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ABSTRACT 
 

Traffic sign detection plays an important role in intelligent transportation systems. This paper proposes a new 
method for detecting small-sized traffic signs based on deep learning. MobileNets architecture is adopted as 
the base network to provide a rich and discriminative hierarchy of feature representations. A deconvolutional 
module is then integrated into Faster R-CNN framework to bring additional context information which is 
helpful to improve the detection accuracy for small-sized traffic signs. Additionally, atrous convolution is 
used in the region proposal network to enlarge the receptive field of the synthetic feature map. The proposed 
framework is trained and evaluated on German traffic sign detection benchmark. The results show that the 
proposed approach obtained an accuracy comparable to other the state-of-the-art approaches in traffic sign 
detection. 
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1. INTRODUCTION  
 

Traffic sign detection plays an important role in 
intelligent transport systems, traffic management, 
and so on, and it has been an active area of research 
over the past decade. An automatic traffic sign 
detection system can assist the driver on the road 
such as reminding the driver of traffic constraints, 
stopping driver from performing inappropriate 
actions. Further, it could be integrated into an 
Automated Driving System (ADS) and Advanced 
Driver Assistance System (ADAS). Traditional 
approaches for traffic sign detection usually use 
color, texture, edge and other low-level features to 
detect the area or the edge of a traffic sign in an 
image such as adaboost [1], support vector machine 
(SVM) [2], Hough transform [3] and so on. These 
approaches based on low-level features do not detect 
or recognize traffic signs well because of variations 
in the traffic sign appearance due to different sign 
shapes or colors. Furthermore, objects such as trees 
and vehicles which may occlude the traffic signs 
make traffic sign detection become harder. 

Recently, with fast development of deep learning 
[4, 5], a certain number of methods for traffic sign 
detection based on deep learning have been 
proposed. These methods show better performance 
than traditional methods. Deep CNN-based methods 

firstly create traffic sign candidates. Then, a deep 
CNN-based classifier is used to reject non-traffic 
sign candidates. Although these methods perform 
well in complex conditions, the small size of traffic 
signs makes them hard to detect, and useful context 
information is not exploited fully by CNN-based 
approaches. A popular solution to this problem in 
CNNs is to combine information from the 
background [6] or relationships among the objects 
[7], which combines finer details from multiple 
convolution layers with different local receptive 
fields. But it has been found that simply 
concatenating these feature maps does not 
significantly improve the accuracy due to over-
fitting caused by curse of dimensionality.  

A number of recent approaches have improved the 
feature extraction of small objects by using 
additional context information and increasing the 
spatial resolution of feature maps. DSSD [8] used 
deconvolution layers in combination with existing 
multiple layers to reflect the large-scale context. MS-
CNN [9] applied deconvolution on shallow layers to 
increase the feature map resolution before using the 
layers to extract region proposals and pool features. 
Recently, Long et al. [12] introduced the Fully 
Convolution Network (FCN), which demonstrated 
impressive performance in semantic segmentation 
[12, 13], and object detection [14]. In [14], the 
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authors combined coarse high-layer information 
with fine low-layer information for semantic 
segmentation. 

Motivated by the above ideas, a novel effective 
traffic sign detection framework based on the Faster 
R-CNN [15] pipeline is introduced in this paper. This 
framework can achieve state-of-the-art performance 
on traffic sign detection. The main contributions of 
this paper are summarized as follows: 

1) A novel traffic sign detection framework is 
proposed by adding the deconvolutional module 
to the traditional Faster R-CNN network. The 
deconvolutional module can bring in more 
semantic context information to enhance the 
feature map, thereby improving the detection 
performance. 

2) This paper proposes using a reduced network 
architecture, in which the prior layer is used as the 
initial feature map with a relatively large spatial 
resolution, instead of using the last layer as the 
output feature map. In addition, proper adjustment 
of the network has been made to avoid 
downsampling. The proposed architecture help 
retain more detailed information for traffic signs, 
especially with small-sized traffic signs. 

3) Instead of using multi-layer feature map, in which 
low-level layers have less semantic information 
regarding small instances, a synthetic feature map 
that combines the initial feature map and the 
deconvolution layer with semantic information is 
proposed. 

4) This paper proposes applying atrous convolution 
on the synthetic feature map to enlarge the 
receptive field and inject detailed context 
information. Larger receptive fields help the 
detection of large-sized instances and detailed 
context information helps the detection of small-
sized instances of traffic signs. Therefore, 
application of atrous convolution can improve the 
detection accuracy of multi-scale object detection. 

This paper is organized as follows: an overview of 
previous methods is presented in Section 2. Section 
3 describes the detail of the proposed method. 
Section 4 demonstrates experimental results. Finally, 
the conclusion is made in Section 5. 

 

2. RELATED WORK 

In this section, this paper introduces previous 
work on license plate detection, including traditional 
methods and recently proposed methods based on 
deep CNN. 

Traditional approaches to traffic sign detection 
include a wide variety of algorithms and various 
representations [22]. Escalera et al. [16] took 
advantage of color and shape features to detect road 
traffic signs, while Shadeed et al. [17] used 
histogram equalization, light control and color 
segmentation to locate road signs. Later, Garcia-
Garrido et al. [3] employed the Hough transform to 
get the information from the edges in the image, but 
the computational complexity was high so that it 
hindered the real-time application. To deal with the 
efficiency problem, Bahlmann et al. [1] detected 
traffic signs using a set of Haar wavelet features 
obtained from AdaBoost training [18]. To balance 
effectiveness and efficiency, Salti et al. [2] proposed 
an approach in which the regions of interest rather 
than the sliding window were extracted at first, and 
then a histogram of oriented gradients (HOG) in the 
regions of interest was extracted, to be the input 
feature of the SVM classifier [19]. Recently, 
Berkaya et al. [20] extended this approach by using 
an ensemble of features including HOG, local binary 
patterns (LBP) and Gabor features within an SVM 
classification framework. To improve results 
obtained by single view analysis, Timofte et al. [21] 
combined 2D and 3D techniques to generate and 
evaluate 3D proposals. Traditional methods can be 
processed in real-time on low-end systems, and these 
methods achieve good performance in limited 
conditions such as simple background and 
environment, fixed illumination and so on. However, 
the performance of these methods will significantly 
reduce in complex conditions.  

Recently, with fast development of deep 
learning, a certain number of methods for traffic sign 
detection based on deep CNN have been proposed. 
John et al. [23] used CNN to extract features and 
detect road traffic signs, making a saliency map 
containing the traffic light location. For network 
optimization, Jin et al. [24] suggested a hinge loss 
stochastic gradient descent (HLSGD) method to 
train a detection network. To perform fast and 
accurate traffic sign detection and recognition, Zhu 
et al. [25] employed a holistically nested edge 
detection network [26]. Deep CNN-based 
approaches are able to detect some traffic signs. 
However, constrained by feature map size, none 
show significant advantages. 
 
3. THE PROPOSED FRAMEWORK 
 

In this paper, Faster R-CNN framework with 
MobileNets architecture as a base network is 
adopted to detect small-sized traffic signs. Faster R-
CNN introduce a Region Proposal Network (RPN) 
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that shares full-image convolutional features with 
the detection network, thus enabling nearly cost-free 
region proposals. RPN creates a set of anchor boxes 
from the convolution features created by the base 
network. For each anchor box, RPN outputs two 
predictions including objectness score and bounding 
box regression. Faster R-CNN is chosen for 
detecting traffic signs in this study because this 
framework shown the best performance for detecting 
small objects compared to other state-of-the-art deep 
CNN-based object detection frameworks such as R-
FCN and SSD, while license plates usually have 
small size in an image. There are some deep CNN 
architectures that showed state-of-the-art 
performance on many competitions such as VGG-
16, Resnet-101, Inception v2 and so on. Google 
recently released an efficient model called 
MobileNets for mobile and embedded vision 
applications. MobileNets splits the convolution into 
a 3x3 depthwise convolution and a 1x1 pointwise 
convolution, effectively reducing both 
computational cost and number of parameters. It 
introduces two parameters that we can tune to fit the 
resource/accuracy trade-off, including width 
multiplier and resolution multiplier. The width 
multiplier allows us to thin the network, while the 
resolution multiplier changes the input dimensions 
of the image, thus reducing the internal 
representation at every layer. In this study, 
MobileNets is adopted to build the base 
convolutional layers in Faster R-CNN. Figure 1 
shows the overall framework of the proposed 
approach. As shown in this Figure, the proposed 
method consists of the base network for generating 
feature map, the deconvolution module for 
generating synthetic feature map, and region 
proposal network generated with atrous convolution 
and classification. Each image is forwarded through 
the convolution layers to generate feature maps. 
Based on these feature maps, this paper applies 
deconvolution with the encoder-decoder structure, 
combining the deconvolution layer with feature 
maps to generate the synthetic feature map that 
collects additional context information. Finally, 
atrous convolution is applied to the synthetic feature 
map to generate region proposals. These proposals 
are then classified and adjusted with the detection 
module. Details of the proposed approach are 
explained in next sections. 

 
3.1 The Base Network 

MobileNets architecture is used as a base 
network in this study. Since this paper uses only the 
convolution layers in MobileNets architecture, the 
size of the input image does not have to be fixed. 

Supposing the size of the input image is 224 x 224 x 
3, the architecture of the base network is defined as 
Table 1. 
where: 
‘Conv’ represents as a standard convolution 
‘Conv dw’ represents as a depthwise separable 
convolution 
‘s1’ represents that the convolution stride is 1 x 1 
 ‘s2’ represents that the convolution stride is 2 x 2 

Depthwise separable convolution are made up of 
two layers: depthwise convolutions and pointwise 
convolutions. Depthwise convolutions is used to 
apply a single filter per each input channel, while 
pointwise convolution, a simple 1x1 convolution, is 
used to create a linear combination of the output of 
the depthwise layer. MobileNets use both batchnorm 
and ReLU nonlinearities for both layers. The 
reduction of computational cost is in proportion to 
the number of output feature map channel and the 
square of kernel size. More details about MobileNets 
architecture can be found in [27]. 
 
3.2 Deconvolutional Module 
 Pinheiro et al. [28] suggested that a factored 
version of the deconvolutional module for a 
refinement network has the same accuracy as a more 
complicated one and the network will be more 
efficient. Deconvolutional module is effective for 
small object detection [8]. Thus, to enhance the 
detection of traffic sign, adding extra deconvolution 
layers is proposed in this study. The deconvolutional 
module is built at the end of the base network. The 
structure of deconvolutional module is shown in 
Figure 2. As shown in this Figure, a 3 × 3 
convolution layer and rectified linear activation are 
used. For the deconvolution branch, the encoder-
decoder structure with 2×2 deconvolution is used 
followed by a 3×3 convolution. A batch 
normalization layer (BN) is added after each 
convolution layer. An intermediate feature map is 
extracted after Conv / s1 layer. Then, the 
deconvolution layer is added to enlarge the feature 
map size in order to match the size of the initial 
feature map. Finally, element-wise product is 
performed as a combination method, which is 
followed by rectified linear activation to generate the 
synthetic feature map. 
 
3.3 Region Proposal Network (RPN) 
 First, the RPN takes the synthetic feature map 
and generates a set of anchor boxes. An anchor is 
centered at the sliding window and is associated with 
a scale and aspect ratio. Since the synthetic feature 
map do not have big enough receptive field.  This 
paper designs the proposed network to apply atrous 
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convolution onto the synthetic feature map to 
enlarge the receptive field and inject context 
information. Atrous convolution, which is a 
powerful tool in dense prediction tasks, allows us to 
effectively enlarge the field of view of filters to 
incorporate larger context without increasing the 
number of parameters or the amount of computation. 
Another advantage is that atrous convolution can be 
conveniently and seamlessly integrated to compute 
the responses of any layer. Figure 3 shows an 
example of feature extraction with atrous 
convolution. As shown, feature map a is produced 
from feature map b by an atrous convolution with 
rate r = 2. Feature map a corresponds to a receptive 
field of 9 × 9.  

Atrous convolution with a rate r introduces r − 1 
zeros between consecutive filter values, effectively 
enlarging the kernel size of a k × k filter to k′ × k′ 
without increasing the number of parameters or the 
amount of computation by using the following 
equation. 

 
𝑘ᇱ ൌ 𝑘  ሺ𝑘 െ 1ሻሺ𝑟 െ 1ሻ       (1) 

 
In this paper, the atrous convolution is used with 

a 3 × 3 kernel size and rate r = 2 leading to k′ = 5. 
The corresponding receptive field of each element is 
47 × 47. After atrous convolution, the output shape 
is still unchanged, but the receptive field of each 
element is 79 × 79. Thus, more context information 
can be obtained. To solve the multiple-scale 
detection problem this paper uses three scales and 
three aspect ratios for each anchor, different anchors 
are used with four scales [0.25, 0.5, 1.0, 2.0] and 
three aspect ratios [0.5, 1.0, 2.0]. 
 
 
4. RESULTS 

In this section, this paper compares the 
performance of the proposed method with other 
state-of-the-art methods. The proposed method is 
implemented on a machine with Core I5 6400, 8GB 
of RAM, NVIDIA GTX 1050Ti GPU. This paper 
uses TensorFlow for implementing deep CNN 
frameworks. 
 
4.1 Dataset 
 The GTSDB database [10] is adopted in this 
paper to train and evaluate traffic sign detector. 
GTSDB is the most widely used dataset in traffic 
sign detection. This dataset contains 900 images and 
is divided into 600 training images and 300 testing 
images. Each image has the size of 1360×800 pixels. 
The traffic signs in the GTSDB database can be 
divided into four categories: 161 Prohibitory signs 

(usually of red color and circular shape), 49 
Mandatory signs (usually of blue color and circular 
shape), 63 Danger signs (usually of red color and 
triangular shape), and other signs with different 
shapes and colors which cannot be classified into 
these three categories. Some examples of traffic sign 
in this dataset is shown in Figure 4. The sizes of 
traffic signs to detect in the GTSDB database vary 
from 16 × 16 to 128 × 128 and the size of traffic 
scenes is 800 × 1360. 
 
4.2 Evaluation Criterion 
 In order to compare this work with other state-of-
the-art methods on the same dataset, this paper uses 
the same widely used evaluation criteria in traffic 
sign detection, including precision and recall. A 
traffic sign is correctly detected only if the overlap 
between the detected bounding box and ground truth 
bounding box (Intersection over Union-IoU) is 
greater than 0.5. Precision is defined as ratio 
between the number of correctly detected traffic 
signs and the number of detected bounding box, 
while recall is defined as ratio between the number 
of correctly detected traffic signs and the number of 
ground truths. IoU is a threshold which measure the 
quality of detection. 
 
4.3 Training 
 This paper uses MobileNet pre-trained model on 
ImageNet dataset and further fine-tuned on training 
data. The resulting model is fine-tuned using 
Stochastic Gradient Descent (SGD) with an initial 
learning rate of 0.0001, momentum of 0.9, and batch 
size of 1; the learning rate is reduced by a factor of 
10 after 500,000 iterations and again after 700,000 
iterations. Learning stops after 800,000 iterations. 
With the fine-tuned network of region proposals, 
non-maximum suppression (NMS) is adopted to 
eliminate highly overlapped bounding boxes with 
lower scores. After using non-maximum suppression 
(NMS), a total of 100 proposals are generated for the 
second stage detection part. 
 
4.4 Experimental Results 
 This paper compares the effectiveness of the 
proposed approach to other deep CNN-based 
approaches, including HOG+LDA+SVM [31], 
HOG+SVM [32], ROI+HOG+SVM [33], 
HOG+CNN [34], ROI+HOG+SVM [29] and 
ROI+Multi-task CNN [30]. Only three categories of 
GTSDB database (excluding the unique category 
which is illustrated in Figure 5) are evaluated in 
previous work. The proposed method can detect 
unique traffic signs, and the performance of 
detecting unique traffic signs has been evaluated as 
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well. Figure 6 shows some examples of detection 
results on the GTSDB dataset. As shown in this 
figure, the proposed approach can locate exactly 
traffic signs in the wild, especially with small traffic 
sign. Table 2 shows a comparison to other state-of-
the-art methods.  As shown in this table, the 
proposed approach outperforms others on the 
GTSDB database, considering generality, reliability 
and run time. 
 Table 2 also shows a comparison report between 
different traffic sign detection methods in terms of 
their computation efficiency. Because the proposed 
method is implemented on a low-end machine, 
processing time of different methods cannot 
compare directly. Thus, Table 2 shows processing 
time of different methods based on their hardware 
configuration. While other methods were 
implemented on high-end GPU, the proposed 
method meets the requirement of real-time 
processing on low-end GPU. This shows that the 
proposed method outperforms both in accuracy and 
in run time. 
Figure 7 shows some unsuccessful detection results. 
As shown in this Figure, the proposed method cannot 
detect traffic sign that are blurred, tiny or backlit. 
The results could be improved by enlarging the 
amount of the training data and enriching the 
diversity of the samples (the GTSDB has only 600 
training images). In the future, the proposed method 
will be extended to handle situations where the 
lighting is uneven, perspective irregular or the image 
is blurry. 
 
5. CONCLUSIONS 
 
 In this paper, a new method is proposed for 
detecting small-sized traffic signs. The proposed 
approach is based on the Faster R-CNN framework 
with MobileNets architecture. Moreover, 
deconvolutional module and atrous convolution 
adopted to capture more context information. 
Experimental results show that the proposed method 
achieves better results than other state-of-the-art 
methods in terms of detection accuracy and run-time 
efficiency, especially for small-sized traffic signs on 
GTSDB dataset. For future works, this paper will 
improve the detection performance on traffic signs 
that are blurred, tiny or backlit by enlarging the 
amount of the training data. 
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Figure 1: The Overall Framework of The Proposed Method
  

 
 

Figure 2: Deconvolutional Module

 

 
Figure 3: Example of Feature Extraction with Atrous Convolution
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Figure 4: Examples Traffic Sign Images in The GTSDB Dataset

 

 
Figure 5: Examples of Unique Traffic Signs
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Figure 6: Examples of Detection Results on The GTSDB Dataset
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Figure 7: Examples of Unsuccessful Detection

 
Table 1: The architecture of the base network 

 
Type / Stride Filter Shape Input Size

Conv / s2 3 × 3 × 3 × 32 224 × 224 × 3 
Conv dw / s1 3 × 3 × 32 dw 112 × 112 × 32 
Conv / s1 1 × 1 × 32 × 64 112 × 112 × 32 
Conv dw / s2 3 × 3 × 64 dw 112 × 112 × 64 
Conv / s1 1 × 1 × 64 × 128 56 × 56 × 64 

Conv dw / s1 3 × 3 × 128 dw 56 × 56 × 128 
Conv / s1 1 × 1 × 128 × 128 56 × 56 × 128 

Conv dw / s2 3 × 3 × 128 dw 56 × 56 × 128 
Conv / s1 1 × 1 × 128 × 256 28 × 28 × 128 
Conv dw / s1 3 × 3 × 256 dw 28 × 28 × 256 
Conv / s1 1 × 1 × 256 × 256 28 × 28 × 256 
Conv dw / s2 3 × 3 × 256 dw 28 × 28 × 256 
Conv / s1 1 × 1 × 256 × 512 14 × 14 × 256 

Conv dw / s1 
5× 

Conv / s1 
3 × 3 × 512 dw 
1 × 1 × 512 × 512 

14 × 14 × 512 
14 × 14 × 512 
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Table 2: Experimental Results on GTSDB Dataset 

 
Method Prohibitory signs 

(161) 
Mandatory signs 

(49) 
Danger signs 

(63) 
Unique signs 

(92) 
Processing Time 

(s) 

HOG+LDA+SVM 
[31] 

100% 100% 99.91% - 3.533 

HOG+SVM [32] 100% 96.98% 100% - 0.4 ~ 1 

ROI+HOG+SVM 
[33] 

99.98% 95.76% 98.72% - 3.032 

HOG+CNN [34] - 97.62% 99.73% - 12 ~ 32 

ROI+HOG+SVM 
[29] 

99.29% 96.74% 97.13% - 0.162 

ROI+Multi-task 
CNN [30] 

99.99% 98.72% 98.34% - 0.366 ~ 0.450 

Proposed method 98.82% 100% 100% 99% 0.630 (low-end 
machine) 

 


