 1, includes the 
controlled system, the PID controller and the 
neural network tuner that is used to adjust 
adaptively the controller parameters where the 
bold arrows indicate vector-valued. 
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Figure 1. The PID Auto-tuning Structure for MIMO 
Nonlinear System 

The update of the PID controller parameters are 
based on the efficiency of the neural network 
model and the neural network tuner.  
 



Journal of Theoretical and Applied Information Technology 
31st January 2019. Vol.97. No 2 

 © 2005 – ongoing  JATIT & LLS    

 

ISSN: 1992-8645                                                         www.jatit.org                                                        E-ISSN: 1817-3195  

 
363 

 

3.1 The Neural Network Model 
 

The multi-layer perceptron (MLP) is used in 
the model network and in the NN tuner. Each 
block consists of three layers with the sigmoid 
activation function for all neurons. The 
identification model consists of n network 
outputs given by 

2 1

2

1 0

1 0
 

1 1

1

( )

( ) ; 1, ..,

( 1)

              

jm j kj ik i

j kj k

n n

k i
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k

f w f w x k

f w f h j n

y k 



 




  
        
 

   
 

 

  

                                                                        (3) 

and can be rewritten in the following compact 
vector-valued form 
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T
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             (4)                                                           
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
   is the 

scaling coefficients vector, 
1

n is the neuron 

number of input layer, 
2

n  is the neuron number 

of hidden layer and n  is the neuron number of 
output layer and 

' ' 0 ' 0
1 2

( ) ( ), , ( )
n

F W x diag f h f h      
is the 

Jacobian matrix of ( )F W x . 

In the neural network structure, weights are tuned 
to minimize the identification error vector 

1,..,
( ) ( )

jm m
j n

E k e k


    
via the GD method.  

To apply the GD method, the squared error 
function is defined as follows 

1 3

2 2 21
2

( ) ( ) ... ( ) ... ( )
j nm m m

J k e k e k e k      
 

   (5)                                                 

The update formula of the output weights and the 
hidden weights of the network are given as   
                                       

1 1 '( 1) ( ( ) ()  ( ) )
m

w k w k E netk f F W x       (6)                                       
                                      

0 0 ' ' 1(( 1) ( )  ) ( ) ( ) T
m
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                                                                           (7) 

                                                          

where the derivative of the sigmoid function is [5] 
1

'( )
4

f net                                                         (8) 

and the variable learning rate is given as follows 
2 2

1 1

1 / ( ' ( ) ( ) ( )

                   '( ) '( ) )

T

T T

f net F W x F W x

w F W x F W x w x x

   

    (9)

 

The neural network MLP model will be used to 
adjust the parameters of the PID controller. 
 
3.2 The PID-MLP neural network controller 
 
To find the PID controller parameters 

P
k , 

I
k  

and
D

k ; the used control error ( )
ice k can be 

written as: 

                    ( ) ( ) ( )
ic i i

e k r k y k                (10)                                

where  ( )
i

r k  is the reference command. 

The efficiency of this adaptive controller is 
estimated by a performance function defined as 
the squared error: 

                      
21

2
( ) ( ( ))

i ic c
J k e k                 (11) 

The adaptive controller output can be represented 
in the updating algorithm as: 

( ) ( 1) ( ) ( ) ( 1)

    ( ) ( ) ( ) ( ) 2 ( 1) ( 2)
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i i i i i i

i i P c c

I c D c c c
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                                                             (12) 

where ,
i iP I

k k and 
iD

k are the ith proportional gain, 

integral gain and derivative gain respectively. 

Let propose the proportional error as 

               ( ) ( ) ( 1)
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the integral error as  
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and the derivative error as 

                      ( ) ( )
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i
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( ) ( 1) ( ) ( ) ( ) ( )

                      ( ) ( )
i i i i

i i

i i P P I I

D D

u k u k k k e k k k e k

k k e k

    
 

                                                             (16)                                            



Journal of Theoretical and Applied Information Technology 
31st January 2019. Vol.97. No 2 

 © 2005 – ongoing  JATIT & LLS    

 

ISSN: 1992-8645                                                         www.jatit.org                                                        E-ISSN: 1817-3195  

 
364 

 

The PID-MLP structure is presented in Figure 2, 
where the network parameters are given as 
follows : 
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Figure 2. The PID-MLP Auto-tuning Neural Network 
Structure for MIMO System 
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and can be rewritten in the following compact 
vector-valued form 

( ) ( ) ( )
Ti i

cic c PID
O k s z S W x s net  

 
 

          (19)                                 

with  1

1,..., 4

( ) ( )
T

c j j n
S W x s h


    , 1,..., 31,..., 4

=i i
k nkj
j n

w w 


 
  ,

 

41,...,
1,..,3

T
i i

j njl
l

z z 


    and
ic

 is the scaling coefficients.

 
The weights update of the PID-MLP is obtained 
by minimizing the cost function as follows: 
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where i  can take iw  or iz . 

Finally, the parameters update of the PID-MLP is 
obtained as follows: 
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3.3 The proposed algorithm  
 

In this section, a summary of the proposed 
algorithm of the adaptive PID controller for 
MIMO nonlinear system is presented. 

Offline phase: 

 Initialization of neural network 
parameters of the neural network model 

0w  and 1w  using M  observations, 
( M N ). 

Online phase: 

At time instant ( 1k  ), we have a new 

data ( 1)
i

r k  , using the obtained input vector
ic

x , 

if the condition
1

( 1)
im

e k   , where 1 0   is a 

given small constant, is satisfied then the neural 
network model, given by the equation (5), 
approaches sufficiently the behavior of the 
system, 

 If the condition 
2

( 1)
ic

e k   , where 

2
0   is a given small constant, is 

satisfied then the neural network PID 
controller provides sufficiently the 
control law ( 1)u k , 

 If 
1

( 1)
im

e k   , is not satisfied the 

update of the synaptic weights of the 
neural network model is necessary, using 
the equation (8) and (9), 
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 If 
2

( 1)
ic

e k   , is not satisfied the 

update of the synaptic weights of the 
neural network PID controller is 
necessary, using the equation (21) and 
(22), 

 End. 
 

4. SIMULATION RESULTS 
 

In order to evaluate the performance of the 
proposed method, simulations of a nonlinear 
system [3] are carried out. 

           

1
1 12

2

( )
( 1) ( )

1 ( )

y k
y k u k

y k
  


             (23)  

          1 2
2 22

2

( ) ( )
( 1) ( )

1 ( )

y k y k
y k u k

y k
  


              (24)   

where ( )
i

u k  and ( )
i

y k , 1,2i  , are respectively 

the inputs and the outputs of the system. 

Both neural network model and neural network 
tuner consist of an input layer, a single hidden 
layer with 20 nodes, and an output layer, 
identically. The used scaling coefficients 

are 1
ci i
   . 

 
4.1 System without disturbances 

  
In this section, we examine the effectiveness of 

the proposed control system for the nonlinear 
multi-input multi-output system without 
disturbances. Indeed, the parameters of the 
adaptive PID controller need an online 
identification model for controlling the system. 
Once the neural network model is identified, the 
obtained model is used to produce as the neural 
network model of the control architecture, as 
shown in Figure 1. The MLP neural network 
model is based on a variable learning rate, given 
by the expression (9), and a derivative of the 
sigmoid function, given by the expression (8), 
guarantees faster convergence and better 
identification performance.   

Indeed, in offline phase, using a reduced 
number of observations ( 4M  ) to find, either, 
the parameters initialization of the neural network 

model ( 0w , 1w ).  

In online phase, at instant ( 1k  ), we use the 
input vector of the neural network MLP-PID 

controller                          

1 1 1 1
( ) ( ) ( 1)

T

c c
x e k r k u k                     (25)                                                         

for the first output and 

2 2 2 2
( ) ( ) ( 1)

T

c c
x e k r k u k                   (26)                                                   

for the second output. 
 
The tracking control objective for this system is 
to follow as possible the reference signal. In this 
simulation, the reference signal vector, ( )R k , is 

the desired value which is defined as 

          

2
1 100

2
2 250

( ) sin( )

( ) sin( )

k

k

r k

r k





 
 

                            (27)                                            

The mean squared tracking error (MSE), given by 
the expression (28), as a way of evaluating the 
tracking error between the system output and the 
desired value, is used to perform a PID controller.

                                 
           2

1

1
( ( ) ( ))

N

ii
i

MSE r k y k
N 

             (28)                                                

In neural network MLP-PID, initial weight value 
was set to a random value ranging from -0.5 to 

0.5, the learning rates 
1

   and 
2

  were set to 0.46 

and 0.35 respectively.  
Figure 3 shows the response of the system 

1
( )y k  

and 
2
( )y k  toward the reference inputs 

1
( )r k and 

2
( )r k with the tracking errors 

1
( )

c
e k and

2
( )

c
e k .The 

evolution of the control laws are presented in 
Figure 4. The results show that the tracking of 
adaptive PID controller has some oscillations 
(overshot) at the beginning that might be caused 
by the randomly set neural network weights. As 
time goes on, the system outputs track the 
reference inputs satisfactorily. 
A concordance between both the system outputs 
and the desired values with MSE (ec1) equal to 
0.0029 and MSE (ec2) equal to 0.0027 are noticed. 

The PID parameters
1P

k ,
2P

k ,
1D

k ,
2D

k ,
1I

k and 

2I
k are adjusted by self-learning NN until the 

tracking errors approach zero asymptotically. 

Figure 5 corresponds to the behavior presented by 
the PID controller gains during 500 iterations.
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Figure 3. Response of the NN adaptive PID scheme :( a) Reference signals and Plant responses; (b) Tracking errors. 
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Figure 4. Evolution of Control Signals 

(a) (b) 



Journal of Theoretical and Applied Information Technology 
31st January 2019. Vol.97. No 2 

 © 2005 – ongoing  JATIT & LLS    

 

ISSN: 1992-8645                                                         www.jatit.org                                                        E-ISSN: 1817-3195  

 
367 

 

     

0 50 100 150 200 250 300 350 400 450 500
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

k

k P1
(k

),
k P2

(k
),

k I1
(k

),
k I2

(k
),

k D
1(k

),
k D

2(k
)

 

 

k
P1

k
P2

k
I1

k
I2

k
D1

k
D2

 
Figure 5. Evolution of PID Gains 

 
As it has been presented, the BP neural 

network technique is capable of providing 
suitable parameters for MLP-PID controller and 
the targeted system output can be achieved. 

 
4.2 System with disturbances  
 

To examine the ability of the proposed PID 
controller system from disturbances, a random 
signal is added to the outputs of the nonlinear 
system.  

The performance of the on-line adaptive 
tuning based on MLP-PID algorithm in terms of 
MSE is proved. Analysis shows that the response 
speed, stability, small system error and 
adaptability of the BPNN based PID control 

system have been guaranteed (can quickly 
response to such situation and calculate the 

suitable
1P

k ,
2P

k ,
1D

k ,
2D

k ,
1I

k and 
2I

k for the PID 

controller so that the system can be kept stable). 

Figure 6 shows the response of the system 

1
( )y k and 

2
( )y k toward the reference inputs

1
( )r k   

and
2
( )r k with the tracking errors

1
( )

c
e k and 

1
( )

c
e k . 

The evolution of the control laws are presented 
in Figure. 7. The results show that the tracking of 
adaptive PID controller has some oscillations 
(overshot) at the beginning that might be caused 
by the randomly set neural network weights. As 
time goes on, the system outputs track the 
reference inputs satisfactorily.  
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A concordance between both the system 
outputs and the desired values with MSE (ec1) 
equal to 0.0036 and MSE (ec2) equal to 0.0047 
are noticed. The PID parameters  

1P
k ,

2P
k ,

1D
k ,

2D
k ,

1I
k and 

2I
k  are adjusted by self-

learning NN until the tracking errors approach 
zero asymptotically.  
Figure 8 corresponds to the behavior presented 
by the PID controller gains during 500 iterations.
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Figure 6. Response of the NN adaptive PID scheme in presence of noise :( a) Reference signals and Plant responses; 
(b) Tracking errors 
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Figure 7. Evolution of Control Signals in presence of noise 
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Figure 8. Evolution of PID Gains in presence of noise 
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5. CONCLUSION 
 

In this paper, an adaptive tuning method for 
proportional-integrate-derivative controller is 
proposed to control a MIMO nonlinear system.  
The neural network tuner is trained online in 
order to make the real system close as possible to 
the reference signal. In each discrete time step, 
back propagation algorithm with the gradient 
descent method is used to update sub-networks 
weights. This requires the use of a model 
network, which is trained online, to obtain an 
approximation to the plant Jacobian. The control 
strategy used to define the adaptation law is 
based on the tracking error between the plant 
output and the reference. The use of neural 
networks allows nonlinearities in the controlled 
system to be considered for tuning purposes. 

Experimental results done on multi-input multi 
output nonlinear system have shown that using 
the proposed controller, the system outputs can 
track asymptotically the desired references in 
less time and more efficiency. Also, the results 
show that the adaptive PID scheme is good at the 
disturbance rejection. 

Comparison study with other works has shown 
that the proposed method gives faster and 
accurate results due to its simplicity, fast 
adaptation mechanism for the discrete nonlinear 
MIMO systems. 
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