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ABSTRACT 

In this paper, we propose a method for semi-supervised classification based on a group solution to cluster 
analysis in combination with Laplacian regularization of similarity graph. The averaged co-association 
matrix obtained with the cluster ensemble is considered as a similarity matrix in the regularization context. 
We use a low-rank representation of the matrix that allows us to speed-up computations and save memory 
in the solution of the derived system of linear equations. Both theoretical studies and numerical 
experiments on artificial data and hyperspectral imagery confirm the efficiency of the method. 

Keywords: Co-Association Matrix, Cluster Ensemble, Low-Rank Representation, Semi-Supervised 
Learning. 

1. INTRODUCTION  

 In pattern recognition problems, an ultimate 
goal is to perform a classification of sample objects 
described with a given feature set. With that, it is 
necessary to obtain an optimal value of a certain 
quality criterion (for example, to minimize the 
estimated error probability). A classifier is found 
using a training sample consisting of precedents – 
the objects with known classes they belong to. In 
the basic variant of the problem, class labels are 
known for all sample objects (fully supervised 
classification).  

In the given work we consider another 
variant – the task of semi-supervised classification. 
In this problem, class labels are known only for a 
part of the given sample; it is necessary to classify 
either available unlabeled objects or formulate a 
decision rule for new objects attributing to classes. 
This task is urgent due to the following reasons: as 
a rule, unlabeled data “are cheap” (in the case when 
the identification of classes is an expensive 
procedure); usage of unlabeled data jointly with 

labeled samples often allows one to involve 
additional information and provide significant 
improvement of the classification quality.  

Problems of such type arise in many applied 
areas, for example, in the analysis of tomographic 
images, when a specialist indicates the belonging of 
some image area to one or another class (tumor, 
degenerative changes, etc.). Manual segmentation 
of the images is rather time-consuming; often only 
a small part of available images, therefore, can be 
annotated. 

In the field of Earth remote sensing [1] and 
the problems of allocation in recovery well logging 
[2] the tools and technologies for hyperspectral 
imaging are actively used in the visible and 
near-infrared ranges of the spectrum. The 
hyperspectral image features are a large number of 
spectral channels (up to several hundred) under a 
small spectral width of each channel (of the order 
of several nanometers). Hyperspectral images are 
three-dimensional data arrays, in which two 
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dimensions correspond to spatial coordinates, and 
the third one corresponds to a spectral coordinate; 
therefore a hyperspectral image is called a 
spatial-spectral cube [3]. In many cases, the 
attributing of pixels to classes (vegetation or urban 
area types, etc.) requires field research and labeling 
for that reason is incomplete.  

There exist a large enough number of 
approaches and algorithms for semi-supervised 
classification [4]. Currently, there are widely used 
self-training heuristic algorithms, probabilistic 
methods, transduction support vector machine 
(TSVM), as well as the theoretic-graph approach 
(Graph Laplacian Regularization) [5-8]. This 
approach (known also as manifold regularization) 
assumes that if two data points belong to the same 
manifold, then with a large probability they share 
their class labels. Laplacian graph is used for 
measuring the smoothness degree in the manifold 
including both labeled and unlabeled data. To get 
an efficient solution, a combination of supervised 
and unsupervised classification (clustering) is 
acknowledged in the literature [9]. 

In cluster analysis, a group (ensemble) 
approach is actively developing [10-11]. The 
application of this approach allows one to reduce the 
dependence of grouping results on the choice of 
algorithm parameters and to obtain more stable 
solutions in the conditions of noisy data. The idea of 
constructing group solutions based on the 
composition of simple algorithms is actively used in 
modern theory and practice of machine learning and 
data mining. A collective decision function 
combines the advantages of each of the methods 
used in constructing a classifier. Besides that, the 
area of its best “competence” can be determined for 
each of the basic decision functions. 

Conceptually, the optimization model of 
applying the group solutions (cluster ensemble) is 
proposed in the following scheme below. The basis 
of the model has been offered in [12]. 

In Figure 1 the points М1,М2,...,Мα denote 
input data, which can be represented both as 
numeric values and images. A={A1, A2,…, Am} is a 
set of classification algorithms, operating on 
different principles. 𝑧

ଵ, 𝑧
ଶ,…, 𝑧

௧ are algorithms of 
group solutions (cluster ensemble). Every 𝑧 ∊𝑧 , 
iൌ1,2,…,t  makes a decision  based on outcomes 
of the set of algorithms A. Further, through F={F1, 
F2,…,Fn} we denote the quality criteria (validity) of 
algorithms both of the first level from А, and the 
second level from 𝑧 . The offered model allows 
scaling the multitudes А and 𝑧 dimensionality. The 
arrows directions in the model show the data stream 

subject to processing. As it is shown in Figure 1, the 
optimization model is presented as the networking 
model. One might exit from the network upon 
obtaining an appropriate result in terms of 
performance functionals.  

A practical application of cluster analysis 
has been contemplated in the work [13]. The 
authors have applied a tree-like Bayesian network 
and k-means for computing the conventional linear 
Gaussians for classification of positions in motion 
in a dance. The basic task for using cluster analysis 
is recognizing a dancer’s head motions, which in 
turn, play a considerable role in recognizing the 
whole body’s gestures.   

The works [14-15] offer an approach to 
neural network construction, which is not supported 
with a traditional one, based on the functional 
minimization. Rather, that approach is based on the 
operator’s theory, developed by Yu.I. Zhuravlyev 
[16] for solving the tasks of identification and 
classification. 

The above-mentioned network’s distinctive 
feature is the usage of diagonal functions activation 
in the inner layers, which considerably facilitates 
intermediate calculations in outer and inner cycles. 
Similar researches on applying the neural networks 
CNN for image identification have been described 
in the work [17]. The work studies a complete 
withdrawal of an intermediate layer and creation of 
an image descriptor with a lower dimensionality, 
excluding the activation of filters, corresponding to 
the media changes.  Thus, there is attained the 
objects’ visual recognition reliability. Interesting 
cluster analysis and ensemble algorithms for 
practical applications are described in [18-19]. The 
works solve the tasks of data interpretation, 
stratigraphy borders classification and lithology 
based on of the data of geophysical logging for 
uranium deposits. In [18] the problem is solved 
using several computer-aided learning algorithms: 
random forest, logistic regression, gradient rise of k 
nearest neighbor and XGBoost. The work [19] 
applies such algorithms as the artificial neural 
network (ANN), linear discriminant analysis 
classifier (LDAC), support vector machine (SVM) 
and k-Nearest-Neighbor (kNN). 
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Figure 1. Concept scheme (networking model) of cluster 
ensemble optimization results  

The main limitations of the existing methods 
for semi-supervised classification are in the 
following: 

- large computational complexity and 
memory demands; 

- poor resistance to noise. 

One of the serious problems in constructing 
an ensemble solution is the considerable complexity 
of the used search procedures. Existing algorithms 
are unable to analyze large-volume data.  

In this paper, a computationally efficient 
ensemble algorithm is proposed that is able to work 
with a large amount of data being analyzed. This 
article develops a collective approach in the context 
of its application to the analysis of hyperspectral 
images. We suggest a new method of 
semi-supervised classification using a combination 
of theoretical-graph approach, regularization 
technique and cluster ensemble. The idea of the 
method is in the usage of the averaged 
co-association matrix as a similarity matrix in the 
regularization context, as well as in a low-rank 
presentation of the matrix to decrease the demanded 
memory and computation cost. The usage of group 
clustering aims at increasing the quality and 
stability of results. 

In [20-21], a novel approach combining 
ensemble clustering and kernel-based learning was 
suggested for classification and regression analysis. 
The main idea is to consider the averaged 
co-association matrix calculated on the outputs of 
the ensemble as a similarity (kernel) matrix. Such a 
replacement has several grounds. Firstly, it might 

be assumed that objects from the same dense region 
(cluster) in the feature space have common class 
attributes, even if the given region has a complex 
form. From that point of view, such points are more 
similar to each other, than other points which are 
remote from each other on the same distance but 
belonging to different clusters. Secondly, it is 
known that the averaged co-association matrix 
defines a semi-metric on observation space [22]; it 
means that the frequencies of assigning object pairs 
to common clusters can be considered as similarity 
measures for corresponding data points. The 
obtained matrix depends on the outputs of 
clustering algorithms and often is less dependent on 
outliers than a conventional similarity matrix.  

Theoretical analysis using different kinds of 
ensemble models [24-25] shows that  the usage of 
group approach allows one to raise the stability of 
clustering results in case of uncertainty in data 
structure which occurs, for instance, when the true 
number of clusters is unknown; or when 
unnecessary, noisy features are used; if data have 
unknown complex structures (e.g., spiral-like, 
spherical clusters ).  

The work [26] suggests an algorithm of 
semi-supervised classification using a low-rank 
representation of the co-association matrix and 
linear algebraic transformations. However, in many 
applied tasks, these transformations are intractable 
due to large complexity of the problem and 
consequently a large size of the ensemble.  In this 
work, we suggest the usage of efficient iterative 
algorithms of solving a system of linear equations 
instead of troublesome matrix inversion procedures. 

The main contribution of this paper, in 
comparison with other works in the field, is in the 
involving efficient gradient descent iterative 
algorithms for an approximate solution of systems 
of linear equations to find the predicted class labels. 
We also consider a new application of the 
developed algorithm in the problem of 
hyperspectral imagery semi-supervised 
classification. 

The paper aims at validating the proposed 
methodology and summarizing our previous work.  
Further, in the article we give a mathematical 
problem statement, made a short overview of 
existing methods for semi-supervised classification. 
We describe the suggested method, discuss its 
properties and carry out an experimental evaluation. 
Finally, we give some concluding remarks. 

2. MATHEMATICAL PROBLEM 
STATEMENT FOR SEMI-SUPERVISED 
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CLASSIFICATION AND RELATED WORK 

Let there be an entire population 𝛤 of recognizing 
objects and finite set of class labels 
C={c1,…,ck,…,cK}. Each object 𝑎𝜖𝛤  is described 
with attributes (feature set) X=(X1,…, Xd). Let us 
denote through  𝑋ሺ𝑎ሻ the Xj attribute value for 
the object  𝑎 . Depending on the values and 
admissible operations with them, the attributes are 
of the following types:  

- binary feature: 𝑋ሺ𝑎ሻ ∈ ሼ0,1ሽ;  
- quantitative feature: 𝑋ሺ𝑎ሻ ∈ 𝑅;  
- categorical feature: 𝑋ሺ𝑎ሻ ∈ 𝐺: a finite 

set of unordered values;  
- ordered feature: 𝑋ሺ𝑎ሻ ∈ 𝐷:  a finite 

ordered set.  
In this work, we will consider only 

quantitative attributes. Under the prescribed 
attributes, the set 𝑥ሺ𝑎ሻ ൌ ሺ𝑋ଵሺ𝑎ሻ, … , 𝑋ௗሺ𝑎ሻሻ  is 
called a feature description (observation) of the 
object 𝑎 ∈ 𝛤 . Let there be a data sample 
𝑿 ={ 𝑥ଵ, … , 𝑥 } of observations for objects 
𝑎ଵ, … , 𝑎 , where xi=x(ai). In the problem of 
semi-supervised classification there are two types 
of samples:  

 𝑿𝟏 ൌ ሼ𝑥ଵ, … , 𝑥భሽ: describes objects 
𝑎ଵ, … , 𝑎భ  with known class labels 𝒀𝟏 ൌ
ሼ𝑦ଵ, … , 𝑦భሽ, where 𝑦 ∈ 𝐶 is the label of the class 
to which the object ai, i=1,…,n1  belongs;  

 𝑿𝟎 ൌ ሼ𝑥భାଵ, … , 𝑥ሽ is a description of 
unlabeled objects (without loss of generality, we 
assume, that the first 𝑛ଵ sample objects are labeled, 
and the next in ones are unlabeled). 

There exist two main versions of the 
problem statement. In the first version it is 
demanded to conduct inductive teaching, i.e., to 
construct a classifier 𝑓: 𝑋 → 𝑌  which attributes 
class labels to objects from  X0 and arbitrary new 
observations. In the second variant of the problem 
statement it is necessary to carry out transduction 
learning, that is to define the class labels 𝒀𝟎 ൌ
ሼ𝑦భାଵ, … , 𝑦ሽ   only for the objects from X0. Both 
in the first and second cases there is used some 
quality functional of classification. The given work 
considers the second version of the problem 
statement.  

Let us consider some most frequently used 
approaches to supervised learning.  

2.1. Self-training 

In this approach, there is used some basis fully 
supervised classification algorithm. At the first step, 
the algorithm is trained at the labeled sample and 

further classifies the unlabeled part. For each 
classified object there is computed a recognition 
quality estimate (for instance, the distance to the 
separating hyperplane). At the next step, those 
observations for which the quality estimate is 
higher than the prescribed threshold, are excluded 
from X0 and added to X1, and their labels replenish 
the set Y1. Subsequently, the basic algorithm is 
applied again to training on the integrated sample 
and classification of the remained unlabeled part.  
The procedure is repeated until no unlabeled 
objects remain.  

The methods based on this heuristic 
procedure, as a rule, are enough effective, however 
theoretical analysis of their properties is a 
troublesome problem.   

2.2. Probabilistic approach 

For the given approach, it is assumed that for each 

class  there exists a conditional distribution 

pj(x|𝜃 ) in feature space, where 𝜃  is a set of 
distribution parameters, k=1,…,K. It is supposed the 
distribution type is known (for instance, normal), 
and its parameters should be evaluated by sample. 
Let us denote 𝜃 ൌ ሺ𝜃ଵ, … , 𝜃ሻ,  and let 𝑞 ൌ
𝑞ଵ, … , 𝑞  be a set of classes prior probabilities. 
Then for the labeled point 𝑥𝜖𝑿𝟏, for which yi=ck, 
according to the chain rule, we obtain:  

p(xi,yi |𝜃ሻ ൌ 𝑞𝑝ሺ𝑥 | 𝜃) 

 

According to total probability formula, for 
unlabeled point 𝑥 ∈ 𝑿  

 

p(xi |𝜃ሻ ൌ ∑ 𝑞𝑝ሺ𝑥 | 𝜃ሻ
ୀଵ . 

 

It is possible to consider the problem of likelihood 
maximization: 

 

ሺ𝑞∗, 𝜃∗ሻ=arg max
,ఏ

ሼ∑ log 𝑝ሺ𝑥, 𝑦|𝜃ሻ௫ఢభ 

 ∑ log 𝑝ሺ𝑥|𝜃ሻ௫ఢబ ሽ 

 

s.t.: ∑ 𝑞 ൌ 1, ∀𝑖, 𝑞  0. 

The solution can be found by iterative algorithms, 
for example, EM algorithm for distribution 
mixtures [27]. After specifying the optimal 𝑞∗ ൌ
ሺ𝑞ଵ

∗, … , 𝑞
∗ ሻ, 𝜃∗ ൌ ሺ𝜃ଵ

∗, … , 𝜃
∗ ሻ, the classification of 

the unlabeled objects is performed according to 

kc
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Bayes formula:   

𝑓ሺ𝑥ሻ ൌ 𝑐∗, 

where 

 

  𝑘∗ ൌ 𝑎𝑟𝑔 𝑚𝑎𝑥


ሼ 𝑞
∗ 𝑝ሺ𝑥|𝜃

∗ሻሽ, i=n1+1,…,n 

 

A disadvantage of the approach is in the fact that 
upon the significant violation of the assumptions on 
the probabilistic model, the found decisions have 
poor accuracy. 

2.3. Transduction support vector machine  

The basis of the given method is Support Vector 
Machine (SVM) methodology for binary 
classification (which can be extended to a 
multiclass problem). In the basic statement, it is 
needed to find the hyperplane for which the 
separating margin width is maximal. The input is a 
training sample X with class labels Y={y1,…,y1}, 
𝑦 ∈ ሼെ1, 1ሽ,  i=1,…,n. In the case of linear 
separability, there exists an infinite number of 
separating hyperplanes. It is reasonable to select the 
hyperplane, the distance from which to both classes 
is maximal. The points lying at the margin border 
are called support vectors.   

Let us present the hyperplane equation in 
the form 〈𝑤, 𝑥〉  𝑏 ൌ 0, where 〈 ,〉 is a scalar 
product, w is a vector perpendicular to the 
separating hyperplane and b is a parameter. SVM 
constructs a decision function in the following form  

 

f(x)=sign(∑ 𝛼𝑦 〈𝑥, 𝑥〉  𝑏
ୀଵ  

 

where 𝛼ଵ,…,𝛼  0 are some parameters; at that, 
the normalization condition 〈𝑤, 𝑥〉  𝑏 ൌ േ1 for 
support vectors should be fulfilled. It is important 
to note that the summation is carried out only for 
those support vectors for which 𝛼 ് 0.  

For the transductive SVM, the hyperplane 
shall be drawn in the way it separates with a 
maximum margin width not only labeled points X1, 
but also unlabeled points X0. Consequently, the 
hyperplane should pass through the area with the 
lowest density. The optimization task can be 
formulated as follows: 

 
find 

 Y0, w, b, ξ : 
ଵ

ଶ
‖𝑤‖ଶ  𝐶 ∑ 𝜉 → 𝑚𝑖𝑛

బ,௪,,క
 , 

 

s.t.: 

 

𝑦ሺ〈𝑤, 𝑥〉  𝑏ሻ  1 െ 𝜉, 𝑖 ൌ 1, … , 𝑛, 

ξi  0, i=1,…,n 

 

where ξ1,…, ξn are variables which have the 
meaning of the penalty value for the margin border 
violation, 𝐶  0  is a prescribed parameter. 
Consequently, there is maximized the margin width 
(one may show that the condition herein is 
equivalent to minimization of ‖𝑤‖ଶ), and the total 
penalty for the margin borders violation is 
minimized.  

There exist algorithms for the given task 
approximate solution [28]; for this purpose, there is 
solved a corresponding dual problem for parameters 
α1,…,αn. 

Upon a linear inseparability of classes, the 
transformation φ: X→X’ of the initial space X into a 
new space X’ of higher dimensionality can be 
performed. In the new space, the objects can 
already be linearly separable. A decision function 
f(x) depends on the vector scalar product, not on the 
objects immediately. Therefore the scalar product 
〈𝑥, 𝑧〉 can be replaced with the products of the type 
〈𝜑ሺ𝑥ሻ, 𝜑ሺ𝑧ሻ〉 in the rectifying space X’. In this case, 
the decision function has the form:   

 

f(x)=sign(∑ 𝛼𝑦〈𝜑ሺ𝑥ሻ, 𝜑ሺ𝑥ሻ〉  𝑏
ୀଵ  

 

Function K(x,z)=〈𝜑ሺ𝑥ሻ, 𝜑ሺ𝑧ሻ〉 is called a kernel. 
The transition from a scalar product to a kernel is a 
“kernel trick”.  

The selection of a kernel defines an 
implicit transformation to rectifying space and 
allows applying linear algorithms (in particular, 
SVM) to linearly inseparable sample. For 
kernel-based methods, the Mercer’s theorem [29] is 
widely known. It establishes necessary and 
sufficient conditions for a function to be a kernel. 
According to the theorem, continuous (or defined 
on a finite set) function K(x,z) is a kernel then and 
only then, when it is symmetric: K(x,z)=K(z,x) and 
positive semi-definite: for any finite sample (x1,… 
xp), given matrix K=(K(xi,xj)) and any 𝑧 ∈ R୮ , it 
holds true: zTKz 0. 

It is known that the optimization problem 
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for transductive SVM is nonconvex, and known 
algorithms of its approximate solution are of 
polynomial cost. Therefore the approach can be 
applied to samples of comparatively small size 
(about a thousand observations). 

2.4. Graph Laplacian regularization  

Let us consider a weighted non-directed complete 
graph G=(V,E), in which the set of vertices V 
corresponds to observations from X, and the set of 
edges E corresponds to pairs (xi,xj), i, j=1,…,n, i് 𝑗. 
Each edge (xi,xj) is associated with a nonnegative 
number (weight) Wij, having the meaning of  the 
given pair degree of similarity. For example, the 
weight can be defined using RBF function: 

 

Wij=exp൬െ
ฮ௫ି௫ೕฮ

ଶఙమ ൰ 

 

where 𝜎 is a prescribed parameter. 

Let 𝑌 ൌ ሺ𝑌ଵ, … , 𝑌ሻ  denote a Boolean 
vector of the observed associations with 
classes: 𝑌 ൌ 𝑰[yi=ck],  where 𝐈[ꞏ] is a predicate 
function: I[true]=1, I[false]=0, i=1,…,n1, k=1,…,K. 
Let us denote through Fi=(Fi1,…,FiK) a 
classification vector, in which the element Fi  0 
has a sense of the degree of belonging of point xi to 
class cj, and let the classification matrix of 
dimensionality  n ൈ 𝐾  be specified as F ൌ
ሺ𝐹ଵ, … , 𝐹ሻ். 

Let us consider the following optimization 
task: find 

𝐹∗ ൌ arg min
ி∈ோൈ಼

𝑄ሺ𝐹ሻ ൌ
ଵ

ଶ
ቆ∑ ‖𝐹 െ െ𝑌‖ଶ

௫∈భ   

𝛽 ∑ 𝑊௫௫ೕఢ𝑿 ฯ
ி

ඥ
െ

ிೕ

ඥೕೕ
ฯ

ଶ

ቇ,    (1) 

providing 𝐹  0, where 𝛽  0 is a regularization 
parameter. The first sum in the right part of (1) is 
aimed at minimizing the labeled data fitting error; 
the second component plays the role of a smoothing 
function: its minimization means that if two points 
𝑥, 𝑥  (labeled or unlabeled) are similar, then their 
classification vectors shall not differ much. It is 
known that the function being optimized is convex.  

Let us introduce a diagonal matrix 𝐷  
with components 𝐷 ൌ ∑ 𝑊 . The matrix  

 

𝐿 ൌ 𝐼 െ 𝐷ିଵ/ଶ𝑊𝐷ିଵ/ଶ 

 

is called the normalized Laplacian, I is an identity 
matrix. The matrix has dimensionality 𝑛 ൈ 𝑛; its 

element 𝐿  equals 𝐿 ൌ 𝛿 െ
ௐೕ

ඥඥೕೕ
, where 

𝛿ୀ𝑰[i=j] is the Kronecker symbol. Note that there 
are other variants of graph Laplacian definition [3]. 

To find the optimal solution, we differentiate 
(1), and after simple transformations obtain: 

డொ

డிೖ
|ிೖୀிೖ

∗ ൌ 𝐹
∗ െ 𝑌+𝛽𝐹

∗ െ 𝐿,∙𝐹∙,
∗ ൌ 0  (2) 

𝑖 ൌ 1, … , 𝑛ଵ,   

డொ

డிೖ
|ிೖୀிೖ

∗ ൌ 𝛽𝐹
∗ െ 𝛽𝐿,∙𝐹∙,

∗ ൌ 0,   (3) 

𝑖 ൌ 𝑛ଵ  1, … , 𝑛 

where 𝐿,∙, 𝐹∙,
∗  is the ith row of matrix L and kth 

column of matrix 𝐹∗  accordingly, i=1,…,n1, 
k=1,…,K. Let us denote through 𝑌ଵ, the matrix  

 

𝑌ଵ, ൌ ሺ𝑌ଵ, … , 𝑌భ, 0, … ,0ᇣᇤᇥ
ିభ

  ሻ் 

 

of dimensionality 𝑛 ൈ 𝐾,  and through 𝐼ଵ,  the 
diagonal nൈ 𝑛 matrix:  

 

𝐼ଵ, ൌ 𝑑𝑖𝑎𝑔ሺ𝐼ଵଵ … , 𝐼ሻ, 𝐼 ൌ ൜
1, 𝑖 ൌ 1, … , 𝑛ଵ

0, 𝑖 ൌ 𝑛ଵ  1, … , 𝑛.    (4) 

 

Then (2) and (3) can be rewritten in matrix form: 
 

(𝐼ଵ,  𝛽𝐿)𝐹∗ ൌ 𝑌ଵ,,          (5) 
 

from which 
 

𝐹∗ ൌ ሺ𝐼ଵ,  𝛽𝐿ሻିଵ𝑌ଵ,, (6) 
 

if the inverse matrix exists (note that the 
regularization parameter 𝛽 can be chosen in the 
way to ensure well conditioning of the obtained 
task).  

To find the solution, one may use iterative 
methods. For example, the work [6] describes Label 
Spreading iterative algorithm used for solving the 
task analogous to (6). Apart from that, we may 
apply existing methods for solving linear equations 
systems, where each system is considered 
concerning corresponding columns 𝐹∗, 𝑌ଵ, in (5). 
After computing 𝐹 ൌ 𝐹∗, the final classification is 
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defined according to the formula: 

   
𝑦 ൌ 𝑐∗ 

 
where 

 
 𝑘∗ ൌ 𝑎𝑟𝑔 max

ୀଵ,…,
𝐹, 𝑖 ൌ 𝑛ଵ  1, … , 𝑛.  (7) 

 
A limitation of the given approach is that it 

operates with non-sparse graph Laplacian matrix of 
dimensionality 𝑛 ൈ 𝑛 which results in a large cost 
of matrix operations and memory demand. 

3. SUGGESTED METHOD 

The method is based on a combination of collective 
cluster analysis and theoretical graph approach. The 
main idea is in the usage of the averaged 
co-association matrix of cluster ensemble as a 
similarity matrix in (1).  

3.1. Cluster ensemble and averaged 
co-association matrix  

According to group approach in clustering, we 
consider several different clustering partitions of 
the same data and integrate them to find the overall 
consensus partition.  

As a rule, each partition variant is formed 
according to the parameters of the clustering 
algorithm selected at random from an admissible 
set of parameters. One can also vary the algorithm’s 
settings (such as distance type, initialization, feature 
subspace) to get different variants of partitioning.  

In our task, we do not need to partition data: 
our primary goal is to perform a classification of 
the unlabeled sample. The used information 
obtained by multiple clustering can be presented in 
the form of the averaged co-association matrix. 

Let us consider r partition variants ሼ𝑃ሽୀଵ
 , 

where 𝑃 ൌ ሼ𝐶,ଵ, … , 𝐶,
ሽ , 𝐶,

⊂ 𝑿,   𝐶,
∩

𝐶,ᇲ = ∅ , 𝐾  is the number of clusters in the 
partition variant. For each 𝑃  we define matrix 
𝐻=ሺ𝐻ሺ𝑖, 𝑗ሻሻ,ୀଵ

 , the elements of which indicate 
wether a pair 𝑥, 𝑥 belongs to the same cluster in 
the l-variant or not: 

         𝐻ሺ𝑖, 𝑗ሻ ൌ 𝑰ሾcሺ𝑥ሻ ൌ c𝒍൫𝑥൯ሿ,  

where 𝑐ሺ𝑥ሻ denotes the cluster label assigned to 
point x. Weighted averaged coassociation matrix is 
defined as follows:  

𝐻 ൌ ൫𝐻ሺ𝑖, 𝑗ሻ൯
,ୀଵ


, 𝐻ሺ𝑖, 𝑗ሻ ൌ  𝑤𝐻ሺ𝑖, 𝑗ሻ



ୀଵ

 

where 𝑤ଵ ,…,𝑤  are weights, 𝑤  0, ∑ 𝑤 ൌ 1. 
The weights can be identical or can be selected 
proportionally to some quality index of each 
clustering variant. 

It was shown in [11] that matrix H is 
symmetric and positive semi-definite. Thus, 
according to Mercer’s condition, it is possible to 
use it as a kernel matrix in kernel-based 
classification methods such as SVM or kNN. Below 
we describe basic steps of algorithms CASVM and 
CANN which implement the combination scheme. 

Algorithm CASVM  

Input: data set 𝑿𝟏 with known class labels 𝒀𝟏; 
unlabeled data 𝑿𝟎; number of clustering variants r;  
Output: predicted class labels 𝒀𝟎.  
Steps: 
1. Generate r variants of the partition of 𝑿 ൌ
𝑿𝟏 ∪ 𝑿𝟎 using a given clustering algorithm with 
randomly chosen parameters; calculate quality 
indices and weights 𝑤ଵ,…,𝑤; 
2. Calculate the averaged co-association matrix Н.  
3. Train SVM at labeled data 𝑿𝟏 using matrix Н as 
a kernel matrix.  
4. Predict 𝒀𝟎 using the trained SVM.   
end 

Algorithm CANN:  

Input: data set 𝑿𝟏 with known class labels 𝒀𝟏; 
unlabeled data 𝑿𝟎; number of clustering variants r;  
Output: predicted class labels 𝒀𝟎.  
Steps: 
1. Generate r variants of the partition of 𝑿 ൌ
𝑿𝟏 ∪ 𝑿𝟎 using a given clustering algorithm with 
randomly chosen parameters; calculate quality 
indices and weights 𝑤ଵ,…,𝑤; 
2. Calculate the averaged co-association matrix Н.  
3. Apply nearest neighbor method:  for each 
unlabelled object 𝑥 ∈ 𝑿𝟎 find a class label of the 
most similar (according to H) labeled object 𝑥ᇱ ∈
𝑿𝟏: 
      𝑥′ ൌ 𝑎𝑟𝑔 𝑚𝑎𝑥

ୀଵ,…,భ
𝐻ሺ𝑥, 𝑥ሻ. 

end 
 

As a basic clustering algorithm, we use 
k-means that has a linear cost. Note that elements of 
matrix Н can be computed dynamically which 
allows one to save memory in case of large sample 
size n (however, the calculation time grows 
consequently). 
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It was proved in [25] that under some natural 
assumptions on the probabilistic properties of the 
ensemble, the probability error in classifying an 
arbitrary pair of points to clusters approaches zero 
at increasing the ensemble size. 

3.2. Low-rank representation of averaged 
co-association matrix  

By the definition, the averaged co-association 
matrix requires quadratic memory with respect to 
sample size. Nevertheless, this requirement can be 
relaxed using the matrix low-rank representation.  

The next property allows one to sufficiently 
decrease the computation cost.  

Proposition. Weighted averaged co-association 
matrix admits low-rank representation in the form: 

 
𝐻 ൌ 𝐵𝐵், 𝐵 ൌ ሾ𝐵ଵ𝐵ଶ … 𝐵ଵሿ      (8)      

                    
where B is a block matrix, B ൌ ඥwA;  A is an 
association matrix for lth clustering partition which 
has a dimensionality 𝑛 ൈ 𝐾: Aሺ𝑖, 𝑘ሻ ൌ 𝐈ሾcሺxሻ ൌ
𝑘ሿ,  i=1,…,n,  k =1,…,𝐾. 

As a rule, 𝑚 ൌ ∑ 𝐾 ≪ 𝑛 ; thus (8) gives us a 
possibility to save memory by storing sparse matrix 
B of dimensionality 𝑛 ൈ 𝑚 instead of full matrix H. 
The cost of matrix multiplication 𝐻 ∙ 𝑥 is reduced 
from 𝑂ሺ𝑛ଶሻ to 𝑂ሺ𝑛𝑚ሻ. 

3.3. Cluster ensemble and graph Laplacian 
regularization  

We consider matrix H as a similarity matrix W  in 
(1) and define the normalized Laplacian of the 
corresponding graph in the form: 𝐿෨ ൌ 𝐼 െ
𝐷෩ିଵ/ଶ𝐻𝐷෩ିଵ/ଶ , where  𝐷෩ ൌ 𝑑𝑖𝑎𝑔ሺ𝐷෩ଵଵ

ᇱ , … , 𝐷෩ሻ , 
𝐷෩

ᇱ ൌ ∑ 𝐻ሺ𝑖, 𝑗ሻ . We obtain: 

 

𝐷෩=∑ ∑ 𝑤 ∑ 𝐴ሺ𝑖, 𝑘ሻ𝐴ሺ𝑗, 𝑘ሻ ൌ
ୀଵ


ୀଵ


ୀଵ

∑ 𝑤

ୀଵ ∑ 𝐴


ୀଵ (j,k)= ∑ 𝑤


ୀଵ 𝑛ሺ𝑖ሻ  (9) 

 
where 𝑛ሺ𝑖ሻ  is the size of the cluster which 
includes the point 𝑥 in l-variant of partitioning. 
Substituting 𝐿෨ in (5), we obtain a linear equations 
system: 

 

൫𝐼ଵ,  𝛽𝐿൯𝐹∗∗ ൌ 𝑌ଵ,.  (10) 

 
Using (8), the system can be transformed 

into a form that uses more effective operations with 
low-rank matrices. For that purpose, let us denote 
𝑈 ൌ 𝐷෩ିଵ/ଶ𝐵, then 𝐿෨ ൌ 𝐼 െ 𝑈𝑈். From (6) and (8) 
we obtain the system: 

 

൫𝐼ଵ,  𝛽𝐼 െ 𝑈𝑈்൯𝐹∗∗ ൌ 𝑌ଵ,. (11) 

 

For the numerical solution, one can use any 
of the existing iterative algorithms. In the given 
work we use algorithm GDSolve [30] based on 
gradient descent. The GDSolve algorithm 
convergence for symmetrical positive definite 
system matrix was proved in [30]. Let us describe 
the main steps of the given GDSolveLR algorithm 
modification, which uses low-rank graph Laplacian 
representation.  

GDSolveLR algorithm:  

Input:  
𝑈, 𝐼ଵ,: sparse matrices in the left part of (11);  
𝑌ଵ,:  matrix in the right part of (11);  
𝛿  0: required accuracy parameter. 
Output:  
𝐹∗∗: classification matrix.  
Steps: 
1. t:=0; 𝐹∗∗ሺ0ሻ ≔ 0; 
2. for k:=1 → K do 
3.  b:= 𝑌ଵ,∙ (kth column of matrix 𝑌ଵ,); 
4.  repeat  
5.   compute residual error 𝑟ሺ𝑡ሻ ≔ 𝑏 െ ሺ𝐼ଵ, ∙
𝐹∙,

∗∗ሺ𝑡ሻ  𝛽𝐹∙,
∗∗ െ 𝛽𝑈ሺ𝑈் ∙ 𝐹∙,

∗∗ሺ𝑡ሻሻሻ;  
6.  find the optimal step length  

𝜂ሺ𝑡ሻ ≔
ሺ௧ሻሺ௧ሻ

ሺ௧ሻሺூభ,బ∙ሺ௧ሻାఉሺ௧ሻିఉሺ∙ሺ௧ሻሻሻ
; 

7. 𝐹∙,
∗∗ሺ𝑡  1ሻ ≔ 𝐹∙,

∗∗ሺ𝑡ሻ   𝜂(t)∙ 𝑟ሺ𝑡ሻ; 
8. until r(t)൏ 𝛿; 
9. end for  
10. return 𝐹∗∗ሺ𝑡  1ሻ. 
 

Note that at the steps 5,6 the algorithm 
performs a multiplication by Laplacian matrix 
represented in a low-rank form; thus it is not 
required to save in the memory full matrix of 𝑛 ൈ 𝑛 
size. Below we describe the main steps of the 
proposed algorithm SSC-LR-GD for 
semi-supervised classification based on Laplacian 
similarity graph, low-rank representation of 
co-association matrix and gradient method.  

Algorithm SSC-LR-GD:  

Input:  
data set 𝑿𝟏 with known class labels 𝒀𝟏; unlabeled 



Journal of Theoretical and Applied Information Technology 
15th  October 2019. Vol.97. No 19 

 © 2005 – ongoing  JATIT & LLS   

 

ISSN: 1992-8645                                www.jatit.org                            E-ISSN: 1817-3195 

 
5056 

 

data 𝑿𝟎; number of clustering variants r;  
Output:  
predicted class labels 𝒀𝟎.  
Steps 
1. Generate r variants of the partition of 𝑿 ൌ
𝑿𝟏 ∪ 𝑿𝟎 using a given clustering algorithm with 
randomly chosen parameters; calculate quality 
indices and weights 𝑤ଵ,…,𝑤; 
2. Calculate normalized graph Laplacian in a 

low-rank representation, using matrices B in (6), 
𝐷෩ in (9) and 𝐼ଵ, in (4).  
3. Find classification matrix 𝐹∗∗ with GDSolveLR 
algorithm; 
4. Define labels for Y0, using matrix 𝐹 ൌ 𝐹∗∗  in 
(7). 
end. 
 

In the computer implementation, we use 
k-means as a base clustering algorithm.  

4. EXPERIMENTAL STUDY  

The suggested algorithm SSC-LR-GD was 
evaluated in numerical experiments. The first 
experiment employs Monte Carlo simulation to 
estimate the accuracy and time complexity of the 
algorithm under various sample size and noise 
levels for a given example of data distribution. The 
second experiment demonstrates the applicability of 
the method in the real task of hyperspectral image 
analysis.  

4.1. Mixture of normal distributions 

In this example we consider data sets generated 
from the mixture of five multidimensional normal 
distributions N(ai,𝜎XI) at equal weights; 𝑎 ∈ 𝑹ௗ, 
i=1,…,5, d=8; value 𝜎 is a parameter. To study 
the algorithm robustness under noise conditions, 

two independent random features are additionally 
generated according to the uniform distribution 
𝑈ሺ0, 𝜎ଶሻ where noise parameter 𝜎ଶ ൌ 5. Figure 2 
illustrates the generated data. In the simulation 
process, we repeatedly generate samples of size n 
with the given distribution. 

10% of points selected at random from each 
component compose a labeled part of the sample; 
the remaining points are included in an unlabeled 
subsample. Cluster ensemble variants are generated 
using random initialization of centroids in k-means 
(number of clusters equals 10). The number of 
ensemble elements r=10. The weights of ensemble 
variants are identical: 𝑤 ≡ 1 𝑟ൗ . Regularization 
parameter 𝛽 is evaluated by cross-validation and 
grid search in the interval [0.001,0.5] with a step 
0.005; the best prediction has been obtained for 
𝛽=0.1. Parameter 𝛿=10ିହ. 

We also apply an algorithm (denoted 
SSC-RBF) which uses a standard similarity matrix 
found with RBF kernel (parameter 𝜎 ൌ 4 ), in 
which the predictions are calculated according to 
(6). To raise the reliability of the comparison, 
quality estimates (frequency of correct predictions 
on test sample) are averaged over 40 experiments. 
Analysis of the statistical significance of the 
differences between the estimates is performed 
using a paired two-sample Student's t-test.  

Table 1 presents the results of the 
experiments. The table shows the averaged 
accuracy estimates, as well as the averaged 
operation time (on the dual-core Intel Core i5 
processor with a clock frequency 2,8 GHz and 4 Gb 
RAM). For SSC-LR-GD, we separately indicate 
ensemble generation time and matrix operation time 
(in seconds). Accuracy evaluations that are 
statistically significantly better than those of the 
compared algorithm (p-value ൏ 10ିହ) are in bold.  

 

Table 1. Results of experiments with distribution mixture 
for various sample size n and parameter 𝜎 values. 

 

The results demonstrate that SSC-LR-GD 
shows comparable or even higher accuracy than 
SSC-RBF. For large data size (n=105, n=106), 
SSC-RBF failed due to unacceptable memory 
demands (74.5 Gb and 7450.6 Gb correspondingly). 

One can see that SSC-LR-GD spend the 
most time in the stage of iterative computations. 
The average operation time for SSC-LR-GD is 
much less than that for SSC-RBF which does not 

 
 

 

SSC-LR-GD SSC-RBF 

accura
cy (sec) (sec) 

accura
cy 

time 
(sec) 

 
1000 

1 1.000 0.06 0.10 1.000 0.32 

3 0.985 0.07 0.02 0.982 0.32 

5 0.874 0.13 0.11 0.817 0.35 

 
3000 

1 1.000 0.10 0.48 1.000 5.42 

3 0.986 0.13 0.10 0.984 5.29 

5 0.878 0.23 0.48 0.848 5.48 

105 1 1.000 2.05 25.69 - - 
106 1 1.000 49 443 - - 

n
X

enst matrt
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use low-rank operations.   
 

4.2. Analysis of hyperspectral images  

For the experimental research of the developed 
algorithm, we use the Indian Pines hyperspectral 
image [30]. This scene was gathered by AVIRIS 
sensor over the Indian Pines test site in 
North-western Indiana. The image size is 145ൈ145 
pixels; each pixel is characterized by the vector of 
224 spectral intensities in the 400-2500 nm range. 
Figure 3(a) shows the RGB-composite, and Figure 
3(b) presents the ground truth map with 16 classes 
(different vegetation types). The image has 
unlabeled pixels which are not assigned to any of 
the classes. These pixels are excluded from the 
analysis. 
 

In the experiment, the labeled part comprises 
1% of points selected at random for each 
component. To reduce the spectral channels 
correlation effect, we use PCA to decrease the 
dimensionality up to 10 features.  

The transformed data is used as input for 
SSC-LR-GD. Ensemble size r=10; base ensemble 
elements are generated with cluster number 
variation in the interval [1000, 1000+r]. The other 
parameters coincide with the described ones in the 
previous experiment.  

We also perform a comparison with 
multiclass SVM which uses standard RBF kernel 
(with parameters recommended by default).  
 

 

Figure 2. Generated data (projection on axes X1, X2): 
n=1000, 𝜎௫ ൌ 1 

 

Figure 3. Indian Pines hyperspectral image: (a) 
composite image of hyperspectral data; (b) ground-truth 

map 
 

To increase the statistical reliability of the 
comparison, we average the accuracy estimates 
over 20 runs for each algorithm with randomly 
selected labeled subsamples. At each run, we 
calculate classification accuracy estimate on the 
unlabeled pixels which are not used at the training 
stage. For SSC-LR-GD, the average operation time 
is about 1.5 minutes, and for SVM about 0.3 
minutes. As a result, the SSC-LR-GD average 
accuracy is 0.657, and that of SVM 0.613. A paired 
Student’s t-test has shown a significant 
improvement in the accuracy of SSC-LR-GD 
(p-value < 10-5). 

We also have examined CASVM 
performance on another hyperspectral image. We 
use Pavia University scene [31], which has a size of 
610 ൈ  340 pixels, containing 103 spectral 
channels. The spatial resolution of the scene is 1.3 
m. Figure 4а) shows the image’s RGB-composite 
(channels 40, 50 and 70), and Figure 4b) presents 
the ground truth map.  

There are unlabeled pixels in the image 
which are not assigned to one of the nine classes. 
The given pixels are excluded from the 
consideration.   

 
a)                b) 

 
Figure 4. Hyperspectral image Pavia University scene 

(RGB composite)(а) and labeled data (b) 
 



Journal of Theoretical and Applied Information Technology 
15th  October 2019. Vol.97. No 19 

 © 2005 – ongoing  JATIT & LLS   

 

ISSN: 1992-8645                                www.jatit.org                            E-ISSN: 1817-3195 

 
5058 

 

In the experimental study, 1% of the pixels 
selected at random for each class compose a labeled 
sample; the remaining ones are included in the 
unlabeled part. To study the effect of noise on the 
quality of algorithms, we add normally distributed 
noise to the spectral brightness values: a 
corresponding value x is replaced by a quantity 
x(1+pε), where p is a parameter, ε follows standard 
normal distribution. 

 An obtained data consisting of the spectral 
intensity values of the pixels over all channels is an 
input of CASVM. K-means is chosen as a base 
algorithm for constructing a cluster ensemble. 
Different variants of the partitioning are generated 
by varying the number of clusters in the interval 
[30,30+r] where r=120. To speed up the operation 
time of k-means and obtain more diverse results, 
the number of iterations is limited to 1. 

Table 2 shows the accuracy estimates in the 
classification of unlabeled pixels for some pairs of 
noise parameters.  

Table 2. Accuracy of CASVM and SVM at some values of 
noise parameters  

Noise 
parameter 

p 
0.05 0.1 0.25 0.5 

CASVM 0.78 0.76 0.74 0.68 

SVM 0.79 0.72 0.68 0.62 

 

The running time of the algorithm is about 2 
minutes. As can be seen from the table, CASVM 
algorithm is more noise resistant than SVM.    

6. CONCLUSION 

In this work, we have considered a pattern 
recognition problem in case of incomplete training 
information. Using a combination of the 
methodologies, based on the regularization of 
Laplacian similarity graph, collective cluster 
analysis, and a low-rank matrix representation, a 
method for the solution of the given task was 
suggested.   

The main idea of the method is in the usage 
of the averaged co-association matrix of cluster 
ensemble as a similarity matrix in graph Laplacian 
regularization context. The matrix admits a 
low-rank representation that has allowed us to 
speed-up computations and save memory in the 
solution of the derived system of linear equations 
(from quadratic to linear concerning sample size). 

We have performed an experimental study 
of the suggested method by the usage of Monte 
Carlo simulations. In the experiments, the method 
has shown comparable or even significantly better 
accuracy estimates than an analogous algorithm, 
not using group clustering and a low-rank 
representation of the co-association matrix. In the 
case of a big volume of data (up to a million points), 
the standard algorithm failed due to the infeasible 
memory requirements, and the proposed method 
gave an accurate solution in a few hundred seconds 
running on an ordinary computer. Even for a small 
amount of data, the average working time of the 
suggested algorithm turned out to be much less than 
that of the analogous standard one.  

In the experimental study on the real 
hyperspectral image in noise conditions, the 
suggested methodology has allowed obtaining more 
accurate solutions than the existing SVM technique.   

Further, we plan to continue the theoretical 
study of the suggested method (to investigate the 
problem of theoretical convergence to an optimal 
solution in the probabilistic context, to obtain 
classification quality estimates). To accelerate the 
computations, there are good reasons to vectorize 
the proposed algorithm upon forming a cluster 
ensemble and use more effective procedures for 
solving a linear equations system.  
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