
Journal of Theoretical and Applied Information Technology
30th September 2019. Vol.97. No 18

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

4850

FAST REPRESENTATION OF FLUID SHEETS WITH GRID
PROJECTION AND CPU-GPU HETEROGENEOUS

COMPUTING

JONG-HYUN KIM1 , JUNG LEE2
1Division of Software Application, Kangnam University, Gyeonggi, South Korea

2School of Software, Hallym University, Chuncheon, South Korea

E-mail: 1jonghyunkim@kangnam.ac.kr, 2airjung@hallym.ac.kr

ABSTRACT

We introduce a fluid simulation method using a upsampling-based grid projection and CPU-GPU
heterogeneous computing that can explicitly represent and preserve fluid thin sheets. The most important
contribution of this paper is that the GPU and grid projection are used to improve the particle-based
framework to prevent holes that appear to collapse at thin fluid surfaces or dense points. The proposed
framework can handle topology change reliably without numerical diffusion or twisting problems. The
anisotropic kernel and PCA (Principal Component Analysis) are performed on the GPU to quickly find the
direction of fluid with a thin surface, and CPU-GPU heterogeneous computing technique greatly enhances
the efficiency of the candidate position extraction process to calculate the position of a new fluid particle.
Our technique is intuitively implemented, allowing for easy parallelization and rapid visualization of the
surface of thin sheets of visually detailed water. As a result, we propose a parallel processing framework that
can quickly express surface details, such as liquid sheets, that are difficult to represent in traditional particle-
based simulations and improve the surface details of the water simulation.

Keywords: CPU-GPU heterogeneous computing, Thin sheets of water, Fluid simulation

1. INTRODUCTION

Representing the turbulence of the detailed fluid
generated from the interaction of the fluid and the
solid has been an important issue in physics-based
simulation. Especially, it is very important to
generate and express fine detail when performing
fluid animation including turbulence or liquid sheets
[13],[14],[17],[18],[19] (refer to figure 1).

Figure 1: Real images of fluid sheets [13],[14]

Adaptive grid and multigrid methods have been
widely used to model turbulent flows that are
represented in fluid simulations [1],[2]. These
methods can temporally express the small detail
vortex phenomena by solving the Navier-Stokes
equation in a grid space with higher resolution.
However, if the vortex deviates from the high-
resolution grid space, it becomes difficult to preserve
its detailed motion. To solve this problem, hybrid
framework techniques have been introduced that
express the motion of small turbulence [3],[18].

Since the Smoothed Particle Hydrodynamics
(SPH) technique proposed by Muller et al. [4], there
has been much progress in the field of particle-based
simulation [20],[21],[22]. Conventional particle-
based methods are suitable for bubble or splash
animation, but are not sufficient to express the
characteristics of a thin fluid because of the
oscillation problems caused by the spring force.

Many hybrid grid-particle approaches have been
proposed [5],[23],[24] (refer to figure 2), but not
enough to represent thin features of fluids. In
addition, approaches using high grid resolution or a
large number of particles are also difficult to be

Journal of Theoretical and Applied Information Technology
30th September 2019. Vol.97. No 18

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

4851

actually used because they require large amounts of
computation. This paper introduces a new particle-
based CPU-GPU heterogeneous framework that
preserves the thin features of liquids, such as
Eulerian fluid simulations. Our approach is to find
out where the thin surface of the fluid disappears and
add/remove new particles.

Figure 2: APIC coupled simulation of elastoplastic
frozen yogurt and elastic cloth where coupling is

achieved using MPM method

We use the Fluid-implicit-particle (FLIP) method
as the underlying fluid solver [5] (refer to figure 3),
which preserves the surface of the liquid that is thin
and disappears by adding new fluid particles. The
added particles are removed when they enter a
location where the thin features of the fluid can not
be extracted (e.g, deep water region).

Figure 3: Stanford bunny is simulated as water and as
sand

This study is also influenced by the anisotropic
kernel method proposed by Yu and Turk [6]. Their
method employs the stretch and orientation of the
particles to perform PCA using the location of the
surrounding particles and, as a result, to restore sharp,
smooth fluid surfaces (refer to figure 4). We use the
GPU-based solution to perform the PCA and use this
stretch as a basis for determining whether to insert
fluid particles [27].

2. RELATED WORK

The latest liquid surface tracking techniques can
be categorized into two approaches: Implicit and
Explicit. The level-set method proposed by Osher

and Sethian is one of the most widely used implicit
methods [26]. The level-set method computes the
distance function from the nearest surface position in
each grid node and implicitly defines the surface
where the distance value is zero. This method has
been improved and modified in various aspects over
the years. Enright et al. [25], Wang et al. and Mihalef
et al. placed a Lagrangian particle to prevent
numerical loss. Solving this implicit method in a
high-resolution grid can increase the overall fluid
detail. However, even with this approach, it is still
not enough to capture the thin film-like features of
the fluid.

Figure 4: Comparison between the surface

reconstruction using isotropic kernel (a) and anisotropic
kernels (b)

Hirt and Nichols proposed a volume of fluid

(VOF) technique that uses the ratio of fluids to all
cells to efficiently represent discontinuous interfaces
[7]. Other methods have been proposed over the past
several decades in various research areas, such as
medical imaging and fluid dynamics [8] (refer to
figure 5).

Figure 5: Dropping viscoelastic balls in an Eulerian fluid

simulation

In general, mesh-based surface tracking

techniques admit explicit surface elements such as
mesh vertices according to the fluid flow [28] (refer
to figure 6). However, this method is not commonly

Journal of Theoretical and Applied Information Technology
30th September 2019. Vol.97. No 18

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

4852

used because it is difficult to cope with self-
intersection or complex topology transformation.
This problem can be solved by resampling
neighboring grid positions, but it complicates the
algorithm because we must consider all the various
complex situations.

Figure 6: Simulation of three-dimensional film boiling

The particle-based approach is not as complicated

in terms of algorithms because it does not retain the
vertex of the mesh and expresses the surface of the
fluid using only particles, as in the explicit
approaches [4],[20],[21],[22]. The splittable particle
based approach used in this paper belongs to the
category of adaptive particle method. Our method
and this method are designed to keep the thin film-
like characteristics of the fluid constant, while the
only difference is that we reduce the computational
cost while maintaining the visual detail of the fluid
by sampling the particles with different sizes (refer
to figure 7).

Figure 7: Water splash by our method. (a): A visualized

splash with particles, (b): A thin generated by our
method

3. OUR FRAMEWORK

The proposed method is a CPU-GPU
heterogeneous framework that generates and

maintains thin features of fluids using FLIP-based
three-dimensional fluid particles. The algorithm is
performed in the following order.

I. Step1(GPU) Particle density calculation,
surface particle extraction

II. Step2(GPU) Calculating direction of
particles, finding pair of particles, extracting
candidate position of newly added particles

III. Step3(CPU Parallel) Optimizing candidate
position

IV. Step4(CPU Serial) Adding and removing
new particles

V. Step5(GPU) Velocity calculation through
grid projection

VI. Step6(CPU Parallel) Advection of fluid
particles

VII. Step7(GPU) Reconstruction of fluid surfaces

3.1 Sections and Subsections
The proposed method is based on the method of
Ando et al. [15],[16], which maintains a thin film of
fluid. First, the distribution of particles is analyzed
using an anisotropic kernel. To extract the
orientation of the particles we first calculate the
average covariance 𝐶௜ per particle as follows (refer
to equation 1).

𝐶௜ ൌ
∑ ൫௣ೕି௣ഢതതത൯൫௣ೕି௣ഢതതത൯

೅
ௐೞ೘೚೚೟೓൫௣ೕି௣ണതതത,ఈభௗబ൯ೕ

∑ ௐೞ೘೚೚೟೓൫௣ೕି௣ഢതതത,ఈభௗబ൯ೕ
 (1)

Where 𝑑଴ is the initial distance between the fluid
particles, and 𝛼ଵ is the variable that controls the
initial distance 𝑑଴.

𝑝పഥ ൌ
∑ ௣ೕௐೞ೘೚೚೟೓൫௣ೕି௣೔,ఈభௗబ൯ೕ

∑ ௐೞ೘೚೚೟೓൫௣ೕି௣೔,ఈభௗబ൯ೕ
 (2)

𝑊௦௠௢௢௧௛ሺ𝑟, ℎሻ ൌ ቆ1 െ
‖௥‖మ

௛
, 0 ൑ ‖𝑟‖ ൑ ℎ,

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
ቇ (3)

We calculate the eigenvectors and eigenvalues for
the particle distribution using the covariance
matrices 𝐶௜ computed using the above formulas and
SVD (singular value decomposition). We extract the
stretch and orientation of adjacent particles from
these values.

𝐶௜ ൌ ቎
𝑒ଵ

்

𝑒ଶ
்

𝑒ଷ
்

቏

்

቎
𝜎ଵ

𝜎ଶ

𝜎ଷ

቏ ቎
𝑒ଵ

்

𝑒ଶ
்

𝑒ଷ
்

቏ (4)

Where 𝑒௡ represents the principal component of the
axis extracted by dispersion and 𝜎௡ represents the
degree of stretch. The thin particles on the thin

Journal of Theoretical and Applied Information Technology
30th September 2019. Vol.97. No 18

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

4853

surface are extracted by inspecting 𝜎ଷ ൑ 𝛼ଶ𝜎ଵ ,
where 𝛼ଶ is a threshold value for determining the
degree of thickness. Figures 8 and 9 are pseudo
codes with the CUDA kernel that calculate the
process up to the SVD calculation using the density
of the fluid particle and the covariance matrix. This
process corresponds to Step1 and Step2.

Figure 8: Computing of particle density in GPU

Figure 9: Computation of covariance matrix and singular

value decomposition in GPU

The pseudo code shown in Figure 8 roughly
classifies surface particles using the density values
of the fluid particles, and the pseudo code of Figure
9 calculates the covariance matrix using the distance
from adjacent particles. Finally, SVD is used to
calculate eigenvectors and eigenvalues using GPU-
based parallel programming, and finally the results
of the extracted thin particles are shown in Figure 10.

Figure 10: Selected thin particles from water particles
(thin particles are colored violet and lie on the outer

edge of the fluid body)

3.2 Extraction and Optimization of Candidate

Position
The extracted thin particles are used to add new
particles to the hole part. We find (i, j), which is the
pair of particles used to fill the hole. ൫𝑝௜ ൅ 𝑝௝൯/2,
which is the center position of the pair, is stored for
use as a candidate position for splitting, and finally a
pair satisfying all of the following conditions is
finally selected.

𝛼ଷ𝑑଴ ൑ ฮ𝑝௜ െ 𝑝௝ฮ ൑ 𝛼ସ𝑑଴ (5a)

∑ 𝑊௦௠௢௢௧௛ ൬
൫௣೔ା௣ೕ൯

ଶ
െ 𝑝௞, 𝛼ଷ𝑑଴൰ ൌ 0௞ (5b)

൫𝑝௜ െ 𝑝௝൯ ∙ ൫𝑢௜ െ 𝑢௝൯ ൐ 0 (5c)

Where 𝛼ଷ and 𝛼ସ are constants that control the
minimum and maximum distance between candidate
positions and u is the particle velocity. Equation 5a
checks that the two particles are at an appropriate
distance from each other. Equation5b examines
whether there are no fluid particles around the
candidate position, in other words, a sparse region,
to determine if it is appropriate to add new particles
within the radius 𝛼ଷ. Equation 5c confirms that the
distance between a pair of fluid particles increases
over time. As a result, the intermediate position of
the pair satisfying all the above conditions is stored
in S without duplication.

Figure 11: Pair collection in CPU

Journal of Theoretical and Applied Information Technology
30th September 2019. Vol.97. No 18

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

4854

Figure 11 shows a pseudo code for calculating the
candidate positions using a CPU-based parallel
module. This process corresponds to Step 3. In the
method of Ando et al. [15],[16], it takes a long time
to calculate because it finds a pair satisfying all three
conditions for all fluid particles. In order to
efficiently process this, we divide it into a CPU-GPU
heterogeneous parallel framework. Figure 5 is a
pseudo code for finding a pair satisfying Equations
5a and 5c. In this paper, we use OpenMP for CPU-
based parallel processing and generate a pair buffer
by the maximum number of threads
(omp_get_max_threads()) provided by the CPU.
Pairs satisfying the conditions 5a and 5c are stored
in the pair buffer corresponding to each thread index
(m_Pair[omp_get_thread_num()]).

Figure 12: Optimization of candidate position in GPU

Since a large number of candidate pairs are extracted
from the pair sets calculated in this process, Equation
5b takes a long calculation time. We perform GPU-
based parallel processing to efficiently calculate this
process (refer to figure 12)

Figure 13: Computing S buffer in GPU

Finally, we pass the pair buffer (m_PairCuda)
computed on the GPU to the CPU (m_Pair[i][]).
Figure 13 is a pseudo code that performs this process
and consequently forms an S buffer.

3.3 Inserting and Removing Particles
It is not appropriate to add new fluid particles where
the candidate particles are densely arranged.
Therefore, this chapter describes how to filter out
unnecessary particles and add only a minimal
number of particles to preserve liquid sheets. I is a
list of extracted information of the final candidate
particles, 𝐼ଵ is the first position value in S :

𝐼ଵ ൌ 𝑎𝑟𝑔𝑚𝑖𝑛௝∈𝑺 𝜌௝൫𝑠௝൯ (6)

Where 𝜌௝ is the density of the 𝑗 th particle. We
calculate 𝐼ଵ from S and then delete the candidate
particles that are in radius 𝛼ଷ𝑑଴ from the
surrounding particles of 𝑠ூభ . We then search for
particles outside the radius 𝛼ଷ from the surrounding
particles of 𝑠ூభ and add them to 𝑁ூభ . Finally, the
closest particle 𝑠௝ of the particles in 𝑁ூభ is added to
𝐼ଶ (refer to equation 7).

𝐼ଶ ൌ 𝑎𝑟𝑔𝑚𝑖𝑛௝∈ே಺భ
 ฮ𝑠௝ െ 𝑠ூభฮ (7)

Equation 7, used to search for particles, can be
computed as : 𝐼௡ାଵ ൌ 𝑠𝑒𝑎𝑟𝑐ℎሺ𝐼௡ሻ. This means that
𝐼ଶ can be calculated in the same way, and
𝐼ଷ, 𝐼ସ, … , 𝐼௡ାଵ . If the search fails and there are no
candidates satisfying the condition, Equation 6 is
used instead.
Based on the above, the fluid particle is divided into
two particles and its properties are linearly
interpolated. The velocity u and density ρ mapped to
the grid are calculated as follows :

𝑢ሺ𝑥ሻ ൌ
∑ ௠೔௨೔ௐೞ೓ೌೝ೛ሺ௣೔ି௫,ఈఱௗబሻ೔

∑ ௠೔ௐೞ೓ೌೝ೛ሺ௣೔ି௫,ఈఱௗబሻ೔
 (8)

𝜌ሺ𝑥ሻ ൌ ∑ 𝑚௜𝑊௦௠௢௢௧௛ሺ𝑝௜ െ 𝑥, 𝛼ଵ𝑑଴ሻ௜ (9)

Here, 𝛼ହ is a weight value for velocity u, and 𝑊௦௛௔௥௣
is a kernel function as follows :

𝑊௦௛௔௥௣ሺ𝑟, ℎሻ ൌ ൭
௛మ

‖௥‖మିଵ
, 0 ൑ ‖𝑟‖ ൑ ℎ,

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
൱ (10)

In this study, as in Ando's method, fluid particles
are removed when one of the following conditions
is satisfied (refer to equations 11 and 12).

𝜌௜ ൐ 𝛼଺𝜌଴ and 𝜎௜ ൐ 𝜎ଶ𝜎ଵ (11)

ฮ𝑝௜ െ 𝑝௝ฮ ൏ 𝛼଻𝑑଴, 𝑓𝑜𝑟 𝑎𝑛𝑦 𝑗 ് 𝑖 (12)

Journal of Theoretical and Applied Information Technology
30th September 2019. Vol.97. No 18

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

4855

Where 𝛼଺ is the maximum density value and 𝛼଻ is
the minimum distance value between the fluid
particles. The fluid particles are removed if they
meet Equations 11 and 12, and the mass of the
removed particles is added back to the original fluid
particles before splitting, thus preserving the total
mass. The process of adding and deleting fluid
particles is a serial structure so that 𝐼௡ାଵ is processed
after 𝐼௡ is processed. So we treated it in the same
way as the algorithm proposed by Ando et al.
[15],[16]. In the next section, we describe how to
calculate the velocity efficiently using the grid
projection.

3.4 Grid Projection for Pressure Solver
Mapping velocity to coarse grid : To map from
particle to coarse grid, we propose a normalized
spline kernel method to map the intermediate fine
grid velocity 𝑢௙ to a coarse grid and then obtain the
coarse velocity 𝑢௖ . To map the velocity field 𝑢௙
stored in the fine grid to the coarse grid field 𝑢௖, we
use the distance-weight average function as follows:

𝑢௜,௝
௖ ൌ

∑ ௨೑ௐೞ೛೗೔೙೐ሺௗ೘,௛ሻ೘

∑ ௐೞ೛೗೔೙೐ሺௗ೘,௛ሻ೘
 (13)

Where 𝑑௠ ൌ ฮ𝑥௠

௙ െ 𝑥௜,௝
௖ ฮ is the distance between

the position of 𝑚௧௛ fine grid velocity 𝑢௠
௙ and the

position of the coarse grid velocity 𝑢௜,௝
௖ , and the

spline kernel 𝑊௦௣௟௜௡௘ is calculated as:

𝑊௦௣௟௜௡௘ሺ𝑟, ℎሻ ൌ ቆ
ଷଵହ

଺ସగ௛వ ሺℎଶ െ 𝑑ଶሻଷ, 𝑟 ൑ ℎ,

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
ቇ (14)

Where the influence radius ℎ is a constant value as
0.5 times the size of a coarse grid.
Making coarse grid incompressible : After obtaining
the down-sampled velocity field 𝑢௖ in the coarse
grid, we use a coarse projection operation to make
the field divergence-free. And we handle the object
boundary in the coarse projection step.
We handle the boundary mismatch between the
coarse and the fine grids using a variational
framework. Instead of using the standard
discretization of the Laplacian operator, we use a
mass-weighted 7-point Laplacian stencil to
discretize the Poisson equation. Then, the final linear
system is solved using the preconditioned conjugate
gradient method to obtain the pressure result. We
then subtract the pressure gradient from 𝑢௖ (refer to
Equation 15).

𝑢∗ ൌ 𝑢௖ െ ∆𝑡
ଵ

ఘ
∇𝑝 (15)

Where the result 𝑢∗ satisfies the incompressibility of
fluid on the coarse grid.

Figure 14: Reconstruction field refined by a factor of m.

Mapping back to fine grid : After obtaining the
divergence-free velocity field 𝑢∗ in the coarse grid,
we need to map this field back to a fine grid. We
propose a new upsampling method for
reconstructing a fine divergence-free field from a
coarse divergence-free field. The key to this method
is to refine the grid cell (i, j) using factor 𝑚.
As shown in Figure 14, the values of the fine grid
cell (i, j) are calculated as follows using
𝑢௖଴, 𝑢௖ଵ, 𝑣௖଴, 𝑣௖ଵ known from the coarse grid and
upsampling methods.

𝑢௜ିଵ/ଶ,௝ ൌ
ሺ௠ି௜ሻ௨೎బା௜௨೎భ

௠
 (16)

𝑢௜ାଵ/ଶ,௝ ൌ
ሺ௠ି௜ିଵሻ௨೎బାሺ௜ାଵሻ௨೎భ

௠
 (17)

𝑣௜,௝ିଵ/ଶ ൌ
ሺ௠ି௝ሻ௩೎బା௝௩೎భ

௠
 (18)

𝑣௜,௝ାଵ/ଶ ൌ
ሺ௠ି௝ିଵሻ௩೎బାሺ௝ାଵሻ௩೎భ

௠
 (19)

Remember the discrete divergence in two
dimensions is :

ሺ∇ ∙ 𝑢ሻ௜,௝ ൌ
௨೔శభ/మ,ೕି௨೔షభ/మ,ೕ

∆௫
൅

௩೔,ೕశభ/మି௩೔,ೕషభ/మ

∆௫

(20)

We simply substitute the values on Equations 16-19
into the divergence formula, Equation 20, and get the
following equation :

ሺ∇ ∙ 𝑢ሻ௜,௝ ൌ
ଵ

∆௫
ቀ௨೎భି௨೎బ

௠
൅

௩೎భି௩೎బ

௠
ቁ (21)

Notice that the coarse grid velocity field is
divergence free, so the divergence on coarse grid is :

Journal of Theoretical and Applied Information Technology
30th September 2019. Vol.97. No 18

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

4856

௨೎భି௨೎బ

௠∆௫
൅

௩೎భି௩೎బ

௠∆௫
ൌ 0 (22)

Therefore, Equation 22 equals to zero, which means
the divergence on the fine grid is free.

3.5 Surface Reconstruction
In order to recover the surface of the fluid, we use
the SVD value used to extract the thin particles. In
this paper, the anisotropic feature of SVD is reflected
in the algorithm of Yu et al. [6] and the surface of
the fluid is reconstructed in detail. The level-set of
particles is calculated as follows :

𝜙ሺ𝑥ሻ ൌ min
௜

ሺ‖ 𝐺௜ሺ𝑝௜ െ 𝑥ሻ‖ሻ (23)

Here, 𝐺௜ represents a transformation matrix for the
fluid particle i, and its detailed form is as follows :

𝐺௜ ൌ
ଵ

௞ೞ
቎
𝑒ଵ

்

𝑒ଶ
்

𝑒ଷ
்

቏

்

൥
𝜎ଵ 0 0
0 𝜎ଶ 0
0 0 𝜎ଷ

൩

்

቎
𝑒ଵ

்

𝑒ଶ
்

𝑒ଷ
்

቏ (24)

Here, 𝑘௦ is a scale constant, and 𝜎௡ is suggested
within a certain range to preserve the greatest
stretching. For a more detailed explanation, we
recommend that you refer to the work of Yu et al [6].
We used a GPU based Marching Cubes algorithm
and set the minimum stretching value to be less than
the grid spacing so that thin fluid surfaces can be
represented well.

4. IMPLEMENTATION

This study was implemented in the following
environment : Intel i7-7700k 4.20GHz CPU 32GB
RAM, and NVIDIA GeForce GTX 1080 Ti Graphics
card. The FLIP-based fluid solution was used as the
underlying water simulation and the GPU-based
preconditioned conjugate gradient method was used
as the numerical solver to calculate the fluid pressure
[10]. In the FLIP grid, all the momentum was stored
using the Staggered Marker-and-Cell method [11]
and an additional grid was used for surface
reconstruction.

Figure 15: Pseudo-code of our framework

We also used the boundary particle method

proposed by Akinci et al. [12] for the collision
processing of water and solid. Figure 15 shows the
pseudo code of the algorithm that preserves the
characteristics of the thin fluid proposed in this paper.
Time-consuming processes, such as transferring
momentum between grids and particles or
calculating pressure, are computed in CPU and
GPU-based parallel frameworks

5. RESULTS

In order to analyze the proposed framework in
various ways, we compared our methods in three
scenarios.

Figure 16: Thin fluid sheets by our method

Figure 16 shows a drop of spherical liquid from

above, using 300,000 fluid particles and setting the
time-step to 0.006. The result is 8 times faster,
yielding the same results as the CPU-based
technique of Ando et al. [15],[16] As shown in
Figure 8, we quickly and clearly expressed the thin
film and filaments of the fluid as the spherical liquid
collides with the main fluid body.
Figure 17 compares the result quality of the

proposed technique with other studies. In the method
of Zhu and Bridson [5], the surface of the fluid sheets
is lost much (refer to figure 17a), and smoothing the
level-set value of the surface reduces the problem
numerically but does not improve visually (refer to
figure 17b). Recently, Bhatacharya et al. proposed a
biharmonic smoothing technique to capture fluid
surfaces more accurately [29]. This study shows
improved results with smoother capture of the

Journal of Theoretical and Applied Information Technology
30th September 2019. Vol.97. No 18

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

4857

surface of the fluid compared to Laplacian
smoothing, but some loss of thin fluid sheets still
occurs (refer to figure 17c).

Figure 17: Comparison results : dropping a liquid sphere

On the other hand, our method minimizes the

problem of thin fluid sheet loss and expresses the
surface of the fluid in detail, and the scene is created
faster than the conventional methods through the
grid projection and GPU-based framework.

Figure 18: Deformable pumpkins thrown from various

directions

The detailed features of the thin surface of the fluid

can be easily seen in coupling scenes where solid and
fluid collide. To prove that the proposed method
works well in the coupling scene, we cast a
deformable object into the fluid to naturally create a
splash phenomenon (refer to figure 18). As you can
see in the picture, the moment the pumpkin model
touches the water, the appearance of the water crown

is well expressed. In addition, when the water
contacts the transparent wall boundary, the fluid
surface is clearly visible without breaking. In this
case, 1.2 million fluid particles were used and 12
times as fast as that produced by Ando’s method
[15],[16]. In addition, a water pouring scene was
created to show where thin particles could actually
be added to maintain the thin surface of the fluid
when using the proposed method (refer to figure 18).

Figure 19: Water pouring off a box

This result shows a thin surface of the fluid that is

expressed as water falls from the top to the bottom
due to water pouring (refer to figure 19). The red
particles are newly added thin particles, which
represent thin films of fluid. This result can be made
in the same way as in Ando et al. [15],[16], but the
proposed method shows about 9 times faster than
Ando's method.

Figure 20: Water pool interacting with a stirring box

Journal of Theoretical and Applied Information Technology
30th September 2019. Vol.97. No 18

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

4858

Figure 20 is a scene in which water is stirred with a
box-shaped rod, capturing the detail of the fluid well,
just like any other scene. In this scene, we used about
1 million fluid particles. As you can see in the figure,
the liquid sheets are well represented in the red box.
Our method showed about 4 times faster
performance than Ando's method due to grid
projection and CPU-GPU heterogeneous computing.

Figure 21: Results with Ando’s method [15][16] (inset

image : our method)

Figure 21 compares the results of our technique

(inset images) with the Ando's method [15],[16] of
representing liquid sheets, and this paper produced
similar results visually when compared with the
previous technique. (refer to figures 16 and 19 for
more detailed results).
Table 1 summarizes the experimental results of this

paper. Since the number of particles varies to
preserve fluid thin sheets every frame, the average
number is added to the table. In addition, we used a
higher resolution grid in the surface reconstruction
process to detail the thin fluid sheets. Compared to
the previous techniques [15],[16], the performance is
improved by about 4 to 12 times when all the results
are expressed in similar visual quality. In addition,
the performance was not only improved in certain
scenes, but was also stably improved in all scenes.

Table 1: Size of our example scenes and computational
time (Avg. : average, Num. : number, Res. : resolution,

Perform. : performance)
Fig. Avg.

num. of
particles

Grid res.
(Pressure
solver)

Grid res.
(Surface
reconstruction)

Perfor
m. gain

16 1m 128^3 200^3 ൈ8
17 1m 128^3 200^3 ൈ 8
18 1m 128^3 200^3 ൈ 12
19 650k 128^3 128^3 ൈ 9
20 1m 128^3 256^3 ൈ 4

6. DISCUSSION AND CONCLUSIONS

We proposed a grid projection and a CPU-GPU
heterogeneous framework to efficiently represent

thin films of fluids. Generally, the GPU adds the
process of copying data from the CPU to the GPU
for parallel computation and copying back from the
GPU to the CPU to reflect the computed results
again. To reduce this unnecessary process, we used
a CPU-based parallel scheme where the amount of
computation was not large. Our method showed
improved performance results in all scenes. The
performance of the existing techniques we refer to is
largely influenced by the number of fluid particles
generated in the initial scene and the number of thin
particles created accordingly. As a result, the
performance of the proposed method is significantly
improved as the number of total particles increases.
A limitation of the proposed method is that it is

difficult to produce high-resolution scenes due to the
limitation of memory capacity. To represent a thin
film of fluid, more particles are required than the
number of fluid particles set in the initial scene, and
a large number of thin particles can be generated per
frame. In the future, we plan to study how to
efficiently manage the memory and produce large-
scale fluid simulations.

REFRENCES:

 [1] Dobashi, Y., Matsuda, Y., Yamamoto, T., Nishita,

T., A fast simulation method using overlapping
grids for interactions between smoke and rigid
objects. Computer Graphics Forum, Vol. 27,
No. 2, 2008, pp. 477 486.

[2] Losasso, F., Gibou, F., Fedkiw, R., “Simulating
water and smoke with an octree data structure”.
ACM SIGGRAPH, 2004, pp. 457 462.

[3] Selle, A., Rasmussen, N., Fedkiw, R., “A vortex
particle method for smoke, water and
explosions”. ACM SIGGRAPH, 2005, pp. 910-
914.

[4] Mattias. M., D. Charypar, Gross. M., “Particle-
based fluid simulation for interactive
applications”, Proceedings of the 2003 ACM
SIGGRAPH/Eurographics Symposium on
Computer Animation, 2003, pp. 154-159.

[5] Zhu, Y., Bridson, R., “Animating sand as a fluid”.
ACM SIGGRAPH, 2005, pp. 965-972.

[6] Yu, J., Turk, G., “Reconstructing surfaces of
particle-based fluids using anisotropic kernels”.
ACM SIGGRAPH, Vol. 32, No. 1, 2013, pp. 5:1-
5:12.

[7] Hirt C. W., Nichols B. D., “Volume of fluid VOF
method for the dynamics of free boundaries”.
Journal of Computational Physics, 1981, pp.
201–225.

Journal of Theoretical and Applied Information Technology
30th September 2019. Vol.97. No 18

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

4859

[8] Wojtan C., Thurey N., Gross M., Turk G,
“Deforming meshes that split and merge”. ACM
SIGGRAPH, 2009, pp. 76:1–76:10.

[9] C. Dyken and G. Ziegler, “GPU-accelerated data
expansion for the marching cubes algorithm”, In
Proceeding PGU Technology Conference, 2010,
pp. 115–123.

[10] R. Li and Y. Saad, “GPU-accelerated
preconditioned iterative linear solvers”, The
Journal of Supercomputing, Vol. 63, No. 2, 2013,
pp. 443–466.

[11] F. H. Harlow and J. E.Welch, “Numerical
calculation of time-dependent viscous
incompressible flow of fluid with free surface”,
The Physics of Fluids, Vol. 8, No. 12, 1965, pp.
2182–2189.

[12] N. Akinci, J. Cornelis, G. Akinci, and M.
Teschner, “Coupling elastic solids with
smoothed particle hydrodynamics fluids”,
Computer Animation and Virtual Worlds, Vol.
24, No. 3-4, 2013, pp. 195–203.

[13] Rivas, A., Altimira, M., Sanchez Larraona, G.,
& Ramos, J. C., “Analysis of liquid-gas flow
near a fan-spray nozzle outlet”. In Conference
on Modelling Fluid Flow, 2006, pp. 6-9.

[14] Lhuissier, Henri, and Emmanuel Villermaux.
“Destabilization of flapping sheets: The
surprising analogue of soap films”. Comptes
Rendus Mecanique, Vol. 337, 2009, pp. 469-480.

[15] R. Ando and R. Tsuruno, “A particle-based
method for preserving fluid sheets”, In
Proceedings of the 2011 ACM SIGGRAPH/
Eurographics Symposium on Computer
Animation. 2011, pp. 7–16.

[16] R. Ando, N. Thurey, and R. Tsuruno,
“Preserving fluid sheets with adaptively
sampled anisotropic particles”, IEEE
Transactions on Visualization and Computer
Graphics, Vol. 18, No. 8, 2012, pp. 1202–1214.

[17] Jong-Mo Hong, T. Shinar, and R. Fedkiw,
“Wrinkled flames and cellular patterns”, ACM
Transactions on Graphics, Vol. 26, No. 3, 2007.

[18] Doyub Kim, Seung Woo Lee, Oh-young. Song,
and Hyeong-Seok Ko, “Baroclinic turbulence
with varying density and temperature”, IEEE
Transactions on Visualization and Computer
Graphics, Vol. 18, No. 9, 2012, pp. 1488–1495.

[19] Doyub Kim, Oh-young. Song, and Hyeong-
Seok Ko, “Stretching and wiggling liquids”,
ACM Transactions on Graphics, Vol. 28, No. 5,
2009, pp. 120:1–120:7.

[20] P. Goswami, P. Schlegel, B. Solenthaler, and R.
Pajarola, “Interactive SPH simulation and

rendering on the GPU”, In Proceedings of the
2010 ACM SIGGRAPH/Eurographics
Symposium on Computer Animation, 2010, pp.
55–64.

[21] T. Harada, S. Koshizuka, and Y. Kawaguchi,
“Smoothed particle hydrodynamics on GPUs”,
In Computer Graphics International, 2007, pp.
63–70.

[22] H. Yan, Z. Wang, J. He, X. Chen, C. Wang, and
Q. Peng, “Real-time fluid simulation with
adaptive SPH”, Computer Animation and
Virtual Worlds, Vol. 20, No. 2-3, 2009, pp. 417–
426.

[23] Jiang, C., Schroeder, C., Selle, A., Teran, J. and
Stomakhin, A., “The affine particle-in-cell
method”. ACM Transactions on Graphics, Vol.
34, No. 4, 2015, pp.51.

[24] Stomakhin, A., Schroeder, C., Chai, L., Teran, J.
and Selle, A., “A material point method for snow
simulation”. ACM Transactions on Graphics,
Vol. 32, No. 4, 2013, pp.102.

[25] D. Enright, R. Fedkiw, J. Ferziger, and I.
Mitchell, “A hybrid particle level set method for
improved interface capturing”, Journal of
Computational Physics, Vol. 183, No. 1, 2002,
pp. 83–116.

[26] S. Osher and J. A. Sethian, “Fronts propagating
with curvature-dependent speed: algorithms
based on hamilton-jacobi formulations”,
Journal of Computational Physics, Vol. 79, No.
1, 1988, pp. 12–49.

[27] S. Lahabar and P. Narayanan, “Singular value
decomposition on GPU using CUDA”, In IEEE
Parallel & Distributed Processing, 2009, pp. 1-
10.

[28] G. Tryggvason, B. Bunner, A. Esmaeeli, D.
Juric, N. AlRawahi, W. Tauber, J. Han, S. Nas,
and Y.-J. Jan, “A front racking method for the
computations of multiphase flow”, Journal of
Computational Physics, Vol. 169, No. 2, 2001,
pp. 708–759.

[29] H. Bhatacharya, Y. Gao, and A. Bargteil, “A
level-set method for skinning animated particle
data”, In ACM SIGGRAPH/Eurographics
Symposium on Computer Animation, 2011, pp.
17–24.

