31st January 2019. Vol.97. No 2 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645

www.jatit.org

E-ISSN: 1817-3195

CHOOSING CHILI SEEDS USING ANALYTIC HIERARCHY PROCESS (AHP) METHOD : AN ANALYSIS AND INTERFACE APPLICATION DESIGN

¹ONNY MARLEEN, ²SUHARNI, ³ANGGRAENI RIDWAN, ⁴RANI PUSPITA

1,2,3,4 Faculty of Computer Science and Information Technology, Gunadarma University, Indonesia

E-mail: ¹onny_marleen@staff.gunadarma.ac.id, ²harni@gunadarma.ac.id, ³neni rid@staff.gunadarma.ac.id, ⁴rani push@gunadarma.ac.id

ABSTRACT

Selection of cayenne chili seeds affects the yield. Of the many varieties of cayenne chili varieties that have been issued by the Government, not necessarily all varieties are in accordance with the expectations of farmers. Farmers need to know which varieties are suitable or close to their expectations. Application of selection of cayenne chili seeds helps farmers to find out which varieties suit their expectations. AHP is one method to assist in the selection of decisions of cayenne chili seeds. By using 10 criteria selected by farmers, analysis and design of applications is made using the UML method.

Keywords: *Decision making, design, application, AHP, UML*

1. INTRODUCTION

One of the plants that is widely grown in the agricultural sector is chili. Chili is a shrub from the eggplant family. Chili comes from the Americas and Asia, including Indonesia. Chili plants have many types of growth and fruit shape. There are an estimated 20 species that mostly live in their home countries. The community in general only knows a few types, namely large chili, curly chili, cayenne chili and chili chilis [1].

Cayenne chili (Capsicum Frutescens) is a vegetable plant that has high economic value. It can be planted in various places and seasons, depending on the variety. The use of chili is quite a lot, from daily needs for cooking, fresh, processed, industrial and pharmaceutical forms. Therefore, this commodity is widely cultivated by smallholders conventionally or traditionally to large businesses that use agribusiness systems [1].

The selection of chilli seeds is an important thing to be considered by farmers because the seeds will affect the yield. Good seeds will produce good results, bad seeds will produce bad results. The problem faced by farmers is that not all types of seeds issued by the government produce crops that are in line with their expectations. The availability of various seeds in an area is not necessarily there. This causes farmers to keep planting the same type of seed all the time. To introduce the chilli seed varieties that have been issued by the government and help farmers in choosing chilli seeds whose results are in line with their expectations, it is necessary to make an application for chill seed selection. The process of selecting chill seeds is made using the AHP method as a decision support tool. Analysis and application design using the Unified Modeling Language (UML) method is carried out as an application creation stage.

In this study the AHP method was used to select chili seeds with 14 alternative seed varieties along with 10 criteria. The criteria include age at harvest, old fruit color, fruit shape, yield, fruit size, number of fruit per tree, weight per fruit, fruit flavor, fruit retention and fruit skin surface. The ten criteria are the results of interviews with chili farmers in several regions on the island of Java, Indonesia. Varieties of chilli seeds used are varieties produced by producers from the 2000s. The type of chili used is hybrid cayenne chili.

In this study the hypothesis is that there is a relationship between the criteria and the types of cayenne chili varieties.

The purpose of this study was to analyze and design an application interface for the selection of high-yielding hybrid chili seeds ISSN: 1992-8645

www.jatit.org

2. LITERATURE STUDY

Decision making is a process in choosing actions among various alternative choices to achieve a goal or several goals [2]. Decision support system (DSS) usually by describing alternative choices for decision making. Whatever and however the process, one of the most difficult further stages that decision makers will face is in terms of their application. Likewise, AHP is commonly used to construct models for simplifying problems. AHP is a mathematically based procedure that is very good and suitable for the conditions of evaluating qualitative attributes. These attributes are mathematically quantified in a set of paired comparisons. AHP advantages are compared with others because of the hierarchical structure as a consequence of the criteria chosen to the most detailed sub-criteria. Taking into account the validity up to the tolerance limit of inconsistencies of various criteria and alternatives chosen by decision makers [3]. Because it uses input from human perception, this model can process qualitative and quantitative data. So the complexity of the problems around us can be approached well by this AHP model. In addition AHP has the ability to solve multi-objective and multi-criteria problems based on a comprehensive comparison of decisions.

Design of UML (Unified Modelling Language)

According to [4], UML (Unified Modeling Language) is 'language' modeling for systems oriented or oriented paradigm object ". Modeling (modeling) is actually used for simplification complex problems such that more easy to learn and understand.

UML is described by several diagrams :

1. Use Case Diagram

Use case diagram is used to describe the system from a point of view user of the system (user), so the creation of use case diagrams is more focused on the functionality that is in the system, not based on the flow or sequence of events. A use case diagram represents an interaction between actors and systems to be developed [5].

Components in the use case diagram [5]: a. Actor

Basically actors are not part of the use case diagram, but to be able to the creation of a use case diagram requires an ctor, where the actor is present someone or something (like nother device or system) that is interact with the system created. An actor might just give input information on the system, only receiving information from the system or both receive and provide information on the system. Actors only interact with use case, but has no control over the use case. Actor described by stick pan as shown in Figure 1.

b. Use Case

Overview of the functionality of a system, so that system users understand and understand the usefulness of the system to be built. The use case can be seen on Figure 2.

Figure 2

2. Activity Diagram

Describing a series of flows from activities, used to describe activity that is formed in an operation so that it can be used for other activities [5]. The following is a table of Activity Diagram Notations illustrated in Table 1.

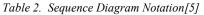
Table 1. Activity Diagram Notation [5].

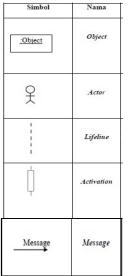
Simbol	
	•
	0
	\diamond
	Н
	\times
[$ \rightarrow $
	\otimes

Journal of Theoretical and Applied Information Technology

31st January 2019. Vol.97. No 2 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645


<u>www.jatit.org</u>


E-ISSN: 1817-3195

3.Sequence Diagram

Sequence diagrams describe interactions between a number of objects in a sequence time. Its purpose is to show the message sequence sent between objects also interact between objects that occur at certain points in the execution system [5].

The following is the Sequence Diagram Notation presented in Table 2

3. RESEARCH METHOD

This study uses two stages of research, namely the data processing stage with the AHP method and the interface design stage.

3.1 Data Processing Using AHP

To do data processing using the AHP method, there are several steps that must be done, namely:

- 1. Identification Phase
 - a) Determine the Purpose
 - b) Determine Criteria
 - c) Determine the Alternative
- 2. Determine the main priorities for the criteria
- 3. Create a pairwise comparison matrix, which is an n x m-sized matrix with an aij element which is the relative objective of the i to the destination to i
- 4. Using a comparison scale of 1-9

Table 3: Comparison Scales 1-9 accoridng to [6]

Intensity of Importance	Definition	Explanation
1	Equal Importance	Two activities contribute equally to the objective
3	Moderate importance	Experience and judgment slightly favor one activity
5	Strong importance	Experience and judgment strongly favor one activity over another
7	Very strong importance	An activity is favored very strongly over another; it dominance demonstrated in practice
9	Extreme importance	The evidence favoring one activity over another is of the highest possible order of affirmation
2,4,6,8	For compromise between the above values	Intermediate values of importance
Reciprocal	assigned to it whether j has the value of j has the value of j has the value of j has the value of j has the value of j has the value of j has the value of j has	one of the above numbers then compared with variable j , alue 1/number assigned to it with <i>i</i> . More formally if $n_{ij} =$

- 5. Ranking process at each price based on the comparison matrix
- 6. If the matrix A is flexible in pairs, the weight vector forms (A) (WT) = (n) (WT) by:
 - a. Normalize each column J in a matrix

$$\sum_{i} a_{ij} = 1$$
 (1) call it A'

b. For each row i in A ', calculate the average value

$$w = \frac{1}{n} \sum_{j} a'_{ij} \tag{2}$$

With Wi is the weight of the 1st goal of the weight vector

7. Test consistency, count: $(A)(W^T)$

$$t = \frac{1}{n} \sum_{i=1}^{n} \left| \frac{\text{elemen } i \text{ in } (A)(W^{T})}{\text{elemen } i \text{ in } W^{T}} \right|$$
(3)

8. Calculate the consistency index

$$CI = \frac{t-n}{n-1}$$

31st January 2019. Vol.97. No 2 © 2005 - ongoing JATIT & LLS

ISSN: 1992-8645	www.jatit.org										
	www.jatit.org										
CI = 0 then A is consistent	other cri achieving of pairw	g the	object	tives	abo	ve [3	3]. T	he b	asic	scale	
$\frac{ci}{RI_n} \le 0 \qquad \qquad \text{then A is pretty cons}$	then A is pretty consistent table 3 above, and produces a comparison matrix as in table 4 below										
$\frac{ci}{Rl_{m}} > 0,1$ then A is very incons	Table 4	Chili	Crite	ria Pc	iirwi.	se Co	отра	risor	ı Mat	rix	
$\overline{RL} > 0,1$ then A is very incons	istent Criteria J	н	R	D	U	W	Bb	Ub	Bp	Р	
RI _n	J 1	3	3	3	3	5	5	5	5	9	
	H 1/		3	3	3	5	5	7	5	9	

Random Index RIn

_ n	1	2	3	4	5	6	7	8	9	10
RI	0	0	5,8	0,9	1,12	1,24	1,32	1,41	1,45	1,49

There are 10 criteria used in this study, namely the number of fruit trees, production results, fruit flavor, fruit saving power, age of harvest, old fruit color, fruit shape, fruit size, weight and fruit surface. The alternatives chili seeds selected in this study were Bhaskara, Dewata, Juwita, Kathur, Prima Agrihorti, Rabani Agrihorti, AFN CR01, Batari, CF 3251, CF 3254, FRT 598, Maruti, Red Thunder, and Robin [7] [8], [9], [10], [11], [12], [13], [14], [15], [16], [17], [18], [19], [20]

Determination of Rating Criteria Weight (pairwise comparison stage)

From the results of interviews with chili farmers in the data collection areas, the priority criteria for chili were obtained, namely:

First priority	: number of fruits per tree (J)
Second priority	: yield (H)
Third priority	: fruit flavor (R)
Fourth priority	: fruit saving power (D)
Fifth priority	: age begins to harvest (U)
Sixth priority	: old fruit color (W)
Seventh priority	: fruit shape (Bb)
Eighth priority	: fruit size (Ub)
Ninth priority	: weight per fruit (Bp)
Tenth priority	: fruit skin surface (P)

To produce relative weights between criteria and alternatives, the pairwise comparison matrix is used. A criterion will be compared to

Criteria	J	Н	R	D	U	W	Bb	Ub	Bp	Р
J	1	3	3	3	3	5	5	5	5	9
н	1/3	1	3	3	3	5	5	7	5	9
R	1/3	3	1	3	4	4	5	5	7	9
D	1/3	1/3	1/3	1	1/3	5	7	7	7	9
U	1/3	1/3	3	3	1	6	6	6	6	6
W	1/5	1/5	4	5	6	1	5	5	4	4
Bb	1/5	1/5	1/5	1/5	2	1/5	1	2	2	3
Ub	1/5	1/7	1/5	1/5	6	1/5	2	1	4	3
Bp	1/5	1/5	1/7	1/7	6	4	2	4	1	5
Р	1/9	1/9	1/9	1/9	6	6	1/3	1/3	1/5	1

Table 4 above is the result of the Pairwise Comparison matrix to find out the comparison of criteria. For example, for a comparison of the criteria for the number of fruits per tree (J) with the production (H), the number is 1/3 which means the number of fruits per tree (J) is slightly more important than the production (H). The result of production (H) with the color of the old fruit (W) is 5, which means that the production (H) is more important than the color of the old fruit (W), and so is done.

The next step is to determine the ranking criteria by changing pairwise conparison to decimal form (table 5(a)) then dividing the elements of each column by the number of columns in question (table 5(b))

Criteria	J	н	R	D	U	W	Bb	Ub	Bp	Р
J	1	3	3	3	3	5	5	5	5	9
Н	0.333	1	3	3	3	5	5	7	5	9
R	0.333	3	1	3	4	4	5	5	7	9
D	0.333	0.333	0.333	1	0.333	5	7	7	7	9
U	0.333	0.333	3	3	1	6	6	6	6	6
W	0.2	0.2	4	5	6	1	5	5	4	4
Bb	0.2	0.2	0.2	0.2	2	0.2	1	2	2	3
Ub	0.2	0.143	0.2	0.2	6	0.2	2	1	4	3
Вр	0.2	0.2	0.142	0.142	6	4	2	4	1	5
Р	0.111	0.111	0.111	0.111	6	6	0.333	0.333	0.2	1
SUM	3.244	8.521	14.99	18.65	37.33	36.4	38.33	42.33	41.2	58

Table 5(a) Determination of Criteria Ranking

E-ISSN: 1817-3195

ISSN: 1992-8645

www.jatit.org

Table 5(b) Determination of Criteria Ranking

KRITERIA	J	H	R	D	U	W	Bb	Ub	Bp	P	RATA-RATA
J	0.308219	0.35209	0.20017	0.16082	0.08036	0.13736	0.13043	0.11811	0.12136	0.15517	0.17640952
Н	0.10274	0.11736	0.20017	0.16082	0.08036	0.13736	0.13043	0.16535	0.12136	0.15517	0.137113555
R	0.10274	0.35209	0.06672	0.16082	0.10714	0.10989	0.13043	0.11811	0.1699	0.15517	0.147302632
D	0.10274	0.03912	0.02224	0.05361	0.00\$93	0.13736	0.18261	0.16535	0.1699	0.15517	0.103703895
U	0.10274	0.03912	0.20017	0.16082	0.02679	0.16484	0.15652	0.14173	0.14563	0.10345	0.124180783
W	0.061644	0.02347	0.26689	0.26804	0.16071	0.02747	0.13043	0.11811	0.09709	0.06897	0.122283308
Bb	0.061644	0.02347	0.01334	0.01072	0.05357	0.00549	0.02609	0.04724	0.04854	0.05172	0.034184729
Ub	0.061644	0.01677	0.01334	0.01072	0.16071	0.00549	0.05217	0.02362	0.09709	0.05172	0.049329233
Bp	0.061644	0.02347	0.00953	0.00766	0.16071	0.10989	0.05217	0.09449	0.02427	0.08621	0.063005165
P	0.034247	0.01304	0.00741	0.00596	0.16071	0.16484	0.0087	0.00787	0.00485	0.01724	0.04248718
	1	1	1	1	1	1	1	1	1	1	1

Eigen Vector normalization:

W = (0.17640952 ; 0.137113555 ; 0.147302632 ;0.103703895; 0.124180783; 0.122283308; 0.034184729; 0.049329233; 0.063005165; 0.04248718)

Calculate the Weight of Criteria and Alternative Weight

To calculate the criteria weight and alternative weights there are several stages. Final results after processing each criterion as in the tables 6 till 15 below:

	Dewat a	Bhask ara	Kathu r	Juwita	Prima Agriho rti	Raban i Agriho	CF 3251	FRT 598	Marut i	Red Thund er	Robin	AFN CR01	CF 3254	Batari	RATA
ALTERNATIF						rti									1.
Dewata	0.0694 63003	0.0694 63003	0.0694 63003	0.0694 63003	0.0694 63003	0.0694 63003	0.0694 63003	0.0651 34349	0.0694 63003	0.0694 63003	0.0694 63003	0.0724 03765	0.0694 63003	0.0694 63003	0.0693 63868
Bhaskara	0.0655 85214	0.0655 85214	0.0655 85214	0.0655 85214	0.0655 85214	0.0655 85214	0.0655 85214	0.0614 98209	0.0655 85214	0.0655 85214	0.0655 85214	0.0683 61807	0.0655 85214	0.0655 85214	0.0654 91613
Kathur	0.0678 92232	0.0678 92232	0.0678 92232	0.0678 92232	0.0678 92232	0.0678 92232	0.0678 92232	0.0693 45521	0.0678 92232	0.0678 92232	0.0678 92232	0.0707 66494	0.0678 92232	0.0678 92232	0.0682 01342
Juwita	0.0629	0.0629 86266	0.0629 86266	0.0629 86266	0.0629 86266	0.0629 86266	0.0629 86266	0.0643 3454	0.0629 86266	0.0629 86266	0.0629 86266	0.0656 52831	0.0629 86266	0.0629 86266	0.0632
Prima Agrihorti	0.0399 72053	0.0399	0.0399	0.0399 72053	0.0399 72053	0.0399	0.0399	0.0408 27689	0.0399	0.0399	0.0399	0.0416 64297	0.0399	0.0399	0.0401
Rabani Agrihorti	0.0410 03199	0.0410 03199	0.0410 03199	0.0410 03199	0.0410 03199	0.0410 03199	0.0410 03199	0.0418 80907	0.0410 03199	0.0410 03199	0.0410 03199	0.0427 39096	0.0410 03199	0.0410 03199	0.0411 89885
CF 3251	0.0603 14974	0.0603 14974	0.0603 14974	0.0603 14974	0.0603 14974	0.0603 14974	0.0603 14974	0.0616 06066	0.0603 14974	0.0603 14974	0.0603 14974	0.0628 68447	0.0603 14974	0.0603 14974	0.0605
FRT 598	0.1206 29947	0.1206 29947	0.1206 29947	0.1206 29947	0.1206 29947	0.1206 29947	0.1206 29947	0.1131	0.1206 29947	0.1206 29947	0.1206 29947	0.0834 0124	0.1206 29947	0.1206 29947	0.1174
Maruti	0.1055 51204	0.1055 51204	0.1055 51204	0.1055 51204	0.1055 51204	0.1055 51204	0.1055 51204	0.1078 10615	0.1055 51204	0.1055 51204	0.1055 51204	0.1100 19783	0.1055 51204	0.1055 51204	0.1060
Red Thunder	0.0678 92232	0.0678 92232	0.0678 92232	0.0678 92232	0.0678 92232	0.0678 92232	0.0678 92232	0.0693 45521	0.0678 92232	0.0678 92232	0.0678 92232	0.0707 66494	0.0678 92232	0.0678 92232	0.0682 01342
Robin	0.0818 82146	0.0818 82146	0.0818 82146	0.0818 82146	0.0818 82146	0.0818 82146	0.0818 82146	0.0836 34901	0.0818 82146	0.0818 82146	0.0818 82146	0.0853 4868	0.0818 82146	0.0818 82146	0.0822
AFN CR01	0.0909 80162	0.0909 80162	0.0909 80162	0.0909 80162	0.0909 80162	0.0909 80162	0.0909 80162	0.0929 27668	0.0909 80162	0.0909 80162	0.0909 80162	0.0948 31867	0.0909 80162	0.0909 80162	0.0913 94391
CF 3254	0.0897 71123	0.0897 71123	0.0897 71123	0.0897 71123	0.0897 71123	0.0897 71123	0.0897 71123	0.0916 92749	0.0897 71123	0.0897 71123	0.0897 71123	0.0935 71643	0.0897 71123	0.0897 71123	0.0901
Batari	0.0360 76246	0.0360 76246	0.0360 76246	0.0360 76246	0.0360 76246	0.0360 76246	0.0360 76246	0.0368 48488	0.0360 76246	0.0360 76246	0.0360 76246	0.0376 03557	0.0360 76246	0.0360 76246	0.0362
	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
															W

Table 6 Number of Fruits per Tree

www.jatit.org

ISSN: 1992-8645

E-ISSN: 1817-3195

	10						1.0000	ction Re							
ALTERNATI	Dewata	Bhaskar a	Kathur	Juwita	Prima Agrihort i	RabaniAgr ihorti	CF 3251	FRT 598	Maruti	Red Thunder	Robin	AFN CR01	CF 3254	Batari	average
8	0.07543	0.07543	0.07543	0.07543	0.07543	0.0763914	0.07543	0.07543	0.07543	0.07543	0.07543	0.07543	0.07543	0.07543	0.07549
Dewata	1034	1034	1034	1034	1034	15	1034	1034	1034	1034	1034	1034	1034	1034	9633
	0.07273	0.07273	0.07273	0.07273	0.07273	0.0736631	0.07273	0.07273	0.07273	0.07273	0.07273	0.07273	0.07273	0.07273	0.07280
Bhaskara	7069	7069	7069	7069	7069	5	7069	7069	7069	7069	7069	7069	7069	7069	3218
	0.06734	0.06734	0.06734	0.06734	0.06734	0.0682066	0.06734	0.06734	0.06734	0.06734	0.06734	0.06734	0.06734	0.06734	0.06741
Kathur	9138	9138	9138	9138	9138	21	9138	9138	9138	9138	9138	9138	9138	9138	0387
	0.07866	0.07866	0.07866	0.07866	0.07866	0.0796653	0.07866	0.07866	0.07866	0.07866	0.07866	0.07866	0.07866	0.07866	0.07873
Juwita	3793	3793	3793	3793	3793	33	3793	3793	3793	3793	3793	3793	3793	3793	5332
Prima	0.08081	0.08081	0.08081	0.08081	0.08081	0.0818479	0.08081	0.08081	0.08081	0.08081	0.08081	0.08081	0.08081	0.08081	0.08089
Agrihorti	8966	8966	8966	8966	8966	45	8966	8966	8966	8966	8966	8966	8966	8966	2464
RabaniAgr	0.05387	0.05387	0.05387	0.05387	0.05387	0.0545652	0.05387	0.05387	0.05387	0.05387	0.05387	0.05387	0.05387	0.05387	0.05392
ihorti	931	931	931	931	931	96	931	931	931	931	931	931	931	931	8309
	0.09698	0.09698	0.09698	0.09698	0.09698	0.0982175	0.09698	0.09698	0.09698	0.09698	0.09698	0.09698	0.09698	0.09698	0.09707
CF 3251	2759	2759	2759	2759	2759	34	2759	2759	2759	2759	2759	2759	2759	2759	0957
	0.03771	0.03771	0.03771	0.03771	0.03771	0.0254638	0.03771	0.03771	0.03771	0.03771	0.03771	0.03771	0.03771	0.03771	0.03684
FRT 598	5517	5517	5517	5517	5517	05	5517	5517	5517	5517	5517	5517	5517	5517	0395
and the second	0.07004	0.07004	0.07004	0.07004	0.07004	0.0709348	0.07004	0.07004	0.07004	0.07004	0.07004	0.07004	0.07004	0.07004	0.07010
Maruti	3103	3103	3103	3103	3103	85	3103	3103	3103	3103	3103	3103	3103	3103	6802
Red	0.05387	0.05387	0.05387	0.05387	0.05387	0.0545652	0.05387	0.05387	0.05387	0.05387	0.05387	0.05387	0.05387	0.05387	0.05392
Thunder	931	931	931	931	931	96	931	931	931	931	931	931	931	931	8309
	0.08081	0.08081	0.08081	0.08081	0.08081	0.0818479	0.08081	0.08081	0.08081	0.08081	0.08081	0.08081	0.08081	0.08081	0.08089
Robin	8966	8966	8966	8966	8966	45	8966	8966	8966	8966	8966	8966	8966	8966	2464
and the	0.06465	0.06465	0.06465	0.06465	0.06465	0.0654783	0.06465	0.06465	0.06465	0.06465	0.06465	0.06465	0.06465	0.06465	0.06471
AFN CR01	5172	5172	5172	5172	5172	56	5172	5172	5172	5172	5172	5172	5172	5172	3971
	0.09698	0.09698	0.09698	0.09698	0.09698	0.0982175	0.09698	0.09698	0.09698	0.09698	0.09698	0.09698	0.09698	0.09698	0.09707
CF 3254	2759	2759	2759	2759	2759	34	2759	2759	2759	2759	2759	2759	2759	2759	0957
8 92	0.07004	0.07004	0.07004	0.07004	0.07004	0.0709348	0.07004	0.07004	0.07004	0.07004	0.07004	0.07004	0.07004	0.07004	0.07010
Batari	3103	3103	3103	3103	3103	85	3103	3103	3103	3103	3103	3103	3103	3103	6802

Table 8 Fruit Flavour

ALTERNATIF	Dewata	Bhaskar a	Kathur	Juwita	Prima Agrihor ti	Rabani Agrihor ti	CF 3251	FRT 598	Maruti	Red Thunde r	Robin	AFN CR01	CF 3254	Batari	average
	0.07322	0.07322	0.07322	0.07322	0.07322	0.07322	0.07322	0.07322	0.07322	0.07322	0.07322	0.07322	0.07322	0.07322	
Dewata	6023	6023	6023	6023	6023	6023	6023	6023	6023	6023	6023	6023	6023	6023	0.073
Bhaskara	0.07322 6023	0.07322 6023	0.07322 6023	0.07322	0.07322 6023	0.07322	0.07322 6023	0.07322 6023	0.07322 6023	0.07322 6023	0.07322	0.07322	0.07322 6023	0.07322 6023	0.073
Kathur	0.07322	0.07322	0.07322 6023	0.07322	0.07322	0.07322 6023	0.07322 6023	0.07322	0.07322 6023	0.07322	0.07322	0.07322 6023	0.07322	0.07322 6023	0.073
Juwita	0.07322 6023	0.07322 6023	0.07322 6023	0.07322 6023	0.07322 6023	0.07322 6023	0.07322 6023	0.07322 6023	0.07322 6023	0.07322 6023	0.07322 6023	0.07322 6023	0.07322 6023	0.07322 6023	0.073
Prima Agrihorti	0.04557 9463	0.04557 9463	0.04557 9463	0.04557 9463	0.04557 9463	0.04557 9463	0.04557 9463	0.04557 9463	0.04557 9463	0.04557 9463	0.04557 9463	0.04557 9463	0.04557 9463	0.04557 9463	0.046
RabaniAgrihort i	0.07322 6023	0.07322 6023	0.07322 6023	0.07322 6023	0.07322 6023	0.07322 6023	0.07322 6023	0.07322 6023	0.07322 6023	0.07322 6023	0.07322	0.07322 6023	0.07322 6023	0.07322 6023	0.073
CF 3251	0.07322 6023	0.07322 6023	0.07322 6023	0.07322 6023	0.07322 6023	0.07322 6023	0.07322 6023	0.07322 6023	0.07322 6023	0.07322 6023	0.07322 6023	0.07322 6023	0.07322 6023	0.07322 6023	0.073
FRT 598	0.07322 6023	0.07322 6023	0.07322 6023	0.07322 6023	0.07322 6023	0.07322 6023	0.07322 6023	0.07322 6023	0.07322 6023	0.07322 6023	0.07322 6023	0.07322 6023	0.07322 6023	0.07322 6023	0.073
Maruti	0.07322 6023	0.07322 6023	0.07322 6023	0.07322 6023	0.07322 6023	0.07322 6023	0.07322 6023	0.07322 6023	0.07322 6023	0.07322 6023	0.07322 6023	0.07322 6023	0.07322 6023	0.07322 6023	0.073
Red Thunder	0.07322 6023	0.07322 6023	0.07322 6023	0.07322 6023	0.07322 6023	0.07322 6023	0.07322 6023	0.07322 6023	0.07322 6023	0.07322 6023	0.07322	0.07322 6023	0.07322 6023	0.07322 6023	0.073
Robin	0.07570 8261	0.07570 8261	0.07570 8261	0.07570 8261	0.07570 8261	0.07570 8261	0.07570 8261	0.07570 8261	0.07570 8261	0.07570 8261	0.07570 8261	0.07570 8261	0.07570 8261	0.07570 8261	0.076
AFN CR01	0.07322 6023	0.07322 6023	0.07322 6023	0.07322 6023	0.07322 6023	0.07322 6023	0.07322 6023	0.07322	0.07322 6023	0.07322 6023	0.07322 6023	0.07322 6023	0.07322 6023	0.07322 6023	0.073
CF 3254	0.07322 6023	0.07322 6023	0.07322 6023	0.07322 6023	0.07322 6023	0.07322 6023	0.07322 6023	0.07322 6023	0.07322 6023	0.07322 6023	0.07322 6023	0.07322 6023	0.07322 6023	0.07322 6023	0.073
Batari	0.07322 6023	0.07322 6023	0.07322 6023	0.07322 6023	0.07322 6023	0.07322 6023	0.07322 6023	0.07322 6023	0.07322 6023	0.07322 6023	0.07322 6023	0.07322 6023	0.07322 6023	0.07322 6023	0.073
	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
									-						w

E-ISSN: 1817-3195

www.jatit.org

ALTERNATIF	Dewata	Bhaska ra	Kathur	Juwita	Prima Agriho rti	Rabani Agriho rti	CF 3251	FRT 598	Maruti	Red Thund er	Robin	AFN CR01	CF 3254	Batari	rata- rata
Dewata	0.08735	0.08735	0.08735	0.08735	0.08735	0.08735	0.08735	0.08735	0.08735	0.08735	0.08735	0.08735	0.08735	0.08735	0.08735
Bhaskara	0.08735 5553	0.08735	0.08735	0.08735 5553	0.08735	0.08735	0.08735	0.08735	0.08735	0.08735	0.08735	0.08735	0.08735	0.08735	0.08735
Kathur	0.07487 6188	0.07487 6188	0.07487 6188	0.07487 6188	0.07487	0.07487 6188	0.07487 6188	0.07487	0.07487 6188	0.07487 6188	0.07487 6188	0.07487 6188	0.07487 6188	0.07487 6188	0.07487
Juwita	0.06551 6665	0.06551 6665	0.06551 6665	0.06551 6665	0.06551 6665	0.06551 6665	0.06551 6665	0.06551 6665	0.06551 6665	0.06551 6665	0.06551 6665	0.06551 6665	0.06551 6665	0.06551 6665	0.06551
Prima Agrihorti	0.04764 8483	0.04764	0.04764 8483	0.04764 8483	0.04764	0.04764	0.04764 8483	0.04764 8483	0.04764	0.04764 8483	0.04764 8483	0.04764 8483	0.04764 8483	0.04764	0.04764 8
Rabani Agrihorti	0.05241 3332	0.05241	0.05241	0.05241	0.05241	0.05241	0.05241	0.05241 3332	0.05241	0.05241	0.05241	0.05241	0.05241	0.05241	0.05241
CF 3251	0.06551 6665	0.06551 6665	0.06551 6665	0.06551 6665	0.06551 6665	0.06551 6665	0.06551 6665	0.06551 6665	0.06551 6665	0.06551 6665	0.06551 6665	0.06551 6665	0.06551 6665	0.06551 6665	0.06551
FRT 598	0.10482 6663	0.10482 6663	0.10482 6663	0.10482 6663	0.10482 6663	0.10482 6663	0.10482 6663	0.10482 6663	0.10482 6663	0.10482 6663	0.10482 6663	0.10482 6663	0.10482 6663	0.10482 6663	0.10482
Maruti	0.05823	0.05823	0.05823	0.05823	0.05823	0.05823	0.05823 7035	0.05823	0.05823	0.05823	0.05823	0.05823	0.05823	0.05823	0.05823
Red Thunder	0.05823	0.05823 7035	0.05823 7035	0.05823	0.05823 7035	0.05823 7035	0.05823 7035	0.05823	0.05823	0.05823 7035	0.05823 7035	0.05823	0.05823 7035	0.05823	0.05823
Robin	0.08735	0.08735	0.08735	0.08735	0.08735	0.08735 5553	0.08735	0.08735	0.08735	0.08735	0.08735	0.08735	0.08735	0.08735	0.08735
AFN CR01	0.04031 7947	0.04031 7947	0.04031 7947	0.04031 7947	0.04031 7947	0.04031 7947	0.04031 7947	0.04031 7947	0.04031 7947	0.04031 7947	0.04031 7947	0.04031 7947	0.04031 7947	0.04031 7947	0.04031 8
CF 3254	0.06551 6665	0.06551 6665	0.06551 6665	0.06551 6665	0.06551 6665	0.06551 6665	0.06551 6665	0.06551 6665	0.06551 6665	0.06551 6665	0.06551 6665	0.06551 6665	0.06551 6665	0.06551 6665	0.06551
Batari	0.10482 6663	0.10482 6663	0.10482 6663	0.10482 6663	0.10482 6663	0.10482 6663	0.10482 6663	0.10482 6663	0.10482 6663	0.10482 6663	0.10482 6663	0.10482 6663	0.10482 6663	0.10482 6663	0.10482
	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1

Table 9 Fruit Savings Power

Table 10. Age Start Harvesting

ALTERNATIF	Dewata	Bhaska ra	Kathur	Juwita	Prima Agriho rti	Rabani Agriho rti	CF 3251	FRT 598	Maruti	Red Thund er	Robin	AFN CR01	CF 3254	Batari	rata- rata
Dewata	0.05229	0.05229 284	0.05229 284	0.05229 284	0.05229 284	0.05229 284	0.05229	0.05229 284	0.05229 284	0.05229 284	0.05229 284	0.05229 284	0.05229 284	0.05229 284	0.05225
Bhaskara	0.06436 0418	0.06436 042	0.06436 0418	0.06436 0418	0.06436 0418	0.06436 0418	0.06436 0418	0.06436 0418	0.06436 0418	0.06436 0418	0.06436 0418	0.06436 0418	0.06436 0418	0.05436 0418	0.06434
Kathur	0.04827 0314	0.04827 031	0.04827 0314	0.04827 0314	0.04827 0314	0.04827 0314	0.04827 0314	0.04827 0314	0.04827 0314	0.04827 0314	0.04827 0314	0.04827 0314	0.04827 0314	0.04827 0314	0.0482
Juwita	0.05229 284	0.05229 284	0.05229 284	0.05229 284	0.05229 284	0.05229 284	0.05229 284	0.05229 284	0.05229 284	0.05229 284	0.05229 284	0.05229 284	0.05229 284	0.05229 284	0.05225
Prima Agrihorti	0.10619	0.10619	0.10619	0.10619 469	0.10619	0.10619	0.10619	0.10619	0.10619	0.10619 469	0.10619	0.10619	0.10619 469	0.10619 469	0.10619
Rabani Agrihorti	0.11665	0.11665	0.11665	0.11665	0.11665	0.11665	0.11665	0.11665	0.11665	0.11665	0.11665	0.11665	0.11665	0.11665	0.1166
CF 3251	0.05711 9871	0.05711 987	0.05711 9871	0.05711 9871	0.05711 9871	0.05711 9871	0.05711 9871	0.05711 9871	0.05711 9871	0.05711 9871	0.05711 9871	0.05711 9871	0.05711 9871	0.05711 9871	0.0571 9871
FRT 598	0.07240 5471	0.07240 547	0.07240 5471	0.07240 5471	0.07240 5471	0.07240 5471	0.07240 5471	0.07240 5471	0.07240 5471	0.07240 5471	0.07240 5471	0.07240 5471	0.07240 5471	0.07240 5471	0.0724
Maruti	0.06838 2944	0.06838 294	0.06838 2944	0.06838 2944	0.06838 2944	0.06838 2944	0.06838 2944	0.06838 2944	0.06838 2944	0.06838 2944	0.06838	0.06838 2944	0.06838	0.06838 2944	0.06833
Red Thunder	0.11263 0732	0.11263 073	0.11263 0732	0.11263 0732	0.11263 0732	0.11263 0732	0.11263 0732	0.11263 0732	0.11263 0732	0.11263 0732	0.11263 0732	0.11263 0732	0.11263 0732	0.11263 0732	0.1126
Robin	0.07481 8986	0.07481 899	0.07481 8986	0.07481 8986	0.07481 8986	0.07481 8986	0.07481 8986	0.07481 8986	0.07481 8986	0.07481 8986	0.07481 8986	0.07481 8986	0.07481 8986	0.07481 8986	0.0748
AFN CR01	0.06918 745	0.06918 745	0.06918 745	0.06918 745	0.06918 745	0.06918 745	0.06918 745	0.06918 745	0.06918 745	0.06918 745	0.06918 745	0.06918 745	0.06918 745	0.06918 745	0.06913
CF 3254	0.05229 284	0.05229 284	0.05229 284	0.05229 284	0.05229 284	0.05229 284	0.05229 284	0.05229 284	0.05229 284	0.05229 284	0.05229 284	0.05229 284	0.05229 284	0.05229 284	0.0522
Batari	0.05309 7345	0.05309 735	0.05309 7345	0.05309 7345	0.05309 7345	0.05309 7345	0.05309 7345	0.05309 7345	0.05309 7345	0.05309 7345	0.05309 7345	0.05309 7345	0.05309 7345	0.05309 7345	0.0530
	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1

w

www.jatit.org

E-ISSN: 1817-3195

ALTERNATIF	Dewata	Bhaska ra	Kathur	Juwita	Prima Agriho rti	Rabani Agriho rti	CF 3251	FRT 598	Maruti	Red Thund er	Robin	AFN CR01	CF 3254	Batari	rata- rata
Dewata	0.09357 4976	0.09357 4976	0.09357 4976	0.09357 4976	0.09357 4976	0.09357 4976	0.09062 532	0.09062 532	0.09062 532	0.09111 2659	0.09099 5115	0.09062 532	0.09062 532	0.09062 532	0.0919
Bhaskara	0.09357 4976	0.09357 4976	0.09357 4976	0.09357 4976	0.09357 4976	0.09357 4976	0.09062	0.09062 532	0.09062 532	0.09111 2659	0.09099	0.09062	0.09062 532	0.09062 532	0.0919
Kathur	0.06102 7158	0.06102 7158	0.06102 7158	0.06102 7158	0.06102 7158	0.06102 7158	0.05910 3469	0.05910 3469	0.05910 3469	0.05942 1299	0.05934 464	0.05910 3469	0.05910 3469	0.05910 3469	0.0599
Juwita	0.09357 4976	0.09357 4976	0.09357 4976	0.09357 4976	0.09357 4976	0.09357 4976	0.09062 532	0.09062 532	0.09062 532	0.09111 2659	0.09099 5115	0.09062	0.09062 532	0.09062 532	0.0919
Prima Agrihorti	0.06102 7158	0.06102 7158	0.06102 7158	0.06102 7158	0.06102 7158	0.06102 7158	0.09062	0.09062	0.09062	0.09111 2659	0.09099	0.09062	0.09062	0.09062	0.0780
Rabani Agrihorti	0.09357	0.09357	0.09357 4976	0.09357	0.09357	0.09357 4976	0.09062	0.09062	0.09062	0.09111 2659	0.09099	0.09062	0.09062	0.09062	0.0919
CF 3251	0.06380 112	0.06380	0.06380	0.06380	0.06380	0.06380	0.06178 9991	0.06178 9991	0.06178 9991	0.06212 2268	0.06204 2124	0.06178 9991	0.06178 9991	0.06178 9991	0.0626
FRT 598	0.06238 3317	0.06238 3317	0.06238 3317	0.06238 3317	0.06238 3317	0.06238 3317	0.06041 688	0.06041 688	0.06041 688	0.06074 1773	0.06066 341	0.06041 688	0.06041 688	0.06041 688	0.0613
Maruti	0.06238 3317	0.06238 3317	0.06238 3317	0.06238 3317	0.06238 3317	0.06238 3317	0.06041 688	0.05041 688	0.06041 688	0.06074 1773	0.06066 341	0.06041 688	0.06041 688	0.06041 688	0.0613
Red Thunder	0.06102	0.05102	0.06102	0.06102	0.06102	0.06102	0.05910 3469	0.05910 3469	0.05910 3469	0.05942	0.05934	0.05910 3469	0.05910 3469	0.05910 3469	0.0599
Robin	0.06102 7158	0.06102 7158	0.06102 7158	0.06102 7158	0.06102 7158	0.06102 7158	0.05910 3469	0.05910 3469	0.05910 3469	0.05812 9532	0.05934 464	0.05910 3469	0.05910 3469	0.05910 3469	0.0598
AFN CR01	0.06683	0.06683	0.06683	0.06683	0.05683 9269	0.06683	0.06473 2371	0.06473 2371	0.06473 2371	0.06366	0.06358	0.06473 2371	0.06473 2371	0.06473 2371	0.0654
CF 3254	0.06380	0.06380	0.06380	0.06380	0.06380	0.06380	0.06178	0.06178 9991	0.06178	0.06077	0.06069	0.06178	0.06178	0.06178	0.0625
Batari	0.06238	0.06238	0.06238	0.06238	0.06238	0.06238 3317	0.06041 688	0.06041 688	0.06041 688	0.05942	0.05934	0.05041 688	0.06041 688	0.06041 688	0.06111

ISSN: 1992-8645

w

Table 12 Fruit Forms

ALTERNATIF	Dewata	Bhaska ra	Kathur	Juwita	Prima Agriho rti	Rabani Agriho rti	CF 3251	FRT 598	Maruti	Red Thund er	Robin	AFN CR01	CF 3254	Batari	rata- rata
Dewata	0.08955 2239	0.09424 0838	0.09090 9091	0.08955 2239	0.08955	0.08955	0.08955	0.08510	0.08510	0.08955	0.08955	0.08955 2239	0.08955	0.08955 2239	0.05935
Bhaskara	0.02985 0746	0.03141 3613	0.02272 7273	0.02985 0746	0.02985 0746	0.02985 0746	0.02985 0746	0.08510	0.08510	0.02985 0746	0.02985 0746	0.02985 0746	0.02985	0.02985	0.03735
Kathur	0.04477 6119	0.06282 7225	0.04545 4545	0.04477 6119	0.04477 6119	0.04477 6119	0.04477 6119	0.04255	0.04255	0.04477 6119	0.04477 6119	0.04477 6119	0.05970	0.04477 6119	0.04686
Juwita	0.08955 2239	0.09424 0838	0.09090 9091	0.08955 2239	0.08955 2239	0.08955 2239	0.08955 2239	0.08510	0.08510	0.08955 2239	0.08955 2239	0.08955 2239	0.08955	0.08955 2239	0.08935
Prima Agrihorti	0.08955	0.09424	0.09090 9091	0.08955 2239	0.08955	0.08955	0.08955 2239	0.08510	0.08510	0.08955	0.08955	0.08955	0.08955	0.08955	0.08935
Rabani Agrihorti	0.08955 2239	0.09424	0.09090 9091	0.08955 2239	0.08955	0.08955	0.08955	0.08510	0.08510	0.08955	0.08955	0.08955	0.08955	0.08955	0.08935
CF 3251	0.08955	0.09424 0838	0.09090 9091	0.08955	0.08955	0.08955 2239	0.08955 2239	0.08510	0.08510	0.08955	0.08955 2239	0.08955 2239	0.08955	0.08955	0.08935
FRT 598	0.04477 6119	0.01047 1204	0.04545 4545	0.04477 6119	0.04477 6119	0.04477 6119	0.04477 6119	0.04255	0.04255	0.04477 6119	0.04477 6119	0.04477 6119	0.01492	0.04477 6119	0.03992
Maruti	0.04477 6119	0.01570 6806	0.04545 4545	0.04477 6119	0.04477 6119	0.04477 6119	0.04477 6119	0.04255	0.04255	0.04477 6119	0.04477 6119	0.04477 6119	0.05970	0.04477 6119	0.0435
Red Thunder	0.08955	0.09424 0838	0.09090 9091	0.08955	0.08955	0.08955	0.08955	0.08510	0.08510	0.08955	0.08955	0.08955	0.08955	0.08955	0.08935
Robin	0.08955 2239	0.09424 0838	0.09090 9091	0.08955 2239	0.08955 2239	0.08955 2239	0.08955 2239	0.08510	0.08510	0.08955 2239	0.08955 2239	0.08955 2239	0.08955	0.08955 2239	0.08935
AFN CR01	0.08955 2239	0.09424 0838	0.09090 9091	0.08955 2239	0.08955 2239	0.08955 2239	0.08955 2239	0.08510	0.08510	0.08955 2239	0.08955 2239	0.08955 2239	0.08955	0.08955 2239	0.08935
CF 3254	0.02985 0746	0.03141 3613	0.02272 7273	0.02985 0746	0.02985 0746	0.02985 0746	0.02985 0746	0.02127	0.02127	0.02985 0746	0.02985 0746	0.02985 0746	0.02985	0.02985 0746	0.02823
Batari	0.08955 2239	0.09424 0838	0.09090 9091	0.08955 2239	0.08955 2239	0.08955 2239	0.08955 2239	0.08510	0.08510	0.08955 2239	0.08955 2239	0.08955 2239	0.08955	0.08955	0.08935
	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1

www.jatit.org

ISSN: 1992-8645

E-ISSN: 1817-3195

ALTERNATIF	Dewata	Bhaska ra	Kathur	Juwita	Prima Agriho rti	Rabani Agriho rti	CF 3251	FRT 598	Maruti	Red Thund er	Robin	AFN CR01	CF 3254	Batari	rata- rata
Dewata	0.04156 7261	0.04156 7261	0.04156 7261	0.04156 7261	0.04156 7261	0.04156 7261	0.04156 7261	0.04156 7261	0.04156 7261	0.04156 7261	0.04156 7261	0.04156 7261	0.04156 7261	0.04156 7261	0.04150
Bhaskara	0.03151 4309	0.03151 4309	0.03151 4309	0.03151 4309	0.03151 4309	0.03151 4309	0.03151 4309	0.03151 4309	0.03151 4309	0.03151 4309	0.03151 4309	0.03151 4309	0.03151 4309	0.03151 4309	0.0315
Kathur	0.03343 4536	0.03343 4536	0.03343 4536	0.03343 4536	0.03343 4536	0.03343 4536	0.03343 4536	0.03343 4536	0.03343 4536	0.03343 4536	0.03343 4536	0.03343 4536	0.03343 4536	0.03343 4536	0.0334
Juwita	0.05032 1236	0.05032 1236	0.05032 1236	0.05032 1236	0.05032 1236	0.05032 1236	0.05032 1236	0.05032 1236	0.05032 1236	0.05032 1236	0.05032 1236	0.05032 1236	0.05032 1236	0.05032 1236	0.0503
Prima Agriborti	0.10763	0.10763	0.10763	0.10763	0.10763	0.10763	0.10763	0.10763	0.10763	0.10763	0.10763	0.10763	0.10763	0.10763	0.1076
Rabani Agrihorti	0.06353	0.06353 6914	0.06353	0.06353 6914	0.06353 6914	0.06353 6914	0.06353 6914	0.06353 6914	0.06353 6914	0.06353 6914	0.06353 6914	0.06353 6914	0.06353	0.06353	0.0635
CF 3251	0.04608	0.04608 5441	0.04608	0.04608	0.04608	0.04608 5441	0.04608	0.04608	0.04608	0.04608	0.04608	0.04608	0.04608	0.04608	0.0460
FRT 598	0.03524 1808	0.03524 1808	0.03524 1808	0.03524 1808	0.03524 1808	0.03524 1808	0.03524 1808	0.03524 1808	0.03524 1808	0.03524 1808	0.03524 1808	0.03524 1808	0.03524 1808	0.03524 1808	0.0352
Maruti	0.25663 2654	0.25663 2654	0.25663 2654	0.25663 2654	0.25663 2654	0.25663 2654	0.25663 2654	0.25663 2654	0.25663 2654	0.25663 2654	0.25663 2654	0.25663 2654	0.25663 2654	0.25663 2654	0.2566
Red Thunder	0.11052 2461	0.11052 2461	0.11052 2461	0.11052 2461	0.11052 2461	0.11052 2461	0.11052 2461	0.11052 2461	0.11052 2461	0.11052 2461	0.11052 2461	0.11052 2461	0.11052 2461	0.11052 2461	0.1105
Robin	0.06518 8873	0.06518 8873	0.06518 8873	0.06518 8873	0.06518 8873	0.06518 8873	0.06518 8873	0.06518 8873	0.06518 8873	0.06518 8873	0.06518 8873	0.06518 8873	0.06518 8873	0.06518 8873	0.0651
AFN CR01	0.09318 7473	0.09318 7473	0.09318 7473	0.09318 7473	0.09318 7473	0.09318 7473	0.09318 7473	0.09318 7473	0.09318 7473	0.09318 7473	0.09318 7473	0.09318 7473	0.09318 7473	0.09318 7473	0.0931
CF 3254	0.03690 2239	0.03690 2239	0.03690 2239	0.03690 2239	0.03690 2239	0.03690 2239	0.03690 2239	0.03690 2239	0.03690 2239	0.03690 2239	0.03690 2239	0.03690 2239	0.03690 2239	0.03690 2239	0.0369
Batari	0.02823 3263	0.02823 3263	0.02823 3263	0.02823 3263	0.02823 3263	0.02823 3263	0.02823 3263	0.02823 3263	0.02823 3263	0.02823 3263	0.02823 3263	0.02823 3263	0.02823 3263	0.02823 3263	0.0282
	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1

Table 14 Weight per fruit

ALTERNATIF	Dewata	Bhaska ra	Kathur	Juwita	Prima Agriho rti	Rabani Agriho rti	CF 3251	FRT 598	Maruti	Red Thund er	Robin	AFN CR01	CF 3254	Batari	rata- rata
Dewata	0.08127 4508	0.08127 4508	0.08127 4508	0.08127 4508	0.08127 4508	0.08127 4508	0.08127 4508	0.08127 4508	0.08127 4508	0.08127 4508	0.08127 4508	0.08127 4508	0.08127 4508	0.08127 4508	0.08127
Bhaskara	0.06966 3864	0.06966 3864	0.06966 3864	0.06966 3864	0.06966 3864	0.06966 3864	0.06966 3864	0.06966 3864	0.06966 3864	0.06966 3864	0.06966 3864	0.06966 3864	0.06966 3864	0.06966 3864	0.0696
Kathur	0.06649 7325	0.06649 7325	0.06649 7325	0.06649 7325	0.06649 7325	0.06649 7325	0.06649 7325	0.06649 7325	0.06649 7325	0.06649 7325	0.06649 7325	0.06649 7325	0.06649 7325	0.06649 7325	0.0664
Juwita	0.08605 5361	0.08605 5361	0.08605 5361	0.08605 5361	0.08605 5361	0.08605 5361	0.08605 5361	0.08605 5361	0.08605 5361	0.08605 5361	0.08605 5361	0.08605 5361	0.08605 5361	0.08605 5361	0.0860
Prima Agrihorti	0.05851 7646	0.05851 7646	0.05851 7646	0.05851 7646	0.05851 7646	0.05851 7646	0.05851 7646	0.05851 7646	0.05851 7646	0.05851 7646	0.05851 7646	0.05851 7646	0.05851 7646	0.05851 7646	0.0585
Rabani Agrihorti	0.10449 5796	0.10449	0.10449	0.10449 5796	0.10449	0.10449 5796	0.10449	0.10449	0.10449 5796	0.10449	0.10449 5796	0.10449	0.10449	0.10449	0.1044
CF 3251	0.06360 6137	0.06360 6137	0.06360 6137	0.06360 6137	0.06360 6137	0.06360 6137	0.06360 6137	0.06360 6137	0.06360 6137	0.06360 6137	0.06360 6137	0.06360 6137	0.06360 6137	0.06360 6137	0.0636
FRT 598	0.04876 4705	0.04876	0.04876 4705	0.04876 4705	0.04876	0.04876	0.04876 4705	0.04876 4705	0.04876	0.04876	0.04876 4705	0.04876 4705	0.04876 4705	0.04876 4705	0.0487
Maruti	0.04063	0.04063	0.04063	0.04063	0.04063	0.04063	0.04063	0.04063	0.04063	0.04063	0.04063	0.04063	0.04063	0.04063	0.0406
Red Thunder	0.04179 8318	0.04179 8318	0.04179 8318	0.04179 8318	0.04179 8318	0.04179 8318	0.04179 8318	0.04179 8318	0.04179 8318	0.04179 8318	0.04179 8318	0.04179 8318	0.04179 8318	0.04179 8318	0.0417
Robin	0.06360 6137	0.06360 6137	0.06360 6137	0.06360 6137	0.06360 6137	0.06360 6137	0.06360 6137	0.06360 6137	0.06360 6137	0.06360 6137	0.06360 6137	0.06360 6137	0.06360 6137	0.06360 6137	0.0636
AFN CR01	0.04063 7254	0.04063 7254	0.04063 7254	0.04063 7254	0.04063 7254	0.04063 7254	0.04063 7254	0.04063 7254	0.04063 7254	0.04063 7254	0.04063 7254	0.04063 7254	0.04063 7254	0.04063 7254	0.0406
CF 3254	0.12191 1762	0.12191 1762	0.12191 1762	0.12191 1762	0.12191 1762	0.12191 1762	0.12191 1762	0.12191 1762	0.12191 1762	0.12191 1762	0.12191 1762	0.12191 1762	0.12191 1762	0.12191 1762	0.1219
Batari	0.11253 3934	0.11253 3934	0.11253 3934	0.11253 3934	0.11253 3934	0.11253 3934	0.11253 3934	0.11253 3934	0.11253 3934	0.11253 3934	0.11253 3934	0.11253 3934	0.11253 3934	0.11253 3934	0.1125
	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1

www.jatit.org

E-ISSN: 1817-3195

	Table 15 Surface of Fruit Skin														
ALTERNATIF	Dewata	Bhaskara	Kathur	Juwita	Prima Agriborti	Rabani Agrihorti	CF 3251	FRT 598	Maruti	Red Thunder	Robin	AFN CR01	CF 3254	Batari	rata- rata
Dewata	0.125	0.125	0.125	0.125	0.125	0.125	0.125	0.125	0.125	0.125	0.125	0.125	0.125	0.125	0.125
Bhaskara	0.0625	0.0625	0.0625	0.0625	0.0625	0.0625	0.0625	0.0625	0.0625	0.0625	0.0625	0.0625	0.0625	0.0625	0.0625
Kathur	0.0625	0.0625	0.0625	0.0625	0.0625	0.0625	0.0625	0.0625	0.0625	0.0625	0.0625	0.0625	0.0625	0.0625	0.0625
Juwita	0.125	0.125	0.125	0.125	0.125	0.125	0.125	0.125	0.125	0.125	0.125	0.125	0.125	0.125	0.125
Prima Agrihorti	0.0625	0.0625	0.0625	0.0625	0.0625	0.0625	0.0625	0.0625	0.0625	0.0625	0.0625	0.0625	0.0625	0.0625	0.0625
Rabani Agrihorti	0.0625	0.0625	0.0625	0.0625	0.0625	0.0625	0.0625	0.0625	0.0625	0.0625	0.0625	0.0625	0.0625	0.0625	0.0625
CF 3251	0.0625	0.0625	0.0625	0.0625	0.0625	0.0625	0.0625	0.0625	0.0625	0.0625	0.0625	0.0625	0.0625	0.0625	0.0625
FRT 598	0.0625	0.0625	0.0625	0.0625	0.0625	0.0625	0.0625	0.0625	0.0625	0.0625	0.0625	0.0625	0.0625	0.0625	0.0625
Maruti	0.0625	0.0625	0.0625	0.0625	0.0625	0.0625	0.0625	0.0625	0.0625	0.0625	0.0625	0.0625	0.0625	0.0625	0.0625
Red Thunder	0.0625	0.0625	0.0625	0.0625	0.0625	0.0625	0.0625	0.0625	0.0625	0.0625	0.0625	0.0625	0.0625	0.0625	0.0625
Robin	0.0625	0.0625	0.0625	0.0625	0.0625	0.0625	0.0625	0.0625	0.0625	0.0625	0.0625	0.0625	0.0625	0.0625	0.0625
AFN CR01	0.0625	0.0625	0.0625	0.0625	0.0625	0.0625	0.0625	0.0625	0.0625	0.0625	0.0625	0.0625	0.0625	0.0625	0.0625
CF 3254	0.0625	0.0625	0.0625	0.0625	0.0625	0.0625	0.0625	0.0625	0.0625	0.0625	0.0625	0.0625	0.0625	0.0625	0.0625
Batari	0.0625	0.0625	0.0625	0.0625	0.0625	0.0625	0.0625	0.0625	0.0625	0.0625	0.0625	0.0625	0.0625	0.0625	0.0625
	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1

Preferred Ranking Result

ISSN: 1992-8645

The last stage of the AHP method is determining the ranking of alternatives by

calculating eigen vector for each criterion. Calculation results can be seen in table 16 below.

	1	H	R	D	U	w	БЪ	υъ	Вр	P				
Dewata	0.069	0.075 4996 3	0.073	0.087 3555 5	0.052 2928 4	0.091 9506 8	0.091 9506 8	0.089 3489 3	0.081 2745 0	0.125		0.17640 952		0.078
Bhaskara	0.065	0.072 8032 1	0.073	0.087 3555 3	0.064 3604 1	0.091 9506 8	0.091 9506 8	0.037 3422 2	0.069 6638 6	0.062		0.13711 3555		0.059
Kathur	0.068 20134 2	0.067 4103 \$7	0.073	0.074 8761 88	0.048 2703 14	0.059 9678 36	0.059 9678 36	0.046 3624 8	0.066 4973 25	0.062	1000	0.14730 2632		0.04
Juwita	0.063 27304	0.078 7353 32	0.073 226	0.065 5166 65	0.052 2928 4	0.091 9506 82	0.091 9506 82	0.089 3489 34	0.086 0553 61	0.125		0.10370 3895		0.03
Prima Agrihorti	0.040 15404 5	0.080 8924 64	0.045	0.047 6484 83	0.106 1946 9	0.078 0016 17	0.078 0016 17	0.089 3489 34	0.058 5176 46	0.062		0.12418 0783		0.02
RabaniAgrihorti	0.041 18988 5	0.053 9283 09	0.073 226	0.052 4133 32	0.116 6532 58	0.091 9506 82	0.091 9506 82	0.089 3489 34	0.104 4957 96	0.062		0.12228 3308		0.01
CF 3251	0.060 58958 5	0.097 0709 57	0.073 226	0.065 5166 65	0.057 1198 71	0.062 6936 47	0.062 6936 47	0.089 3489 34	0.063 6061 37	0.062	x	0.03418 4729	=	0.07
FRT 598	0.117 43381	0.036	0.073 226	0.104	0.072 4054	0.061 3004	0.061 3004	0.039 9244	0.048 7647	0.062	10000	0.04932 9233		0.05
Maruti	0.106 03177 4	0.070 1068 02	0.073 226	0.058 2370 35	0.068 3829 44	0.061 3004 55	0.061 3004 55	0.043 4967 36	0.040 6372 54	0.062 5		0.06300 5165		0.05
Red Thunder	0.068	0.053	0.073	0.058	0.112	0.059	0.059	0.089	0.041	0.062		0.04248		0.06
Robin	0.082 25495 2	0.080 8924 64	0.075	0.087 3555 53	0.074 \$189 \$6	0.059 8755 67	0.059 8755 67	0.089 3489 34	0.063 6061 37	0.062				0.05
AFN CR01	0.091 39439 1	0.064 7139 71	0.073	0.040 3179 47	0.069 1874 5	0.065 4770 76	0.065 4770 76	0.089	0.040	0.062				0.06
CF 3254	0.090	0.097	0.073 226	0.065	0.052 2928	0.062 5008	0.062	0.028 2286	0.121 9117	0.062				0.06
Batari	0.036	0.070 1068 02	0.073	0.104 8266 63	0.053 0973 45	0.061 1119 37	0.061 1119 37	0.089 3489 34	0.112 5339 34	0.062				0.07

Table 16 Alternative Ranking Results

529

<u>31st January 2019. Vol.97. No 2</u> © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645	www.jatit.org	

E-ISSN: 1817-3195

From the results above, the Dewata variety has the highest value, which is 0.07675691, so it can be chosen as the main variety chosen.

3.2 Application Design

The purpose of this prototype design is to initial description of the application, how the application and the application interface. This is so that the 1 application looks more attractive and easy to undersiuser (farmer) when operating.

3.2.1 Structure navigation

Design the menu structure of this application using a hierarchical navigation structure that can be seen in Figure 3.

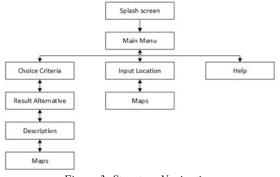


Figure 3: Structure Navigation

When the user starts the application, it starts with the splash screen that goes to the main menu page. In the main menu there are 3 menus, namely the Chili Seed Selection menu which will display the criteria selection, the Location Search menu to see the distribution of superior seeds in the form of a location map and the Help menu to guide the use of the application.

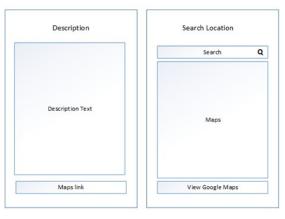
3.2.2 User Interface

This stage displays several user interfaces on the application, there are 7 views of the entire menu that the application has. In the first picture is the splash screen that starts when the application is opened and then the main page is followed. On the main page there are 3 buttons the first button selection menu is the Chili Seed Selection button, the second button is the Location Variety button and the third button is the Help button. In the third picture shows the Choice Criteria display where there are 10 list criteria choices, the Process button will continue to the Result page in the fourth image which shows the ranking of the superior chili seed varieties according to the selected criteria. When the results of the ranking of superior seed varieties are displayed, they will be able to see the detailed information of the alternatives shown in the fifth

And the Help page design view is shown in the last image The design can be seen in figure 4 below: MAIN MENU Background Button 1 Button 2


picture. The sixth image is a design for a location

search page to display the spread of superior seeds.


1. Splash screen

2...Main Menu screen

3. Choice Criteria screen

4. Result screen

5. Description screen

6. Input location screen

Journal of Theoretical and Applied Information Technology

<u>31st January 2019. Vol.97. No 2</u> © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645

www.jatit.org

3.2.3 Use Case Diagram

In the use case diagram design there are actors presented as users. Use case is used as an overview of functions in a system, and a connecting line between the actor and use case.

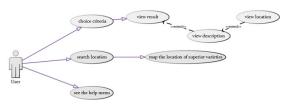
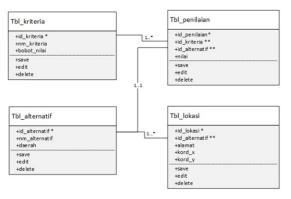



Figure 5: Use Case Diagram

3.2.4 Class Diagram

Class diagrams describe the structure of objects that make up the system and the relationships between classes of objects. There are 4 classes, namely tbl_kriteria, tbl_impoint, tbl_alternative and tbl location.

Figuure 6 : Class Diagram

4. CONCLUSION

From the results of data processing using the AHP method, the chili varieties of Dewata obtained the highest value for all criteria. From the results of this processing, the interface design is made to make it easier for users to choose chili seeds according to the desired criteria. The prototype design consists of 6 (six) display pages, namely the splash screen page, main menu, choice criteria, results, chili descriptions, location and help screen.

The Future work is to add a location map of each cayenne pepper seed.

This research can still be developed, namely by entering the land height's factor in the calculation of AHP.

7. Help screen

Figure 4: Interface Design

Splash screen describe the front page which is the start page when the application is opened. This page is a splash screen that contains a text box that displays the title of this page.

In Main menu screen there is 1 (one) text box containing the title of the page and 3 (two) button selections, namely the Chili Seed Selection button, the Location button and the Help button. If the user chooses the first button, the application will direct the user to the choice criteria page; if you choose the second button it will be directed to the Location screen, and if you choose the third button it will be directed to the Help screen.

The Choice Criteria screen is a page that appears after the user selects the menu on the Main Menu screen. Here the user can choose one or more criteria for cayenne chili they want by clicking on the existing criteria. After they have selected and pressed the process button the application will direct the user to the Results screen.

The Results page is a page that appears after the user presses the process button on the desired Chili Criteria screen. This screen will display all types of chilis that match the criteria that have been selected by the user. If the user clicks on one of these buttons then the application will move to the Chili Description screen.

Input Location screen is designed for location search, to display the spread of superior seeds and location of chili seed producers.

The Help screen is the page that appears when the user selects this menu on the Main Menu screen. On this page there is information about using the application. <u>31st January 2019. Vol.97. No 2</u> © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645

<u>www.jatit.org</u>

532

release of AFN CR01 hybrid chili as a superior variety

- [14] Decree of the Minister of Agriculture Number: 048/Kpts/SR.120/D.2.7/5/2017 concerning the release of Batari hybrid chili as a superior variety
- [15] Decree of the Minister of Agriculture Number: 96/Kpts/SR.120/D.2.7/7/2015 concerning the release of CF 3251 hybrid chili as a superior variety
- [16] Decree of the Minister of Agriculture Number: 004/Kpts/SR.120/D.2.7/1/2018 concerning the release of CF 3254 hybrid chili as a superior variety
- [17] Decree of the Minister of Agriculture Number: 1936/Kpts/SR.120/5/2012 concerning the release of FRT 598 hybrid chili as a superior variety
- [18] Decree of the Minister of Agriculture Number: 076/Kpts/SR.120/D.2.7/8/2013 concerning the release of Maruti hybrid chili as a superior variety
- [19] Decree of the Minister of Agriculture Number: 062/Kpts/SR.120/D.2.7/6/2017 concerning the release of Red Thunder hybrid chili as a superior variety
- [20] Decree of the Minister of Agriculture Number: 021/Kpts/SR.120/D.2.7/3/2018 concerning the release of Robin hybrid chili as a superior variety

ACKNOWLEDGMENT

This research was supported by Directorate of Research and Community Service, Directorate General of Research and Development Strengthening, Ministry of Research, Technology and Higher Education.

We would also like to show our gratitude to the Gunadarma University for support to our research.

REFERENCES:

- [1] Yenni Kusandriani, Agus Muharam, 2005
- [2] Efraim Turban, Jay E. Aronson, Ting-Peng Liang, "Decision Support System and Intelligent System (SistemPendukung Keputusan dan Sistem Cerdas)", Andi Publisher, Yogyakarta, 2005
- [3] Thomas L. Saaty, The Analytic Hierarchy Process. McGraw-Hill, New York, 1980
- [4] Bunafit Nugroho, "Aplikasi Sistem Pakar", Gava Media, Yogyakarta, 2014
- [5] Fowler, Martin, "UML Distilled Panduan Singkat Bahasa pemodelan Objek Standar", Edisi 3, Andi Publishing, Yogyakarta, 2004.
- [6] Thomas L. Saaty "Decision Making with the Analytic Hierarchy Process". International Journal of Services Sciences, 1(1) 83-98
- [7] Decree of the Minister of Agriculture Number 2082/Kpts/SR.120/5/2009 concerning the release of Bhaskara hybrid chili as a superior variety
- [8] Decree of the Minister of Agriculture Number: 45/Kpts/SR.120/9/2005 concerning the release of Dewata hybrid chili as a superior variety
- [9] Decree of the Minister of Agriculture Number: 346/Kpts/SR.120/9/2005 concerning the release of Juwita hybrid chili as a superior variety
- [10] Decree of the Minister of Agriculture Number: 343/Kpts/TP.240/6/2003 concerning the release of Kathur hybrid chili as a superior variety
- [11] Decree of the Minister of Agriculture Number: 112/Kpts/SR.120/D.2.7/9/2015 concerning the release of Prima Agrihorti hybrid chili as a superior variety
- [12] Decree of the Minister of Agriculture Number: 113/Kpts/SR.120/D.2.7/9/2015 concerning the release of Rabani Agrihorti hybrid chili as a superior variety
- [13] Decree of the Minister of Agriculture Number: 018/Kpts/SR.120/D.2.7/3/2018 concerning the

