
Journal of Theoretical and Applied Information Technology
30th September 2019. Vol.97. No 18

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

4723

AN IOT BASED FRAMEWORK FOR STUDENTS’
INTERACTION AND PLAGIARISM DETECTION IN

PROGRAMMING ASSIGNMENTS

HAMZA ALDABBAS
Prince Abdullah bin Ghazi Faculty of Information and Communication Technology, Al-Balqa Applied

University, Al-Salt- Jordan, aldabbas@bau.edu.jo

ABSTRACT

The Internet of Things (IoT) is the connection through the Internet of handling devices within
physical objects, allowing them to move and communicate data. These devices may be used in academia to
facilitate student- instructor interaction. In this research, I used IoT devices to automate an online
examination system. The instructor uploaded the questions online and students provide solutions through
IoT devices on University premises. The source code similarity in diverse types of source codes, however,
is hard to detect because each programming language has a specific assembly of grammar. To address this
issue, a code similarity detection approach was employed to extract the similarity between different source
codes. The Latent Semantic Analysis (LSA) technique was used to retrieve semantic similarity by first
transforming source codes into tokens to compute and then it finding semantic similarity in a pair of tokens.
The dataset contained five different source codes: C, C#, C++, Python and Java.

Keywords: Internet of Things, Cloud Computing, Data mining, Similarity, E-assessment

1. INTRODUCTION

The Internet of things (IoT) is the
connection of devices, automobiles, and home
usage machines that contain microchip
technology that permits objects to link,
interrelate and interchange data. IoT
communicates over Internet with other
conventional devices, for example, desktop
computers, gadgets, smartphones and tablets.
These devices are embedded with expertise
which can interconnect and communicate around
Internet technology. These devices may be
distantly supervised, observed and controlled
through the use of use Radio Frequency
Identifier (RFID) technology. It can be used in
smart health care systems, supply and chain
management, hotel management system,
industry management and vehicular adhoc
network [1-3] [4] [5]. The IoT network can be
used in academia to automate and monitor
different activities. The cupcarbon simulator is
used to supervise and monitor the examination
and grading of students by all connected IoT

devices. The source plagiarism detection may be
used to detect similar programming assignments
submitted by the students. It is used to provide a
quick assessment of students’ programming
projects. It inspires students to use their own
logic and approach [6]. Source code plagiarism
happens when a student uses code fragments
from another source without understanding the
logic. Plagiarism is a severe threat to academia in
that it discourages the learning process in
students. Some research suggests that every
software contain code similarity in the variety of
10% to 25% [7] [8]. Different source code
similarity approaches have been therefore
proposed, including code plagiarism
identification, bugs solutions and code clone
recognition [9]. The plagiarised source code
fragments may be innocent or suspicious. The
source code examples given by the instructor
could be used by students innocently in their
assigned programming tasks. The plagiarised
source codes chunks are common fragments with
different in functionalities and logic. This type is

Journal of Theoretical and Applied Information Technology
30th September 2019. Vol.97. No 18

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

4724

used as a reliable indication of plagiarism. The
critical task is to detect the instances of
plagiarism that can be used for further
investigating the source codes [10]. Students can
practice these code transformation software for
programming assignments to directly translate
from one source code type to other different kind
[11, 12].

There are several tools developed to
detect plagiarism in source codes. The tools
JPlag, Sherlock, Marble, Moss, etc. need to link
with other information retrieval techniques to
detect plagiarism [13]. Every language parser
runs the program on its parse tree. The parse tree
is also called syntax tree which works on syntax
rules of that specific language. This information
can be used to analyze programming language
behaviour [14]. But when more than two
languages are involved then it is difficult to
detect plagiarism in these multiprogramming
languages because of mixed programming
languages grammar.

In this paper, IoT network in Al-Balqa
Applied University Jordon was used to automate
the examination system through students’
evaluations. There are fixed sensors installed in
the premises of the university and students use
IoT devices to communicate with these sensors.
The instructor gives programming assignment
question online, and then students upload the
solutions through IoT devices. Thus students are
not bound to submit their assignments physically
to the instructor. They can submit their assigned
tasks from anywhere. A methodology is here
proposed to find plagiarism in source code
assignments where students copy code from
someone else or from the internet. The LSA is an
information retrieval technique used to extract
similarity values based on semantics. It is
independent of the specific programming
language’s rules. To investigate the research, a
dataset is acquired in the various source codes.

2. LITERATURE REVIEW

The Blackbox technique is useful to rank similar
statements and functionalities in source code. In
[15] the authors used this technique to extract the

same code sequence in students’ source code
tasks. To investigate the similarity, they used the
coding style metric of the user that reflects the
personality of the programmer. The similarity
issue does not arise due to students' inability
only, but bad time management is also a big
factor. In [16], the author used the low-level
instruction approach to measure the source code
similarity instead of tokens based comparison.
The Java byte code approach is applied to
distinguish the plagiarism attacks in source
codes. Many of the students recycled text
descriptions methods for similarity
identification. But the hybrid method is useful
for these both methods. In [17], the hybrid
method is used to excerpt the resemblance
descriptions from transitional code creation.
Additional, the classification method is
programmed to identify the same code segments.
In [18], the authors used LSA to predict
similarity in students’ codes. This technique is
used collectively with PlaGate to examine
similarity among programming languages. More,
it is explained how different code portions are
important as far as the similarity is concerned.
The parse tree can use the parsing of code based
on source code from the diverse associate
sources. In [19], the parsing tree kernel
technique is used to extract similar text. This
procedure does not postulate a better effect due
to unbalanced differences in code functionality.

Additionally, the algorithm used for
learning purposes is projected for enhancing the
similarity correctness. The data extraction is a
dynamic research area, which still has the
deficiency to extract plagiarized functions from a
huge corpus. In [20], A technique of substring
assessment in codes is used to retrieve similarity.
Further, the p-values technique is used for text
similarity. In [21], the recognition procedure
constructed using the parse tree to authenticate
duplicates among C documents. This source
code clone abstraction used three steps
elementary, classification and generalisation.
The proposed idea is used on collected data from
students’ source codes’ tasks. The differentiating
of similar code replicas in source code is
important to measure of computer science

Journal of Theoretical and Applied Information Technology
30th September 2019. Vol.97. No 18

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

4725

domain. The reprocessing of source code is a
rising question in software engineering life cycle.
The active characterization of executable code is
used to identify the similar text [22]. The similar
source code fragments are distinguished in
source code by calculating the similarity between
functionalities of different statements. Diverse
algorithms are designed to extract information
for similarity in the code. In [23], An enhanced
Combined Method (CM) algorithm is applied to
extract plagiarism among scholars’ source codes.
Plagiarism detection in codes is a common issue
for programming assignments especially in the
students’ projects related to source code writing.
In [24], the authors described a real-time
technique to notice the similarity in students'
source codes to progress the learning growth in
students. The developed tool is used to catch the
plagiarised text in C programming assignments’
functionalities. The summary of the text
documents can be obtained using the fingerprint
process for the text documents. the IoT network
is used to automate the e-assessment process in
terms of source code similarity. Previously
mostly the authors detected plagiarism in single
or between two different programming languages
and without the IoT technology but the proposed
research detects plagiarism among C, C++, Java,
Python and C# source codes using IoT devices to
automate, fast and efficient process.

3. PROPOSED METHODOLOGY: IOT
BASED STUDENTS’ INSTRUCTOR
INTERACTION MODEL WITH
SOURCE CODE SIMILARITY AMONG
PROGRAMMING LANGUAGES

This University’ LMS provides
students’ instructor communication based on e-
learning as follows. The teacher gives
programming tasks to students online and in
response students submit the solutions.

 It offers the virtual classrooms ability
to students based on interactive lectures [25]
[26]. The source code similarity in students'
programming assignments between different
programming languages is a big challenge. The
IoT network may be used to automate the system

regarding the type of hardware, time and
distance. The sensors are installed in the
premises of the university and students use IoT
devices to communicate using these sensors.
Further, software plagiarism method is proposed
to calculate source code similarity between
students’ programming assignments. To test the
proposed approach. I took two case studies
(stack and binary search) in five unique source
codes, i.e. C, C++ C#, Python and Java. Teacher
gives programming assignment to students in
any of these five languages, and the proposed
methodology detects plagiarism in the source
code based on semantics. The LSA is used to
retrieve similarity between a pair of documents
written in different languages. It uses a
mathematical algorithm called SVD used to
extract text summary or essay grading [27] [28].
First, the source code is preprocessed and change
it to the document-term matrix. The
preprocessing includes, stemming, root words,
minimum and maximum frequencies of each
term and removing noise. Further, the different
types of weighting filters are used to categorize
tokens according to the similarity contributions
[18]. The weighted results rank the terms
regarding their participation in similarity.

Journal of Theoretical and Applied Information Technology
30th September 2019. Vol.97. No 18

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

4726

Teacher

Student

Base station

Wireless sensor node

Server machine

Student

Student

Student

Student

Programming
assignment

Tokenizing and
similarity check

% similarity and
comparison

Figure 1: IoT based students’ interaction and Plagiarism Detection in programming assignments

The range of +1 and -1 is extracted
using similarity among the files if I need to
calculate the semantic similarity using the cosine
similarity measure, which is used by LSA. To
range the resultant semantic values in 0 to 2 scale
the normalization method is applied. The LSA
technique does not affect the syntax and
grammatical rules of any programming language
because it uses a bag of words model. It takes
terms as a bag of words and then extracts the
semantic values based on the contribution of the
similarity of each term. Every language has a
specific structure and grammar rule, but still,
LSA detects plagiarism between a pair of two
different programming languages [29, 30]. The
percentage similarity value is calculated between
each pair of varying source code documents. It
gives the overall contribution of each normalized
token which shows better results to the
instructor.

The proposed approach works using
following Algorithm 1.

1) Decompose the source codes S into a
set of tokens set T such that 𝑇 ∈ 𝑆, set
k=1

2) Construct a term frequency Matrix M
from T

3) Perform Entropy weighting to zoom the
importance of each token

4) Perform SVD on matrix M to extract
singular value matrix VT= (vi1, vi2,..vir)

5) Compute Similarity among Pairs of
SVD vectors.

6) Notify Similarity
First, we preprocess source code corpus to
convert it to tokens without noisy data. Then,
term frequencies are computed for each token to
show the occurrences of each token. After that,
entropy weighting technique is applied to zoom
the importance of each token. Then, the SVD
technique is applied to reduce the dimensions of

Journal of Theoretical and Applied Information Technology
30th September 2019. Vol.97. No 18

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

4727

source codes data without losing actual
information. Finally, LSA algorithm is applied to
compute similarity among each pair of tokens.

4. RESULTS AND DISCUSSIONS

Students are not limited to sit in the library or the
classroom and to submit any given tasks
physically. They may read and update about any
activity regarding their studies through their IoT
devices. Instructor can give any task to students
by uploading online to the system. Then,
students can upload the solutions of the tasks
from anywhere within the range of these sensors.
The Al Balqa Applied University sensors
network is being simulated in figure 1 and figure
2. The online examination system has the feature
to analyze the similarity between different source
codes solved by the students. I used cupcarbon
simulator to extract students’ and instructor
information from IoT devices. Sensors are
configured in different regions of Al-Balqa
Applied University Jordon using cupcarbon
simulator.

Different programming languages’ code
can be used to calculate the plagiarism among
them using semantic similarity. In the current
study, we have used five programming
languages for the experiments. These
programming languages are C, C#, C++, Python
and Java. Semantic similarity between a pair of
different source codes in the same case study
using the LSA technique. It extracts semantic
similarity between tokens and does not use the
grammar rule of any specific programming
language. There are twenty different semantic
similarity tables are extracted from five
programming languages. The preprocessing
method is applied to remove the noisy words,
characters and symbols and to get to tokens that
can be used for plagiarism detection analysis.
The LSA technique process theses tokens for
semantic analysis. To retrieve information from
source code first it needs to be converted to
tokens' weighting information. It contains the
extracted tokens with weighting values that show
the contribution of each symbol.

Sensors are deployed in, and every
student in the university is using the smartphone.
Through this, I may be notify by the location of
every student, their activities, etc. I have
deployed three base stations in the area of the
university with a number of sensors as shown in
figure 2 and sensors are sending the data to the
base station as shown in figure 3. The base
station is coloured with yellow because it's
inactive state and sensors send the data keeping
the delay of 1 minute or as you want to receive
the data. This system is deployed in the Al-Balqa
Applied University to maintain a check and
balance on every student and further to update
the activities of every student.

Journal of Theoretical and Applied Information Technology
30th September 2019. Vol.97. No 18

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

4728

Figure 2: Before the simulation

Figure 3: Finding the boundary of Al-Balqa Applied University

Journal of Theoretical and Applied Information Technology
30th September 2019. Vol.97. No 18

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

4729

I have deployed the sensors in Al-Balqa
Applied University, and it's recognizing the edge
of the university as shown in figure 4. When the
students enter in the university, these sensors
send the data to the base station that student have
entered in the campus premises and whenever

the student leaves the university it will also tell
that the student is out of the boundary of the
university. If an unknown person is entering the
edge of the university, it sends the data against
this activity.

Figure 4: Sensors sending the data to the base station

The energy consumption of the nodes is
shown in figure 5a and figure 5b, which is in
Joules. The remaining energy of the node and the
use of the battery can be taken as a time function.
The figure 5a shows that the node is consuming
0.06 Joule, and this is specially done when the
node sends a message to other nodes. The energy
consumption for its electric operation and data

propagation, i.e. both for broadcasting and
receiving, are the energy-hungry processes. So, a
time function can be considered for the
decreasing of energy if i take the remaining prior
into account. In my simulation, i have done a
simulation for 996 seconds and the figures 5a,5b
are showing the energy consumed by sensors in
996 seconds.

Journal of Theoretical and Applied Information Technology
30th September 2019. Vol.97. No 18

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

4730

Fig 5 a: Energy consumption of sensor 1 as a function of time

Fig 5 b: Remaining energy of sensor 1 as a function of time

Journal of Theoretical and Applied Information Technology
30th September 2019. Vol.97. No 18

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

4731

Table 1 shows the source code similarity
calculations among C++ and C tokens. The
tokens are shown in the first column, which are
extracted from both source codes, the last two
columns show the semantic similarity values for
C and C++ respectively. The values which are
close to each other are more useful for
plagiarism detection. For example, array, bottom,
value, while, find etc. This represents that these
tokens have close weighting values. The last few
tokens binary search, cin, class, cout, invalid,
result and void show distinct similarity values

because these tokens are present in C but not in
C++. The semantic similarity is calculated for a
case study related to stack and the programming
languages used are C and C++ as shown in Table
1. The tokens show in the first column, the
semantic similarity values for Java and Python
are shown in the last two columns as shown in
Table 2. Moreover, these programming
languages are different at syntax and semantic
level. I did simulation in R language for
information retrieval from the text.

Table 1: Similarity values between C & C++

Tokens C C++

array 1.12446842 1.30487059

bottom 1.19040993 1.10192889

break 1.05360563 1.13130061

element 1.07640164 1.0301734

else 1.14167912 1.03309946

enter 1.16877055 1.04892579

find 1.07640164 1.0301734

first 1.05360563 1.13130061

for 1.07640164 1.0301734

found 1.08496291 1.20810655

if 1.15280329 1.0603468

int 1.15764637 1.02167845

integer 1.07640164 1.0301734

last 1.08496291 1.20810655

list 1.05360563 1.13130061

locate 1.07640164 1.0301734

main 1.07640164 1.0301734

middle 1.16992583 1.4162131

number 1.15501393 0.97394383

present 1.05360563 1.13130061

printf 1.13856855 1.33940717

return 1.1054151 1.00942074

scanf 1.10721126 1.26260123

search 1.24682878 1.06157378

top 1.18444919 1.08732876

value 1.07640164 1.0301734

while 1.07640164 1.0301734

ascend 1.09919766 0.92904619

Journal of Theoretical and Applied Information Technology
30th September 2019. Vol.97. No 18

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

4732

binarysearch 1.19839532 0.85809237

cin 1.19839532 0.85809237

class 1.09919766 0.92904619

cout 1.25642223 0.81658705

invalid 1.09919766 0.92904619

positive 1.09919766 0.92904619

public 1.09919766 0.92904619

result 1.23032983 0.83525035

searchfun 1.23032983 0.83525035

void 1.29759298 0.78713856

Table 2: Similarity values between Java & Python

Tokens Java Python

arg 1.07509626 1.106359846

catch 1.07509626 1.106359846

class 1.07509626 1.106359846

empty 1.08254551 1.008803854

emptystackexception 1.07509626 1.106359846

int 1.07509626 1.106359846

integer 1.15019252 1.212719692

main 1.07509626 1.106359846

new 1.11902476 1.168576367

out 1.21082186 1.298589837

pop 1.23173453 1.024715544

print 1.19166473 1.020441917

println 1.11902476 1.168576367

public 1.11902476 1.168576367

push 1.22172746 1.034584445

stack 1.20901951 1.07982423

stack1 1.27651613 1.088140317

static 1.15019252 1.212719692

string 1.07509626 1.106359846

system 1.21082186 1.298589837

test 1.07509626 1.106359846

void 1.15019252 1.212719692

append 1.08999475 0.911247863

contain 1.08999475 0.911247863

current 1.08999475 0.911247863

def 1.17998951 0.822495725

display 1.20896134 0.793923919

Journal of Theoretical and Applied Information Technology
30th September 2019. Vol.97. No 18

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

4733

displaystack 1.08999475 0.911247863

else 1.14263831 0.85933119

for 1.08999475 0.911247863

full 1.08999475 0.911247863

if 1.14263831 0.85933119

input 1.17998951 0.822495725

item 1.14263831 0.85933119

key 1.17998951 0.822495725

len 1.14263831 0.85933119

press 1.17998951 0.822495725

read 1.17998951 0.822495725

stacksize 1.14263831 0.85933119

value 1.14263831 0.85933119

when 1.17998951 0.822495725

Figure 6 shows the tokens-based source
code similarity between Java and C for the
binary search case study to examine semantic
similarity values. The horizontal line shows the
tokens extracted from C and Java and the vertical
line indicates the similarity values of each
symbol. The blue colour represents tokens of C,
and the orange colour represents tokens of Java.
The similarity values behave in the range of 0 to
1.4. The println, out, new, system and indexint
tokens have distinct values because these present
in one source code but not in other. These types
of symbols still show semantic similarity values
based on LSA. The bottom, print and top tokens
in Java show the highest value which is 1.4 while
the system, out and println symbols show lowest
similarity values in java. The system and middle
tokens show the highest value in C which is 1.3.
The overall percent similarity between these
source codes is 78.235%. Figure 7 shows the

source code similarity between python and C++
tokens. The calculated similarity is shown y-axis
while symbols are showed on the x-axis. The
blue and orange colour shows tokens of C++ and
Python respectively. The arr token shows the
highest value in Python which is 1.5. The find,
ascend, for, and integer show improved
similarity values between both source codes
because their costs are close to each other. These
types of tokens more useful for semantic
similarity to detect plagiarism. The overall
semantic similarity between C++ and Python is
70.647% in the binary search case study. These
types of tokens are beneficial for plagiarism
detection. The token-based comparison between
C# and C++ is stack case study is shown in
Figure 9. The tokens similarity is analyzed
vertically while the tokens details are given
horizontally.

Journal of Theoretical and Applied Information Technology
30th September 2019. Vol.97. No 18

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

4734

Figure 6: C and Java tokens similarities

Figure 7: C++ and Python tokens’ similarities

0
0.2
0.4
0.6
0.8
1

1.2
1.4
1.6

ar
ra
y

b
o
tt
o
m

b
re
ak

e
le
m
en

t
e
ls
e

e
n
te
r

fi
n
d

fi
rs
t

fo
r

fo
u
n
d if

in
t

in
te
ge

r
la
st lis
t

lo
ca
te

m
ai
n

m
id
d
le

n
u
m
b
er

p
re
se
n
t

p
ri
n
tf

re
tu
rn

sc
an

f
se
ar
ch to
p

va
lu
e

w
h
ile ar
g

b
in
ar
ys
e
ar
ch

cl
as
s

n
ew

n
ex
ti
n
t

o
u
t

p
ri
n
tl
n

p
u
b
lic

sc
an

n
e
r

st
at
ic

st
ri
n
g

sy
st
e
m

vo
id

Si
m
ila

ri
ty

Tokens

Binary Search

C Java

0
0.2
0.4
0.6
0.8
1

1.2
1.4
1.6

as
ce
n
d

b
in
ar
ys
e
ar
ch

b
o
tt
o
m ci
n

cl
as
s

co
u
t

e
le
m
en

t
e
ls
e

e
n
te
r

fi
n
d

fo
r if

in
t

in
te
ge

r
in
va
lid

lo
ca
te

m
ai
n

m
id

n
u
m
b
er o
b
j

o
rd
er

p
o
st
it
io
n

p
u
b
lic

re
su
lt

re
tu
rn

se
ar
ch

se
ar
ch
fu
n

to
p

va
lu
e

vo
id

w
h
ile ar
r

ar
ra
y

d
ef e
lif

in
d
e
x

le
n

lo
w

p
re
se
n
t

p
ri
n
t

Si
m
ila

ri
ty

Tokens

Binary Search

C++ Python

Journal of Theoretical and Applied Information Technology
30th September 2019. Vol.97. No 18

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

4735

Figure 8: C# and C++ tokens’ similarities

5. CONCLUSION AND FUTURE
DIRECTIONS

The IoT is an emerging technology that may be
used in academia for teaching and examination
activities. In this paper, an IoT model is
proposed to connect students and instructor for
academic purposes. Instructors and students are
connected with university’s online database
through IoT devices. The cupcarbon simulator is
used to manager and analyze the activities of the
connected devices. It can record the entering and
going time and other academic activities of each
connected device in the university premises.
Further, a methodology is proposed to catch the
similarity in students’ source codes. The
students’ capability for learning programming
can be enhanced and made more effective when
students’ programming assignments’ plagiarism
detection is done. The LMS is used to interact
with students with instructors. The students get
training from available courses and then resolve
the given programming assignments. A proper
plagiarism detection method is required to
extract similarity in students’ source code. The
source code similarity among different codes is a
serious issue. A new assessment methodology is
used to extract similar code fragments among
several source codes. The LSA is the Natural

Language Processing technique which is used to
extract semantic similarity between source
codes. These source codes are used in two
(binary search, stack) different programming
problems. The pre-processing steps are
performed on five different source codes to
extract meaningful tokens. The preprocessing
steps contain stemming, root words, tokens
contribution and frequencies. The weighting of
the tokens followed the process. The next step is
SVD, which is performed to extract the most
relevant tokens from source codes. This research
idea may be used in the education system for
obtaining resemblances in students’ source
codes. In future, I will try to embed some
plagiarism detection tool to analyze
programming languages’’ fragments for
semantic similarity. Also, the deep and machine
learning algorithms may also be used to extract
features and analyses the comparison with LSA
technique.

REFERENCES

[1] Habte, T.T., et al., IoT for Healthcare, in
Ultra Low Power ECG Processing System
for IoT Devices. 2019, Springer. p. 7-12.

[2] Bagheri, M. and S. Haghighi Movahed. The
effect of the Internet of Things (IoT) on
education business model. in 2016 12th

0
0.2
0.4
0.6
0.8
1

1.2
1.4
1.6

ar
g

ch
ar

cl
as
s

co
n
so
le

cu
rr
e
n
t

e
ac
h

fo
r

fo
re
ac
h

m
ai
n

n
ew

n
ex
t

p
ee

k

p
o
p

p
ro
gr
am

p
u
sh

re
m
o
ve

st
ac
k

st
ac
k1

st
at
ic

st
ri
n
g

va
lu
e

vo
id

w
ri
te

w
ri
te
lin

e

co
u
t

d
is
p
la
y

e
m
p
ty if

in
t

m
ax
im

u
m

n
u
m
b
er

p
ri
va
te

p
u
b
lic

re
tu
rn

to
p

Si
m
ila

ri
ty

Tokens

Stack

C# C++

Journal of Theoretical and Applied Information Technology
30th September 2019. Vol.97. No 18

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

4736

International Conference on Signal-Image
Technology & Internet-Based Systems
(SITIS). 2016. IEEE Computer Society.

[3] Luthra, S., et al., Internet of Things (IoT) in
Agriculture Supply Chain Management: A
Developing Country Perspective, in
Emerging Markets from a Multidisciplinary
Perspective. 2018, Springer. p. 209-220.

[4] Gnanamalar, R., et al., IoT Driven Vehicle
License Plate Extraction Approach.
International Journal of Engineering &
Technology, 2018. 7(2.24): p. 457-459.

[5] Kotha, H.D. and V.M. Gupta, IoT
Application, A Survey. International Journal
of Engineering & Technology, 2018. 7(2.7):
p. 891-896.

[6] Bradley, S. Managing plagiarism in
programming assignments with blended
assessment and randomisation. in
Proceedings of the 16th Koli Calling
International Conference on Computing
Education Research. 2016. ACM.

[7] ShanmughaSundaram, M. and S. Subramani,
A Measurement of Similarity to Identify
Identical Code Clones. International Arab
Journal of Information Technology (IAJIT),
2015. 12.

[8] Roy, C.K. and J.R. Cordy, A survey on
software clone detection research. Queen’s
School of Computing TR, 2007. 541(115):
p. 64-68.

[9] Ragkhitwetsagul, C. Measuring Code
Similarity in Large-scaled Code Corpora. in
Software Maintenance and Evolution
(ICSME), 2016 IEEE International
Conference on. 2016. IEEE.

[10] Joy, M., et al., Source code plagiarism—a
student perspective. IEEE Transactions on
Education, 2011. 54(1): p. 125-132.

[11] Buddrus, F. and J. Schödel. Cappuccino—A
C++ to Java translator. in Proceedings of
the 1998 ACM symposium on Applied
Computing. 1998. ACM.

[12] Ullah, F., et al., Plagiarism detection in
students’ programming assignments based
on semantics: multimedia e-learning based
smart assessment methodology. Multimedia
Tools and Applications, 2018: p. 1-18.

[13] Heres, D. and J. Hage. A Quantitative
Comparison of Program Plagiarism
Detection Tools. in Proceedings of the 6th
Computer Science Education Research
Conference. 2017. ACM.

[14] Mou, L., et al. Convolutional Neural
Networks over Tree Structures for

Programming Language Processing. in
AAAI. 2016.

[15] Mirza, O.M., M. Joy, and G. Cosma.
Suitability of BlackBox dataset for style
analysis in detection of source code
plagiarism. in Innovative Computing
Technology (INTECH), 2017 Seventh
International Conference on. 2017. IEEE.

[16] Karnalim, O. Detecting Source code
plagiarism on introductory programming
course assignments using a bytecode
approach. in Information & Communication
Technology and Systems (ICTS), 2016
International Conference on. 2016. IEEE.

[17] Yasaswi, J., et al. Unsupervised learning
based approach for plagiarism detection in
programming assignments. in Proceedings
of the 10th Innovations in Software
Engineering Conference. 2017. ACM.

[18] Cosma, G. and M. Joy, An approach to
source-code plagiarism detection and
investigation using latent semantic analysis.
IEEE transactions on computers, 2012.
61(3): p. 379-394.

[19] Son, J.-W., et al., An application for
plagiarized source code detection based on
a parse tree kernel. Engineering
Applications of Artificial Intelligence, 2013.
26(8): p. 1911-1918.

[20] Bakker, T., Plagiarism Detection in Source
Code. 2014, Ph. D. dissertation, Universiteit
Leiden.

[21] Lazar, F.-M. and O. Banias. Clone detection
algorithm based on the Abstract Syntax Tree
approach. in Applied Computational
Intelligence and Informatics (SACI), 2014
IEEE 9th International Symposium on.
2014. IEEE.

[22] Jhi, Y.-C., et al., Program characterization
using runtime values and its application to
software plagiarism detection. IEEE
Transactions on Software Engineering,
2015. 41(9): p. 925-943.

[23] Ohno, A. and H. Murao, A two-step in-class
source code plagiarism detection method
utilizing improved CM algorithm and SIM.
International Journal of Innovative
Computing, Information, and Control, 2011.
7(8).

[24] Pawelczak, D. Online detection of source-
code plagiarism in undergraduate
programming courses. in Proceedings of the
International Conference on Frontiers in
Education: Computer Science and Computer
Engineering (FECS). 2013. The Steering

Journal of Theoretical and Applied Information Technology
30th September 2019. Vol.97. No 18

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

4737

Committee of The World Congress in
Computer Science, Computer Engineering
and Applied Computing (WorldComp).

[25] Zhang, D., Interactive multimedia-based e-
learning: A study of effectiveness. The
American Journal of Distance Education,
2005. 19(3): p. 149-162.

[26] Zhang, D., et al., Can e-learning replace
classroom learning? Communications of the
ACM, 2004. 47(5): p. 75-79.

[27] Zhiyuan, Z., Latent Semantic Analysis.
2017.

[28] Ullah, F., et al., Software plagiarism
detection in multiprogramming languages
using machine learning approach.
Concurrency and Computation: Practice and
Experience: p. e5000.

[29] Hájek, P., Combining bag-of-words and
sentiment features of annual reports to
predict abnormal stock returns. Neural
Computing and Applications, 2017: p. 1-16.

[30] Ullah, F., An E-Assessment Methodology
Based on Artificial Intelligence Techniques
to Determine Students' Language Quality
and Programming Assignments' Plagiarism.
Intelligent Automation & Soft Computing,
2019: p. 12.

