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ABSTRACT 
 

The hybrid time varying particle swarm optimization and genetic algorithm method (TVPSOGA) was 
introduced to solve multi-objective reactive power dispatch (MORPD) problems. MORPD as a non-linear 
multi-objective optimization problem that has the characteristics of non-convex, multi-constraint, and 
multi-variable which consists of a mixture of solutions that have discrete and continuous variables. The 
feasibility of the proposed method was tested on the IEEE 57-bus and IEEE 118-bus power systems. 
Comparison of simulation results shows the efficacy of the proposed optimization method compared to 
methods such as multi-objective enhanced particle swarm optimization (MOEPSO), multi-objective particle 
swarm optimization (MOPSO) and multi-objective ant lion optimization (MOALO) for the case of IEEE 
57-bus power system. As for the case of the IEEE 118-bus power system, this method shows better efficacy 
compared to biogeography based optimization (BBO), the particle swarm optimization method with an 
aging leader and challengers (ALC-PSO), the enhanced gaussian bare-bones water cycle algorithm 
(NGBWCA) and PSO with a gravitational search algorithm (PSOGSA). 

Keywords: Time Varying Particle Swarm Optimization, Genetic Algorithm, Multi-Objective Reactive 
Power Dispatch, The Real Power Losses, The Total Voltage Deviation  

 
1. INTRODUCTION  
 

Increasing the dependency of electric energy will 
require electricity companies to increase efficiency, 
quality and security when operating the power 
system. An increase in active power losses will 
result in reduced power supply sent by the electrical 
energy company to consumers. That is, the active 
power supply generated has been lost due to active 
power losses but is considered unsold. In this case, 
the electricity provider company will suffer losses 
due to generate power at a large cost but do not get 
financial benefits from the sale of the power. In 
addition, in order for electricity to provide good 
quality voltage to consumers, electrical energy 
supply companies must maintain a constant voltage, 
especially at the end of the line. 

 
Efforts to minimize active power losses, to 

maintain the quality of the voltage so that it remains 
constant and to maintain the security of the power 
system when operating. This was done so that the 
electricity supply companies did not suffer even 
greater financial losses. This motivates the authors 
to conduct research called the multi-objective 

optimal reactive power dispatch (MORPD) 
strategy. 

 
MORPD is a popular issue in today's modern 

electricity industry. This is because, the MORPD is 
able to improve the performance of operations that 
are more secure and efficient on the power system.  
MORPD is controlling the optimal solution (control 
variable) without exceeding the limits of its ability 
to minimize more than one objective function 
simultaneously. This objective function is to 
minimize the real power losses and total voltage 
deviation.  

 
This is different from the single goal or the 

different objective functions optimized separately 
as presented with differential evolution [1],  
modified/improved  differential evolution 
(MDE/IDE) [2][3], a self-adaptive real coded 
genetic algorithm (SARGA) [4], improved genetic 
algorithm (IGA) [5], the modified teaching learning 
algorithm and double differential evolution 
algorithm (MTLA-DDE) [6], hybrid firefly 
algorithm (HFA) [7],  improved gravitational search 
algorithm (IGSA) with novel strategies [8], 
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enhanced gravitational search algorithm (GSA) [9] 
and hybrid artificial neural network and particle 
swarm optimization  (HANNPSO) [10].  
Optimization with a single objective function is 
considered inefficient in achieving operating 
performance in the power system. MORPD is a 
very complicated problem when it has 
characteristics that are non-convex, non-linear, 
multi-variable, multi-constraint and mixed with 
discrete and continuous variables. The variables to 
be regulated are control variables such as voltage 
values on each generator bus, tap transformer ratios, 
and reactive power compensators. The 
determination of the optimal control variable will 
affect the real power losses and total voltage 
deviation as the function to be minimized. 

 
Some previous researchers have succeeded in 

solving the MORPD problem. Biogeography based 
optimization (BBO) method has been presented to 
solve this problem [11]. This method can repair the 
grade of solutions and reach near optimal global 
solutions. However, determining the optimal 
solution in the control variable is still considered to 
be all variables as continuous variables. 

 
Solving the MORPD problem using the particle 

swarm optimization method with an aging leader 
and challengers (ALC-PSO) has been presented. 
This method is where the life span of the leader is 
adjusted adaptively in accordance with the strength 
of a leader at the helm. The construct of aging in 
this method actually functions as a mechanism for 
challenging. Similar to the BBO method, 
determining the optimal solution in the control 
variable is still considered to be all variables as 
continuous variables [12]. 

 
Solution to this problem with  multi-objective 

enhanced particle swarm optimization (MOEPSO) 
has been presented [13].  To increase the diversity 
of particles so that they are not easily trapped in 
local solutions and improve the performance of 
global solutions, this method utilizes evolutionary 
operators, namely crossover. The selection process 
is used ranking selection on the pareto set. Setting 
the optimal solution with the MOEPSO method 
consists of an association of both discrete and 
continuous variables.  

 
Water cycle algorithm (WCA) method and the 

enhanced gaussian bare-bones water cycle 
algorithm (NGBWCA) have been presented to 
solve MORPD problems  [14]. The water cycle in 
nature is the inspiration for the creation of this 

method.  This method utilizes a gaussian mutation 
mechanism to handle the diversity of solutions that 
have not been used in the WCA method. Similar to 
the BBO  and ALC-PSO methods, determining the 
optimal solution in the control variable is still 
considered to be all variables as continuous 
variables. 

 
Hybrid PSO with a gravitational search algorithm 

(PSOGSA) has been presented to solve MORPD 
problems [15].  The PSOGSA hybrid used is a 
heterogeneous low-level co-evolutionary.  Similar 
to the BBO, ALC-PSO, WCA,  and NGBWCA 
methods, determining the optimal solution in the 
control variable is still considered to be all variables 
as continuous variables. 

 
The multi-objective ant lion optimization 

(MOALO) method has also been presented to solve 
MORPD problems  [16]. Inspired by the interaction 
between ant and lion in nature is the origin of this 
method. The movement point is considered as a 
solution (control variable). This method is 
combined with fuzzy set theory to determine the 
final result as the optimal solution. Similar to the 
BBO, ALC-PSO, WCA, NGBWCA and PSOGSA 
methods, determining the optimal solution in the 
control variable is still considered to be all variables 
as continuous variables. 

 
The purpose of this paper is to determine the 

optimal solution of the control variables when all 
variables are considered as continuous variables or 
when variables are considered as a combination of 
discrete and continuous variables to reduce the real 
power losses and to minimize total voltage 
deviations. The voltage on each generator bus is set 
as a continuous variable while the shunt 
compensator and tap transformer ratio are usually 
specified as discrete variables.  

 
The novelty of this study is the method used to 

solve the MORPD problem namely hybrid time 
varying particle swarm optimization and genetic 
algorithm (TVPSOGA). The GA operators used are 
crossover and mutation. The TVPSO method is 
presented with parameters that are made adaptive 
with changes that are not linear to solve the 
MORPD problem. Three parameters are made non-
linearly. Adaptive parameter on 1st acceleration 
factor (c1)  will affect the increasing diversity of 
local solutions in the early stages and decrease in 
the final stages. But  2nd acceleration factor (c2) has 
an inverse effect on the search for global solutions. 
In the final stage, the diversity of global solutions is 
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increasing. To maintain a balance of diversity of 
local and global solutions, the inertia weight (w) 
parameter is used. The Illustration of the influence 
of the three parameters used adaptively and not 
linearly is shown in Figure 1. While the genetic 
algorithm will add to the diversity of local 
solutions.   

 
Modification of TVPSO parameters with a 

combination of GA is able to solve MORPD 
problems better than the methods used by previous 
studies. The aim is to minimize the real power 
losses and total voltage deviation. The development 
of this method is presented in this paper to solve the 
MORPD problem in the case of the IEEE 57-bus 
and 118-bus power systems. 

 

 
 

Figure 1: The Ilustration of The Influence of Three 
Parameters 

 
2. PROBLEM DESCRIPTION 
 

The MORPD problem is described as an 
optimization model with multi-objective and multi-
constraints with characteristics that are not linear. 
The formula is described in (1) - (4). 
Minimize:  J(x, y) = [J1(x, y), J2(x, y)]                  (1) 
subject to eq(x, y) = 0                                           (2) 
and ineq(x, y) ≤ 0                                                  (3) 
The vector of state variables x may be written as in 
(4) 
xT = [VPQ,1...VPQ,NPQ,QG,1...QG,NG, SL,1...SL,NL]         (4) 
while the vector of control variables y may be 
represented by (5) 
yT = [VG,1...VG,NG,T1...TNT, QC,1...QC,NC]                 (5) 
in which J: objective function to be minimized, y: 
vector of control variable, x: vector of state 
variable, VPQ: voltage of load bus, QG: injected 
reactive power, SL: power flow in branch, VG: 
voltage of generator bus, T: transformer tap, Qc: 
shunt capacitor/reactor, and  N: number of 
variables. 
 

2..1 Constraints 
2.1.1 Equality constraints 

From formula (2), eq is regulated as 
equality constraints which present the equilibrium 
equations of active power and reactive power. The 
equation is expressed in mathematical formulas (6) 
and (7). 

PG,i - PPQ,i = Vi


BN

i 1

Vj(Gijcosij + Bijsinij)           (6) 

QG,i - QPQ,i = Vi


BN

i 1

Vj(Gijcosij - Bijsinij)           (7) 

in which in which i= 1,2,...NB: numbering of the 
bus, PG,i and QG,i: active and reactive power on each 
generator bus, PD,i and QD,i: active and reactive 
power on each load bus, Gij and Bij: conductance 
and susceptance of line i and j, ij: angle phasa of 
bus i and j. 
2.1.2 Inequality constraints 

From equation (3), ineq is set as inequality 
constraints. Constraints of the problem are stated in 
the equation (8)-(13) with the following 
description: 
a. Generator constraints:  The voltage on each 

generator bus (including the slack bus) and the 
reactive power output on the generator 
(including the slack bus) are not permitted to 
exceed the limits of its ability. Constraints are 
stated in  equations (8) and (9). 
VG,i

min  VG,i  VG,i
max, i = 1,2,.., NG             (8) 

QG,i
min  QG,i  QG,i

max, i = 1,2,.., NG             (9) 
b. Transformer constraints: The transformer tap 

ratio variable is not permitted to violate its 
ability limits. As noted, the tap transformer 
ratio value for the IEEE 57-bus system is 
determined as discrete variables while the 
IEEE 118-bus system case is defined as 
continuous variables. The limits of this 
variable are not permitted to violate the limits 
of their abilities stated in the equation  (10). 
Ti

min  Ti  Ti
max,  i = 1,2,...,NT                   (10) 

c. Shunt compensator constraints: The reactive 
power output of the shunt compensator, is 
assumed to be the same as the tap transformer 
setting for the case of the power system in 
point (b). The limits of this variable are not 
permitted to violate the limits of their abilities 
stated in the equation (11). 
Qc,i

min  Qc,i  Qc,i
max, i = 1,2,...,Nc             (11) 

d. Security constraints: This includes the voltage 
limits on each load bus and limits on network 
capabilities. The limits of this variable are not 
permitted to violate the limits of their abilities 
stated in equations (12) and (13). 
VPQ,i

minVPQ,iVPQ,i
max, i=1,2,..,NPQ            (12) 
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          SL,i  SL,i
max, i = 1,2,...,NL                       (13) 

 
2..2 MORPD Objective Functions 

In this paper, two different objective 
functions are optimally minimized simultaneously, 
modeled in the equation (1) without violating 
equality and inequality constraints. The multi-
objective functions are as follows:  
a. The real power losses: The purpose of this 

objective function is to minimize the real 
power losses in the power system without 
violating equality and inequality constraints. 
This objective function is formulated in the 
equation (14).  

Min J1(PL) = 


EN

k 1

gk(Vi
2+Vj

2-2ViVjcosij)   (14) 

in which PL: the real power losses, gk: 
conductance of channel k. 

b. The total voltage deviation: The purpose of 
this objective function is to minimize the total 
voltage deviation in all load buses in the 
power system without violating equality and 
inequality constraints. This objective function 
is formulated in the equation (15). 

Min J2(VD) = 


PQN

i 1

 VPQ,i – VPQ,i
ref              (15) 

in which: VD: total voltage deviation, VPQ,i
ref:  

voltage reference on the load bus.     
 

3. OVERVIEW OF TVPSOGA TECHNIQUE 
 
3.1  Time Varying PSO 

A very significant effect on the 
performance of the PSO method with a linear 
varying inertia weight  has been presented. The 
inertia weight modification is called time varying 
inertia weight particle swarm optimization (PSO-
TVIW). In general,  the problem of the population-
based search optimization, very high diversity is 
needed in the early stages of search. On the 
contrary, the final stage of the search when the 
algorithm will converge to the optimal solution, the 
right setting is very important to find the global 
solution efficiently [17]. 

 
Although the method of PSO-TVIW able 

to find a good solution when compared to other 
evolutionary optimization methods, the ability to 
enhance the solution is still relatively weak. This is 
because the diversity of solutions at the end of the 
search has been reduced. On the other hand, setting 
PSO parameters is also a determining factor for 
finding optimal solutions accurately and efficiently  

 

Therefore, considering this problem, it was 
introduced the time varying acceleration factor PSO 
(PSO-TVAC) [17].  The aim is to have a different 
influence on local search time and global search 
time. This strategy makes the value of acceleration 
factors in cognitive components decrease linearly. 
In contrast, the value of the acceleration factor in 
social components will increase linearly.  

 
Besides the time difference in the 

influence of inertia weight, acceleration factors for 
cognitive components and acceleration factors for 
social components, the three PSO parameters need 
to be adjusted smoothly. This happens because the 
solution area becomes narrower or the diversity of 
solutions decreases. This paper is presented with 
the same level of change, but the parameters change 
non-linearly. The modification of these three 
parameters was performed in session (16) - (18).  

w(t) = w2 + 






 
t

tt t

t

max_

max_ max_

 (w1- w2)                        (16) 

c1 = c1,f + 






 
t

tt t

t

max_

max_ max_

 (c1,f- c1,i)                          (17) 

c2 = c2,i + 






 
t

tt t

t

max_

max_ max_

 (c2,f- c2,i)                           (18) 

in which w(t): inertia weight of iteration t, w1: the 
maximum value of inertia weight (0.9), w2: the 
minimum value of inertia weight (0.4), c1,2,f: 
acceleration factor of from, c1,2,i: acceleration factor 
of towards (1.5-0.3), max_t: maximum iteration 
(50-300); t: current iteration.   

3.2 Genetic Algorithm 
To add to the diversity of solutions to the 

algorithm used, In this study, evolution operators 
used GA, namely crossover and mutation. The 
crossover is used to get a better combination 
between an individual and another individual in a 
population. The type of crossover used in this study 
is arithmetic crossover as shown in equations (19) 
and (20).   
a1 = b1 + (1-)b2                                               (19) 
a2 = b2 + (1-)b1                                               (20) 
in which a1,2: offspring generated, b1,2: parents, and 
: random number between 0 and 1. While 
mutation allows new individuals to emerge who are 
not from crossover results. So mutations are 
intended to give rise to new individuals who are 
totally different from existing individuals. In the 
context of optimization, mutation allows the 
emergence of new solutions to get out of local 
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solutions. If the vector solution yi, where the 
selected element is k, can be modeled in the 
equation (21). 

C = 
kiky

kiiy




,

,
{                                                           (21) 

in which yi,k: vector solution, i,k: selected element. 
 
3.3  Strategy MORPD with TVPSOGA 
3.3.1  Non-dominated on pareto set 

In the equation (1), suppose that there are 
two variables y1 and y2 where a vector y1 said is 
more dominant than vector y2  (denoted y1  y2) if 
Ji(y1) ≤ Ji(y2), i =1,....D and if  Ji(y1)  Ji(y2)  for 
some i; vector y1 is less dominant than vector y2  
(denoted y1  y2) if Ji(y1) ≤ Ji(y2) for all i. A 
collection of vector solutions is said to be the non-
dominated set if there is not the dominant vector of 
solutions from other solution vectors. Optimal 
pareto is said to be the best if no other vector 
solution is not dominate  [18]. 
3.3.2 The external repository 

In addition, in this study adopted [19]  a 
pareto set archive approach (the collection of 
solutions) with a secondary repository. For each 
iteration, the particle velocity i in the iteration (t + 
1) is given a repository using the equation (22-23). 
vi

j(t+1) = w(t).vi
j(t) + c1r1[xpBest,i -  xi

j(t)] + ... 
                c2r2[reph – xi(t)]                                   (22) 
xi(t+1) = xi(t) + vi(t+1)                                        (23) 
in which reph: the value taken from the repository 
that corresponds to hypercube, vi

j(t): particle 
velocity i for variable j in iteration t, xi

j(t): particle 
position i for variable j in iteration t, xi

j(t+1): 
particle position i for variable j in iteration t+1, 
xpBest,i: local solution, c1,2: acceleration factor 
coefficients, and r1,2: random value between 0 and 
1.    
 

The aim is to reduce the value of the 
objective function of all hypercubes that contain 
many particles. In the external repository, there are 
two main components, namely the archive 
controller and the grid. The archive controller 
functions to decide whether the solution needs to be 
included in the archive or not. While the grid 
function is to produce a pareto front that is well 
distributed. The grid is in a hypercube. Hypercube 
is a search area that has components. The 
components are as many as the objective function. 
In this study, there are two objective functions 
where the x and y coordinate points are as a 
function of the real power losses and total voltage 
deviation. 

3.3.3 Computation flow 
The proposed method used to solve the 

MORPD problems are explained in the following 
steps: 
Step 1: Define data on power systems such as 
objective functions, decision variables (control 
variables), and others. Synchronize the matpower 
program.  
Step 2: Input the MOTVPSOGA algorithm 
parameters. 
Step 3: Initialize position x (t=0)i

j and velocity 
v(t=0)i

j each population randomly without violating 
the upper and lower limits for each position.  
Step 4: Evaluate the objective function of each 
particle i at x(t=0)i

j by running a matpower power 
flow that is integrated with coding multi-objective 
function. The position of non-dominated particles is 
stored in the repository. 
Step 5: Determine x(t=0)pbest. Combine the non-
dominated particles of x(t=0)i in the repository. 
Step 6: Perform hypercube generation in the search 
exploration space. Hypercube location as a 
coordinate point in the search exploration space. 
This point presents the value of the objective 
function on the x and y axes. 
Step 7: Initialize each particle's memory as a guide 
to update the position of the particles later in the 
search exploration space. The best position 
x(t=0)pbest is considered as a guide stored in the 
external repository archive. 
Step 8: Set t=1. 
Step 9: Update velocity and position based on 
equations (22) and (23) without violating the 
boundaries of each particle position. Setting inertia 
weight and acceleration factor based on the 
proposed modification of the PSO parameter in 
equations (16) - (18). 
Step 10: Perform another position renewal 
technique by doing crossover and mutation in all 
particle positions in step 9 according to the 
percentage of crossover (pC) and percentage 
mutation (pM). In this study, pC = 0.9 and pM = 
0.05 were used. 
Step 11: Evaluate the objective function of each 
particle position on PSO (pop), crossover position 
(popc) and mutation position (popm) by running a 
matpower power flow that is integrated with  multi-
objective optimization. 
Step 12: Update the external archive to the 
repository and generate hypercubes. Updates are 
done by entering all non-dominated locations in 
step 11 into the repository while removing all 
dominated locations. If the update position in the 
iteration (t + 1) is better than the iteration t stored in 
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the previous repository, then the position of the 
particles will be updated. 
Step 13: Determine the position of the particles that 
should be maintained. To decide on this criterion, 
pareto dominance is used. Because the size of the 
repository is limited, then when it's full, a 
secondary criterion for storage is used. Priority is 
carried out by giving the opportunity for particles 
with a low population (the number of particles that 
have this position is relatively small) to go to the 
destination space for particles that have a high 
population (hypercube coordinates). 
Step 14: If t ≤ max_t, return to step 9. If t > max_t 
then go to step 15. 
Step 15: Output the solution set as the pareto set 
from the repository and finish. 
 
4. NUMERICAL RESULT AND ANALYSIS 
 

To validate the effectiveness of the 
proposed method in solving MORPD problems, the 

method was tested in the case of  IEEE 57-bus, and 
IEEE 118-bus. Programming language written in 
matlab version 2013b. The computer used has 
specifications with a 1.8 GHz corei3 of  processor 
and 6 GB of RAM. The Matpower toolbox [20]  
was used in this study with the matlab 
programming language to run power flow. 

 
4.1 IEEE 57-bus System 

IEEE 57-bus system consisting of 57 buses 
with 1 bus as a slack bus (bus number 1), 6 buses as 
generator buses (bus numbers 2,3,6, 8, 9, and 12) 
and 50 buses as load buses . 17 tap transformers 
connected to lines 4-18, 4-18, 21-20, 24-25, 24-25, 
24-26, 7-29, 34-32, 11-41, 15-45, 14- 46, 10-51, 
13-49, 11-43, 40-56, 39-57 and 9-55. 3 shunt 
compensators are injected on buses 18, 25 and bus 
53. Complete data is adopted in [8][13] as shown in 
Figure 2. 

 

 

Figure 2: The Single Line Diagram of The IEEE 57-bus System [13] 

The total load power used is 1250.8 MW 
and 336.4 MVar. The total control variables used 
are 27 variables. This variable consists of 20 
variables as discrete and 7 variables as continuous. 
Voltage constraints on each bus generator are 0.9 - 
1.1 per unit (pu). Ratio tap transformer constraints 

are 0.9 - 1.1 pu (step 0.02 pu). Shunt compensator 
constraints are 0.0 - 0.2 pu on buses 18 and 0.0-
0.18 pu on buses 25 and 53. Each discrete variable 
has a step of 0.02. To test the ability of the 
proposed method, optimization of two different 
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objective functions is carried out simultaneously 
with the main objectives, namely: 
4.1.1 IEEE 57-bus system with minimum 

power losses 
The main purpose in this stage is to 

minimize the real power losses. The results of the 
determination of optimal control variables, 
minimum the real power losses and total voltage 
deviation, computational time, and comparisons 
with different methods carried out by previous 
studies are shown in the Table 1.   

 
The final simulation shows that the 

TVPSOGA method is able to minimize the real 
power losses of 24.355 MW and the total voltage 
deviation of 2.0593 pu. The computing time used is 
3238.718 s. For the search for the real power losses 
with the shortest computation time is 272.075 s 
where the real power losses are 24,9153 MW and 
the total voltage deviation is 2.1350 pu. Figure 3 
show the search process for the TVPSOGA method 
in finding the minimum the real power losses. 

4.1.2 IEEE 57-bus system with minimum 
total voltage deviation 
The main purpose in this stage is to 

minimize the total deviation voltage (increasing the 
voltage profile on the bus load). The results of 
determining  optimal control variables, minimum 
total deviation of voltage and real power losses, 
computational time, and comparisons with different 
methods carried out by previous studies are shown 
in the Table 2.  

 
The final simulation shows that the 

TVPSOGA method produces a minimum total 
voltage deviation of 1.9699 pu and real power 
losses of 26.6720 MW. The computation time used 
is 537.275 s. The shortest computation time for the 
search for the total voltage deviation is 271.208 s 
with the real power losses of 52.1736 MW and a 
total voltage deviation of 1.9723 pu. Figure 4 show 
the search process for the TVPSOGA method in 
finding the minimum the total voltage deviation. 

Table 1: Comparison of Previous Methods for IEEE 57-bus with The Power Losses Minimization 

Variables Methods 
 MOEPSO [13] MOPSO [13] MOALO [16] TVPSOGA (1) TVPSOGA (2) 

VG,1 0.931438 1.100000 - 1.0970 1.0941 
VG,2 1.100000 1.100000 - 1.0881 1.0667 
VG,3 0.900000 1.100000 - 1.0719 1.0627 
VG,6 0.958431 1.100000 - 1.0665 1.0676 
VG,8 0.900000 0.900000 - 1.0790 1.0704 
VG,9 1.100000 0.911538 - 1.0801 1.0879 
VG,12 0.900000 0.900000 - 1.0841 1.0486 
T4-18 1.10 1.10 - 0.92 0.94 
T4-18 0.90 0.90 - 0.96 0.92 
T21-20 1.02 1.04 - 1.02 1.10 
T24-25 0.90 1.10 - 0.98 1.00 
T24-25 0.90 1.10 - 1.04 1.00 
T24-26 1.02 1.10 - 0.96 1.10 
T7-29 0.96 0.98 - 0.98 1.04 
T34-32 0.90 0.90 - 0.96 1.06 
T11-41 0.90 0.90 - 1.08 1.06 
T15-45 0.94 0.94 - 0.92 0.92 
T14-46 0.92 0.92 - 0.94 0.94 
T10-51 0.94 0.94 - 0.98 0.94 
T13-49 0.90 0.90 - 0.98 1.00 
T11-43 0.94 0.96 - 0.94 1.02 
T40-56 1.10 1.10 - 1.08 1.04 
T39-57 0.96 0.98 - 1.08 1.10 
T9-55 0.96 0.96 - 1.00 1.02 
Qc,18 0.10 0.00 - 0.04 0.04 
Qc,25 0.00 0.18 - 0.06 0.10 
Qc,53 0.08 0.00 - 0.08 0.10 

PL (MW) 27.3128 27.5872 26.5930 24.3551 24.9153 
VD (pu) 1.072430 1.313360 1.1039 2.0593 2.1350 
PL (MW) 0.2744 - 0.9942 3.2321 2.6719 
Cputime (s) 531.078527 528.90282 115.02 3238.718 272.075 
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Figure 3: Pareto Set in Minimizing The Real Power Losses for The IEEE 57-bus System 

Table 2: Simulation Results for IEEE 57-bus with The 
Total Voltage Deviation 

Variables Proposed 
 TVPSOGA (1) TVPSOGA (2) 

VG,1 1.0969 1.0798 
VG,2 1.0568 0.9511 
VG,3 1.0950 1.0886 
VG,6 1.0772 1.0462 
VG,8 1.0939 1.0940 
VG,9 1.0845 1.0941 
VG,12 1.0806 1.0871 
T4-18 0.94 0.98 
T4-18 1.04 0.92 
T21-20 1.06 1.02 
T24-25 0.94 0.98 
T24-25 0.96 0.98 
T24-26 1.08 1.04 
T7-29 1.08 1.08 
T34-32 1.08 0.98 
T11-41 0.96 0.98 
T15-45 1.00 1.10 
T14-46 0.98 1.00 
T10-51 1.08 1.00 
T13-49 1.08 0.94 
T11-43 1.06 0.94 
T40-56 1.00 0.94 
T39-57 1.02 1.04 
T9-55 1.08 1.10 
Qc,18 0.16 0.08 
Qc,25 0.12 0.14 
Qc,53 0.12 0.10 

PL (MW) 26.672 52.1736 
VD (pu) 1.9699 1.9723 

Cputime (s) 537.275 271.208 
 

From the final simulation on the IEEE 57-
bus power system in Table 1 shows that the 
TVPSOGA (1), TVPSOGA (2), MOEPSO [13] and 
MOALO [16] methods are able to reduce active 

power losses by 3.2321 MW, 2.6719 MW, 0.2744 
MW and 0.9942 MW against active power losses 
resulting from the MOPSO method [13]. The ability 
of the proposed method in reducing active power 
losses is better than the previous method in Table 1 
shows that financial losses in the electric energy 
company can be significantly reduced. 

 
4.2 IEEE 118-bus System 

IEEE 118-bus system consisting of 118 
buses  where 1 bus as a slack bus, 55 buses as 
generator buses and 62 buses as load buses. 9 tap 
transformers connected to lines 5-8, 25-26, 17-30, 
37-38, 59-63, 61-64, 66-65, 69-68 and 80-81. 2 
reactors were injected on buses 5 and 34. 12 shunt 
capacitors were injected on buses 34, 44, 45, 46, 
48, 74, 79, 82, 83, 105, 107 and bus 110.  

 
The total load power used was 4242 MW 

and 1438 MVar. The total control variables used 
are 77 variables. Voltage constraints for each bus 
generator are 0.95 - 1.1 pu. Ratio tap transformer 
constraints are 0.9 - 1.1 pu. Shunt compensator 
constraints with varying limits. Complete data is 
adopted in [14] [15][12]. To test the ability of the 
proposed method, the optimization process has 
been carried out on two different objective 
functions simultaneously with the main objectives, 
namely: 
4.2.1 IEEE 118-bus system with minimum 

power losses 
The main objective in this stage is to 

minimize the real power losses. The results of the 
determination of optimal control variables, 
minimum the real power losses and total voltage 
deviation, computational time, and comparisons 
with different methods carried out by previous 
studies are shown in the Table 3. The final 
simulation shows that the TVPSOGA method is 
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able to minimize the real power losses of 106.9569 
MW and the total voltage deviation of 5.2118 pu. 
The computing time used is 7065.684 s. For the 
search for real power losses with the shortest 
computation time is 414.737 s where the real power 
losses is 117.5445 MW and the total voltage 
deviation is 1.8518 pu. Figure 5 show the search 
process for the TVPSOGA method in finding the 
minimum the real power losses. 
4.2.2 IEEE 118-bus system with minimum 

total voltage deviation 
The main objective in this stage is to 

minimize the total deviation voltage (increasing the 
voltage profile on the bus load). The results of 
determining  optimal control variables, minimum 
the total deviation of voltage and real power losses, 
computational time, and comparisons with different 

methods carried out by previous studies are shown 
in the Table 3.  

 
The final simulation shows that the 

TVPSOGA method produces a minimum total 
voltage deviation of 0.2940 pu and the real power 
losses of 138.1260 MW. The computation time 
used is 7045.406 s. The shortest computation time 
for the search for power losses is 344.958  s with 
the real power losses of 133.1181 MW and a total 
voltage deviation of 0.4306  pu. Figure 6 show the 
search process for the TVPSOGA method in 
finding the minimum total voltage deviation. 

 
 
 

 

 

Figure 4: Pareto Set in Minimizing The Total Voltage Deviation for The IEEE 57-bus System 

Table 3: Comparison of Previous Methods  for IEEE 118-bus System 

Methods The Best Value Objective Function PL (MW) Cpu time (s) 
 PL (MW) VD (pu) 

BBO [11] Best PL 128.9700 2.9874 
2.8600 

- 
 Best VD 260.9700 0.5026 - 

ALC-PSO [12] Best PL 121.5300 1.4651 
10.3000 

1052.19 
 Best VD 163.1300 0.3262 1111.26 

WCA [14] Best PL 131.8300 1.5120 
- 

- 
 Best VD 165.7100 0.3752 - 

NGBWCA [14] Best PL 121.4700 1.4520 
10.3600 

- 
 Best VD 152.3100 0.3194 - 

PSOGSA [15] Best PL 122.4709 1.7792 
9.3591 

- 
 Best VD 145.4049 0.7308 - 

TVPSOGA (1) Best PL 106.9569 5.2118 
24.8731 

7065.68 
 Best VD 138.1260 0.2940 7045.41 

TVPSOGA (2) Best PL 117.545 1.8518 
14.2850 

414.727 
 Best VD 133.118 0.4306 344.958 
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From the final simulation on the IEEE 
118-bus power system in Table 3 shows that the 
TVPSOGA (1), TVPSOGA (2), BBO [11], ALC-
PSO [12], NGBWCA [14], and PSOGSA [15] 
methods are able to reduce active power losses by 
24.8731 MW, 14.2850 MW, 2.8600 MW, 10.3000 
MW, 10.3600 MW, and  9.3591 MW  against 
active power losses resulting from the WCA  
method [14]. The ability of the proposed method in 
reducing active power losses is better than the 
previous method in Table 3 shows that financial 

losses in the electric energy company can be 
significantly reduced. In addition to the proposed 
method being able to reduce active power losses 
better, the proposed method is able to reduce the 
change in voltage at the receiver side (total voltage 
deviation) by 0.2940 pu better than the previous 
method in Table 3. This shows that the voltage at 
the receiver side is more likely close to the voltage 
value of 1.0 pu (ideal voltage) so that the quality 
and safety of the power system is better. 

   
 

 

Figure 5: Pareto Set in Minimizing The Real Power losses for The IEEE 118-bus System 

 

 

Figure 6: Pareto Set in Minimizing The Total Voltage Deviation for The IEEE 118-bus System 

 

However, the proposed hybrid method still 
needs to be improved in relation to the 
computational time used for future research. This is 
seen in the IEEE 57-bus power system where the 
computational time used by the TVPSOGA method 
is 272,075 s longer than the MOALO method [16] 
of 115.02 s.  

5. CONCLUSIONS 
 
Optimization of the TVPSOGA method is 

proposed to solve the MORPD problem. The 
efficacy of the proposed method for solving the 
MORPD problem was tested on the IEEE 57-bus 
and IEEE 118-bus power systems. The final 
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simulation comparison shows the efficacy of the 
proposed optimization method when compared with 
methods such as MOEPSO, MOPSO and MOALO 
for the IEEE 57-bus power system. As for the IEEE 
118-bus power system, this method shows better 
efficacy compared to BBO, ALC-PSO, NGBWCA 
and PSOGSA. This means, the proposed method is 
very promising in reducing financial losses to the 
electric energy company while maintaining the 
quality and security of the power system. Future 
research, this TVPSOGA method can be combined 
with new and simple methods. The goal is that the 
method applied can accelerate search computing. 
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