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ABSTRACT 
 

Combinatorial optimization problems with constraints typically have many infeasible solutions, which 
cannot be used as a final solution. Therefore, metaheuristic algorithms for such problems must be carefully 
designed so that the infeasible solutions are dealt with appropriately. For example, repair and penalization 
are well-known feasibility handling approaches for genetic algorithm. However, those conventional 
approaches are problem-specific, which means that they must be appropriately tailored in order to be 
applied for solving a specific problem. On the contrary, fitness switching strategy is a general search 
strategy that can be used to develop genetic algorithms for solving a wide range of combinatorial 
optimization problems with constraints. Genetic algorithms based on fitness switching strategy need not to 
be equipped with repair or penalization procedures. Moreover, the strategy enables to utilize the infeasible 
solutions, typically ignored in conventional genetic algorithms. In order to investigate the usefulness of 
fitness switching strategy, this paper aims to extend the existing fitness switching strategy and develop a 
fitness switching genetic algorithm for multidimensional knapsack problem, which is a generalization of 
classical 0-1 knapsack problem. The experiment results demonstrate that fitness switching strategy can be 
used to develop effective metaheuristic algorithms for solving combinatorial optimization problems with 
multiple constraints. 

Keywords: Fitness Switching Strategy, Genetic Algorithm, Infeasible Solution, Multidimensional 
Knapsack Problem, Metaheuristic 

 
1. INTRODUCTION  
 

Multidimensional knapsack problem 
(MKP) is a well-known extension of classical 0-1 
knapsack problem (KP), where MKP has two or 
more resource constraints while KP has only one 
resource constraint [1][2]. Since MKP is a practical 
combinatorial optimization problem that has many 
application domains, it has been well-studied during 
past decades [3]. 

 
Typically, MKP is characterized by a 

number of items and a number of resources. Let N 
denote a set of n discrete items, 1, 2, …, n and vi 
denote the value of item i (i = 1, 2, …, n). The 
objective of MKP is to find a subset of N which 
maximizes total value, where each item consumes 
m resources and tj is the total amount of resource j (j 
= 1, 2, …, m). Let wij be the amount of resource j 
consumed by an item i. Then, MKP can be 
formulated as follows [3][4]: 

 
Max. Total Value =                               (1) 

Subject to , j = 1, 2, …, m   (2) 

xi ∈ {0, 1}, i = 1, 2, …, n             (3) 
 
For convenience, let us assume that wij > 0 

for all i and j. When n is relatively small, the 
optimal solution of MKP can be obtained by 
applying exact solution methods such as branch and 
bound method. However, MKP is a sort of NP-hard 
combinatorial optimization problem, which is 
difficult to solve by applying exact solution method 
when n is large. Therefore, approximate solution 
methods such as metaheuristic algorithms can be 
more effective for large MKP [4][5]. 

 
Conventional metaheuristic algorithms 

such as genetic algorithm (GA) [6], tabu search 
(TS) [7], simulated annealing (SA) [8] and particle 
swarm (PS) [9] provide stochastic search strategies 
that can be tailored to specific combinatorial 
optimization problems. Such strategies are designed 
to effectively explore the search space of given 
problems, however, they have to be carefully 
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customized to solve a specific problem. One of the 
main challenges in applying metaheuristic 
algorithms to a specific problem is handling the 
infeasible solutions.  

 
A solution for s specific combinatorial 

optimization problem is infeasible if and only if it 
violates one or more constraints. For example, a 
solution for MKP is likely to be infeasible if it 
contains too many items, since it may consume too 
much resources. Moreover, it is straightforward that 
an infeasible solution cannot be a final solution for 
given problem. Therefore, they must be handled 
appropriately during the search procedure of 
metaheuristic algorithms. Especially, population-
based metaheuristic algorithms such as GA and PS 
have to generate many alternative solutions, so they 
should be equipped with appropriate feasibility 
handling procedures [10]. However, traditional 
feasibility handling procedures are often problem-
specific or require non-trivial configurations. 

 
On the contrary, fitness switching (FS) 

strategy is a recently proposed feasibility handling 
approach for GA that can be applied to a wide 
range of combinatorial optimization problems [11]. 
Hence, this strategy can help to address the 
feasibility issue of metaheuristic algorithms, 
however, it had been not applied to MKP, yet. In 
this context, this paper aims to apply FS strategy to 
develop fitness switching genetic algorithm 
(FSWGA) for MKP and investigate the features of 
FSWGA for combinatorial optimization problems 
with multiple constraints. 

 
The remainder of this paper is organized as 

follows: Section 2 provides a brief literature review 
on GA and MKP. Moreover, the concept of existing 
FSWGA is also explained in this section. Section 3 
explains the search procedures of FSWGA for MKP, 
which is developed by extension of previous 
FSWGA for KP. Section 4 demonstrates the 
experiment results obtained by applying the 
extended FSWGA to MKP. Finally, Section 5 
represents some discussions on FSWGA and 
concluding remarks. 

 
2. RESEARCH BACKGROUNDS 

 
GA is a sort of population-based 

metaheuristic algorithm, and it has been 
successfully applied to a wide range of 
combinatorial optimization problems during the last 
decades [5][11][12]. In order to apply GA to a 
specific combinatorial optimization problem, 

solutions of given problem must be represented as a 
simple string called chromosome. Moreover, a 
chromosome consists of a number of elements 
called gene, where single gene represents a feature 
of the associated solution [13]. For n-item KP and 
MKP, binary encoding scheme that utilizes the 
chromosomes with n genes indicating the count of a 
specific item is most widely used [14][15]. In other 
words, if an item i is included within a solution, the 
value of i th gene of the associated chromosome is 
1, and otherwise, the gene’s value is 0. This 
encoding scheme is also used in this paper. 

 
Standard GA (SGA) is a most popular 

version of GA, and it is characterized by three 
genetic operators, selection, crossover, and 
mutation [13][16]. The objective of selection is to 
choose a number of solutions in population, which 
will be included within mating pool. Moreover, the 
desirability of a solution is evaluated by using 
fitness function, and the goal of GA is to discover 
the optimal solution which maximizes or minimizes 
the fitness function. For example, the total value in 
(1) or its modification can be used as the fitness 
function of GA for KP or MKP. Crossover operator 
is used to create a new solutions (offspring) by 
recombining the genes of solutions in mating pool 
(parents). 1-point, 2-point and uniform crossovers 
are the most well-known crossover operators [17]. 
On the contrary, mutation is used to slightly modify 
the offspring in hopes that better solutions would be 
obtained. Mutation operator must be applied to a 
very small number of genes, and bit flip mutation is 
the most widely used one for binary encoding 
scheme. Note that this mutation operator changes 
the value of a gene from 0 to 1, and vice versa [18]. 

 
Besides the above three genetic operators, 

additional procedures can be applied to GA, which 
enables more effective search procedure. For 
example, feasibility handling procedures are widely 
used in designing GA for a specific combinatorial 
optimization problem, and they are classified into 
two categories, repair and penalization. The former 
is used to convert the infeasible solutions into 
feasible ones [19][20], while the objective of the 
latter is to apply penalty term to the fitness value of 
infeasible solutions [21][22][23]. The repair and 
penalization procedures are widely used in previous 
GAs for MKP [24][25][26][27], however, they are 
often problem-specific and complex to implement. 
Moreover, infeasible solutions can contain some 
genes useful for exploring the search space in 
effective manner, even though they cannot be final 
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solution of given problem. Such useful information 
can be lost when repair procedure is applied [11]. 

 
On the contrary, FS strategy is a 

generalized search strategy that can be applied to a 
wide range of combinatorial optimization problems. 
This strategy suggests that both feasible and 
infeasible solutions should be utilized during search 
procedure, and their fitness values should be 
evaluated in different manners.  

 
In more detail, FS strategy provides three 

distinguishing procedures, fitness switching, fitness 
leveling, and simple local search. Among them, 
fitness switching is the most important procedure, 
and it suggests that the fitness values of feasible 
and infeasible solutions should be evaluated in 
different manners. That is, a fitness value of a 
solution s, fitness(s), is computed as follows:  

 
fitness(s) = fitness+(s), if s is feasible,  (4.1) 

 
and 

 
fitness(s) = fitness–(s), if s is infeasible. (4.2) 

 
Note that fitness+(s) and fitness–(s) are the 

fitness functions for feasible and infeasible 
solutions, respectively, and fitness switching 
procedure also suggests that these two functions 
should be inversely proportional to each other. Let 
X(s) denote the desirability of solution s. Then, 
fitness+(s) and fitness–(s) should satisfy 

 

fitness+(s) ∝ X(s) ∝ 1 / fitness–(s).           (5) 
 
Note that the fitness value of infeasible 

solution should be inversely proportional to the 
desirability of solution, which is directly 
proportional to the fitness value of feasible solution. 
Moreover, fitness+(s) and fitness– (s) for 
maximization problem such as MKP should satisfy 

 
fitness+(s) ≥ fitness–(s).                              (6) 

 
However, if | fitness+(s) – fitness–(s) | is 

too large, high selection pressure is imposed on the 
solutions within population, and this can occur 
premature convergence to local optima. In order to 
address this problem, FS strategy recommends 
modifying the initial fitness+(s) and fitness–(s) by 
applying fitness leveling procedure as follows:  

 
fitness+’(s) =  

1 + L×(fitness+(s) – mins∈F fitness+(s)) / 

(maxs∈F fitness+(s) – mins∈F fitness+(s))          (7) 

 
and  

 
fitness–’(s) = (1 – α)×fitness–(s) /  

maxs∈I fitness–(s),              (8) 

 
where  
 

F = { s | s ∈ N and s is feasible }             (9) 
 
and  
 

I = { s | s ∈ N and s is infeasible }.         (10) 
 
L in (7) is the scale factor of fitness 

leveling, which is used to prioritize feasible 
solutions over infeasible ones, and its value should 
be larger than or equal to 1. Moreover, α in (8) is 
the location factor of fitness leveling, which is used 
to slightly decrease the modified fitness value of 
the best infeasible solution., and 0 < α < 1. 

 
Similarly with the initial fitness+(s) and 

fitness–(s), the modified fitness values, fitness+’(s) 
and fitness– ’(s) also satisfy 

 
fitness+’(s) ≥ fitness–’(s),                       (11) 

 
since 
 

1 ≤ fitness+’(s) ≤ L                                 (12) 
 
and 
 

0 ≤ fitness–’(s) ≤ (1 – α)                         (13) 
 
Consequently, FSWGA uses the modified 

fitness values, fitness+’(s) and fitness–’(s), in 
evaluating the solutions within population. 

 
In addition, simple local search procedure 

is used to slightly modify the infeasible solutions in 
hopes that it may become feasible. Note that the 
role of this procedure is similar with traditional 
mutation operator, however, simple local search 
procedure is applied to only infeasible solutions. 

 
Initially, FS strategy was developed to 

solve combinatorial optimization problems with 
rare feasible solutions, where it is hard to find any 
feasible solutions from scratch [11][28]. More 
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recent research paper has demonstrated that 
FSWGA can be applied to combinatorial 
optimization problems with many feasible solutions 
such as classical 0-1 KP, which has a single 
resource constraint [29]. However, FSWGA has 
been not applied to combinatorial optimization 
problems with many feasible solutions and multiple 
constraints. In this context, this paper aims to 
extend the existing FS strategy to solve MKP. 
 
3. FITNESS SWITCHING GENETIC 
ALGORITHM FOR MULTIDIMENSIONAL 
KNAPSACK PROBLEM 
 
3.1 Fitness Switching Strategy 

In this paper, previous FSWGA for 
classical KP is extended to solve MKP with n items 
and m resource constraints. However, the fitness 
leveling and simple local search procedures of 
FSWGA for KP can be also applied to MKP. Hence, 
this section focuses on developing a refined fitness 
switching procedure for MKP.  
 

The objective of MKP is to maximize the 
total value. Hence, total value is used as fitness 
value of feasible solutions in this paper. That is,  

 
fitness+(s) = .               (14) 

On the contrary, total value of infeasible 
solutions should be decreased by deleting some 
items, in order to convert it into a feasible solution. 
In this context, this paper proposes a basic 
alternative for fitness– (s) as follows:  

 
fitness–

1(s) = 1 /                     (15) 

Also, it can be said that an infeasible 
solution can be converted into a feasible solution by 
decreasing its resource consumptions. Since MKP 
has multiple resource constraints, this paper 
proposes a second alternative for fitness–(s) as 
follows: 

 
fitness–

2(s) = 1 / ,                     (16) 

where consumption of jth resource,  
 

Cj = (w1jꞏx1 + w2jꞏx2 + … + wnjꞏxn) /  
(w1j + w2j + … + wnj), if s contains one or 
more items,                                         (17.1) 

 
and 
 

Cj = 1, if x1 = x2 = … = xn = 0.            (17.2)  
 
Note that fitness–

2(s) = 1 / m when x1 = x2 
= … = xn = 1 or x1 = x2 = … = xn = 0. Otherwise, 
fitness– 

2(s) is larger than 1 / m, and especially, a 
solution s that contains a small number of items 
tend to have larger fitness–

2(s).  Moreover, it is not 

guaranteed that fitness–
2(s) ≤ 1. Therefore, fitness 

leveling procedure must be applied to this type of 
fitness function before it is used to evaluate the 
fitness values of the solutions within population. 

 
In addition, infeasibility of a solution 

occurs due to its exceeding one or more tj s. Taking 
this into account, this paper proposes third and 
fourth alternatives for fitness–(s) as follows: 

 
fitness–

3(s) = 1 / V(s)                            (18) 
 
and 
 
fitness–

4(s) =                            (19) 

where V(s) is the number of resource 
constraints violated by a solution s and excess 
consumption of resource j, Ej is defined as follows: 

 
Ej = (  – ) / 

(  – ), if  >        (20.1) 

and 
 
Ej = 1, otherwise.                               (20.2) 
 
The fitness–

3(s) simply indicates that an 
infeasible solution that violates a larger number of 
resource constraints should have smaller fitness 
value.  

 
On the other hand, fitness–

4(s) utilizes 
more sophisticated information on the resource 
consumption of s. In the right hand side of (20.1), 
the denominator is the minimum unconsumed 
amount of resource j, while the numerator is the 
actual unconsumed amount of resource j. In other 
words, Ej in (20.1) is the proportion of the 
unconsumed amount of resource j, and fitness–

4(s) 
suggests that an infeasible solution with larger Ej s 
should have larger fitness values. Note that both 
fitness–

3(s) and fitness–
4(s) are smaller than or equal 

to 1. 
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In this paper, the extended FSWGAs for 
MKP are developed by applying fitness–

1(s)~ 
fitness–

4(s), and their performances are compared 
by conducting numerical experiments. 
 
3.2 Design of Genetic Algorithm 

The proposed fitness switching procedure 
can be easily applied to the conventional SGA 
algorithm. The FSWGA in this paper uses binary 
encoding scheme and the solutions within the initial 
population are randomly generated, similarly with 
the existing FSWGA for KP.  
 

01: single fitness_switching(int[] s, int n, int m, int type) 
02: { 
03:    SET weight[][] = array of weights 
04:    SET value[] = array of values  
05:  
06:    SET cst[] = array of resource consumptions 
07:    SET initial_fitness = 0 
08:    SET t[] = array per bounds of resource 

 consumptions 
09:  
10:    FOR j = 1 TO m 
11:      SET cst[j] = getConsumption(s, n, weight, j) 
12:    NEXT j 
13:  
14:    IF isFeasible(cst, t, m) THEN 
15:      SET initial_fitness = getValue(s, n, value) 
16:    ELSE IF type = 1 THEN 
17:      SET initial_fitness = 1/getValues(s, n, value) 
18:    ELSE IF type = 2 THEN 
19:      SET r_consumption = 0 
20:  
21:      FOR j = 1 TO m 
22:        r_consumption += conRatio(s, n, weight, j) 
23:      NEXT j 
24:  
25:      SET initial_fitness = 1 / r_consumption 
26:    ELSE IF type = 3 THEN 
27:      SET initial_fitness = 1 / vCount(cst, t, m) 
28:    ELSE IF type = 4 THEN 
29:      SET r_excess = 1 
30:  
31:      FOR j = 1 TO m 
32:        r_excess = r_excess × excessRatio(s, n,  

weight, t, j, cst[j]) 
33:      NEXT j 
34:  
35:      SET initial_fitness = r_excess 
36:    END IF 
37:  
38:    RETURN initial_fitness 
39: } 

Figure 1: Fitness Switching Procedure 
 

Next, the fitness values of the solutions are 
computed by applying the proposed fitness 
switching procedure, which is summarized in figure 

1. Note that the procedure in figure 1 is used to 
compute the fitness value of an individual solution 
s. Moreover, the integer variable type indicates that 
fitness–

type(s) is used to obtain the initial fitness 
values. 

 
As shown in line 10~12 of figure 1, the 

resource consumptions of given solution s are 
computed by using getConsumption() procedure, 
which is described in figure 2. Then, isFeasible() 
procedure in line 14 of figure 1, which is described 
in figure 3, is used to evaluate the feasibility of the 
solution s. If s satisfies all resource constraints, it is 
a feasible solution and its total value is used as the 
initial fitness value, as shown in line 15 of figure 1. 
The getValue() procedure described in figure 4 is 
used to compute the total value of a given solution s. 

 
01: single getConsumption(int[] s, int n, int[][] weight, int 
j) 
02: { 
03:    SET consumption = 0 
04: 
05:    FOR i = 1 TO n 
06:      SET consumption += s[i] × weight[i][j] 
07:    Next i 
08:  
09:    RETURN consumption 
10: }

Figure 2: getConsumption Procedure 
 

01: boolean isFeasible(single[] cst, int[] t, int m) 
02: { 
03:    SET feasible = TRUE 
04: 
05:    FOR j = 1 TO m 
06:      IF cst[j] > t[j] THEN 
07:        SET feasible = FALSE 
08:      END IF 
09:    Next i 
10:  
11:    RETURN feasible 
12: }

Figure 3: isFeasible Procedure 
 

01: single getValue(int[] s, int n, int[] value) 
02: { 
03:    SET value = 0 
04: 
05:    FOR i = 1 TO n 
06:      SET value += s[i] × value[i][j] 
07:    Next i 
08:  
09:    RETURN value 
10: }

Figure 4: getValue Procedure 
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On the other hand, the initial fitness value 
of s is computed by using fitness–

1(s)~ fitness–
4(s), 

as shown in line 16~35 of figure 1. 
 
Figure 5~7 represent the additional 

procedures used to compute the initial fitness value 
of an infeasible solution. Among them, conRatio() 
procedure in figure 5 is used to compute the 
consumption of resource j, Cj in (17.1)~(17.2), 
which is in turn used to calculate fitness–

2(s) in (16). 
vCount() procedure in figure 6 counts the number 
of resource constraint violated by given solution s, 
which is used to compute fitness–

3(s) in (18). 
 
The role of excessRatio() procedure 

summarized in figure 7 is to compute the excess 
consumption of resource j, Ej in (20.1)~(20.2). 
Moreover, Ej computed by excessRatio() procedure 
is in turn used to calculate fitness–

4(s) in (19). 
Consequently, the initial value of an arbitrary 
solution s can always be determined appropriately, 
by using the fitness switching procedure in figure 1. 

 
After the initial fitness values are 

computed, simple local search procedure is applied 
to the solutions within the population, in order to 
slightly modify the infeasible solutions. 
Subsequently, fitness leveling procedure is applied 
to the solutions in order to adjust the initial fitness 
values. 

 
In addition, conventional selection, 

crossover, and mutation operators are used to 
develop FSWGA for MKP. Above all, FSWGA 
proposed in this paper uses well-known roulette 
wheel selection operator to generate mating pool 
from the existing solutions. Note that the 
probability with which a solution s is selected by 
roulette wheel selection operator is proportional to 
the fitness value of the solution. 

 
There are several elementary crossover 

operators that can be used to develop GAs based on 
the binary encoding scheme. Among them, the 
well-known uniform crossover is adopted by the 
proposed FSWGA for MKP. In order to create two 
offspring, offspring1 and offspring2, from two 
existing solutions, parent1 and parent2, uniform 
crossover operator generates random binary 
numbers for each gene. Moreover, the values of 
genes in offspring are determined according to the 
generated random binary number. For example, if a 
random binary number for ith gene (i = 1, 2, …, n) 
is 0, offspring1 inherits the ith gene of parent1, 
while offspring2 inherits the ith gene of parent2. On 

the other hand, if a random binary number for ith 
gene is 1, the ith gene of parent2 is inherited to 
offspring1, and ith gene of parent1 is inherited to 
offspring2. 
 

01: single conRatio(int[] s, int n, int[][] weight, int j) 
02: { 
03:    SET actual_consumption = 0 
04:    SET max_consumption = 0 
05:    SET n_item = 0 
06:     
07:    FOR i = 1 TO n 
08:      SET actual_consumption += weight[i][j]×s[i] 
09:      SET max_consumption += weight[i][j] 
10:       
11:      IF s[i] = 1 THEN 
12:        n_item++ 
13:      END IF 
14:    NEXT i 
15:  
16:    IF n_item = 0 OR n_item = n THEN 
17:      RETURN 1 
18:    ELSE 
19:      RETURN actual_consumption /  

max_consumption 
20: }

Figure 5: conRatio Procedure 
 

01: int vCount(single[] cst, int[] t, int m) 
02: { 
03:    SET n_violation = 0 
04:     
05:    FOR j = 1 TO m 
06:      IF cst[j] > t[j] THEN 
07:        n_violation++ 
08:      END IF 
09:    NEXT j 
10:  
11:    RETURN _violation 
12: }

Figure 6: vCount Procedure 
 

01: int excessRatio(int[] s, int n, int[][] weight, int[] t, int 
j, single the_cst) 
02: { 
03:    SET total_weight = 0 
04:    SET eRatio = 0 
05: 
06:    FOR i = 1 TO n 
07:      total_weight += weight[i][j] 
08:    NEXT i 
09:     
10:    IF the_cst <= t[j] THEN 
11:      SET eRatio = total_weight – the_cst / 
                                 total_weight – t[j] 
12:    END IF 
13:  
14:    RETURN eRatio 
15: }

Figure 7: excessRatio Procedure 
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The last genetic operator of SGA, 

mutation is used to randomly modified the 
offspring obtained by applying crossover operator. 
This operator is important in that it helps to 
maintain the diversity of the solutions within 
population. In other words, GA without mutation 
operator is more likely to converge to local optima. 
However, if mutation is too often applied, the 
useful information accumulated during previous 
search procedure cannot be exploited appropriately. 
Therefore, mutation operator is applied with very 
small probability, and this paper uses the well-
known bit flip mutation to develop FSWGA for 
MKP. 

 
From the practical perspectives, the 

proposed FSWGA has several benefits as follows: 
(i) Fitness switching, fitness leveling, and simple 
local search procedures are not associated with 
conventional genetic operators, selection, crossover, 
and mutation, since those procedures of FSWGA 
can be incorporated into the evaluation procedure 
of GA. This means that the conventional genetic 
operators are directly used in FSWGA without any 
modification. (ii) No problem-specific feasibility 
handling procedures such as repair and penalization 
are required in FSWGA. (iii) In order to develop 
FSWGA, the three procedures, fitness switching, 
fitness leveling, and simple local search, must be 
implemented. Among them, however, fitness 
leveling is not problem-specific, and we need not to 
customize this procedure to solve a specific 
combinatorial optimization problem. On the other 
hand, fitness switching and simple local search 
procedures are problem-specific, but the latter is 
inherently easy to design and implement. For 
example, FSWGA for MKP proposed in this paper 
uses a simple local procedure that is very similar 
with conventional bit flip mutation operator. 

 
Consequently, FSWGA can be developed 

in very efficient manner, if appropriate fitness 
switching procedure is provided. Note that fitness 
switching procedure is the key element of FSWGA, 
and it is problem-specific. Especially, fitness–(s) 
should be carefully designed to solve given 
combinatorial optimization problem in an effective 
manner. In other words, the most important step in 
developing FSWGA is to define fitness–(s). Of 
course, fitness–(s) can be simply defined as a 
reciprocal of fitness+(s), as shown in (15), and this 
is the original concept of fitness switching. 
However, if such simple fitness–(s) does not work 
well, we have to develop alternative approaches for 

calculating fitness–(s), such as fitness–
2(s)~ fitness–

4(s) in this paper. 
 
4. EXPERIMENT RESULTS 
 

Table 1: MKP With 50 Items 
ID Resource1 Resource2 Resource3 Value 
1 19 22 39 66 
2 10 22 19 60 
3 16 24 34 21 
4 15 11 13 139 
5 13 22 15 65 
6 16 15 17 95 
7 19 12 31 6 
8 11 10 12 91 
9 11 18 21 12 

10 19 11 24 85 
11 10 29 23 12 
12 10 11 11 53 
13 20 26 40 99 
14 14 16 32 48 
15 18 27 36 96 
16 15 13 38 81 
17 15 29 20 70 
18 11 24 13 122 
19 17 16 28 83 
20 19 19 17 129 
21 11 14 26 54 
22 17 28 36 31 
23 20 29 33 52 
24 19 15 29 96 
25 17 21 17 57 
26 19 18 33 45 
27 16 12 35 16 
28 10 24 38 130 
29 17 30 35 58 
30 15 22 13 37 
31 15 21 27 116 
32 14 22 20 64 
33 20 29 14 43 
34 17 19 14 108 
35 19 18 13 75 
36 14 14 23 121 
37 13 11 35 67 
38 17 17 25 60 
39 18 13 33 33 
40 15 30 34 48 
41 17 30 23 98 
42 18 27 15 91 
43 18 12 24 102 
44 20 13 39 120 
45 10 11 23 61 
46 11 17 28 58 
47 16 15 23 119 
48 14 15 20 122 
49 17 26 32 71 
50 10 17 28 64 
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The performances of the alternatives 
fitness–(s) are compared by applying the proposed 
FSWGA to a MKP with 50 items and 3 resource 
constraints, and the resource consumptions and 
values of the 50 items are summarized in table 1. In 
addition, the descriptive statistics of resource 
consumptions are summarized in table 2, where we 
can see that Resouce3 is the most highly utilized 
resource on average, while the average 
consumption of Resource1 is smaller than the other 
2 resources. 

 
Furthermore, figure 8~10 provide the 

scatter plots that display the relationships between 
resource consumptions and item value, and it seems 
that no resource consumption is highly correlated 
with the item value. 
 

Table 2: Summary Of Resource Consumptions 
 Resource1 Resource2 Resource3 

Average 15.47 19.27 25.42 
Total 772 967 1271 
Min. 10 10 10 
Max. 20 30 40 

 
In this paper, the MKP with given items 

are solved under 3 experiment conditions 
summarized in table 3, where different experiment 
conditions have different upper bounds of resource 

constraints, t1, t2 and t3. Note that t1 < t2 < t3 for all 
experiment conditions. 

 
The numerical experiments have been 

performed under crossover rate = 0.8, mutation rate 
= 0.01, L = 2 and α = 0.01, with varying population 
size Np. In addition, the termination condition is 
defined by using maximum iteration number = 200, 
and elitism policy is applied so that 5 best solutions 
within every population are always included within 
the mating pool. Furthermore, 10 repetitions of 
experiments have been performed for each case, 
and the experiment results are summarized in table 
4~6. Note that table 4~6 shows the average (Avg.) 
and standard deviation (St. Dev) of Best-Total-
Value, the total value of final solution discovered 
by FSWGA with a specific fitness switching 
procedure. 

 
Consequently, we can make following 

observations: (i) Above all, FSWGA has shown 
better performances under larger Np. This indicates 
that the performance of FSWGA can be further 
enhanced by modifying the experiment parameters. 
(ii) The relative performance of FSWGA can vary 
with experiment conditions. For example, FSWGA 

with fitness–
4(s) shows relatively good 

performances under low upper bounds as shown in 
table 4. However, its performances are degraded 
under moderate or high upper bounds as shown in 
table 5~6. On the other hand, FSWGA with fitness–

1(s) shows good performances especially under 
moderate or high upper bounds and large Np. (iii) 
Simple alternatives for fitness–(s) also have a 
significant competitiveness in terms of the total 
value of final solution. Among fitness–

1(s)~fitness–

4(s), fitness–
1(s) and fitness–

3(s) are easy to compute 
and implement due to their simple structure. 
Especially, fitness–

1(s) is just a reciprocal of 
fitness+(s) for given problem, total value. On the 
contrary, the other alternatives, fitness–

2(s) and 
fitness–

4(s) has relatively complex structure.  
 

 
Figure 8: Item Values Versus Resource1 Consumption 

 

 
Figure 9: Item Values Versus Resource2 Consumption 
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Figure 10: Item Values Versus Resource3 Consumption 

 
Table 3: Upper Bounds of Resource Consumption 
Condition t1 t2 t3 

Low 150 175 200 
Moderate 300 400 500 

High 700 850 1000 
 

Table 4: Best-Total-Values For Low Upper Bounds 
 fitness–

1 fitness–
2 fitness–

3 fitness–
4

Np=25 
Avg. 1160.5 1169.5 1185.2 1185.6 

St. Dev. 35.74 26.51 13.06 14.17 

Np=50 
Avg. 1179.3 1192.0 1179.5 1189.8 

St. Dev. 28.92 15.00 20.72 13.45 
 
Table 5: Best-Total-Values For Moderate Upper Bounds 

 fitness–
1 fitness–

2 fitness–
3 fitness–

4

Np=25 
Avg. 2091.8 2091.4 2096.0 2092.9 

St. Dev. 19.47 23.85 11.89 13.94 

Np=50 
Avg. 2102.6 2100.7 2102.7 2101.6 

St. Dev. 11.97 11.82 9.12 9.37 
 

Table 6: Best-Total-Values For High Upper Bounds 
 fitness–

1 fitness–
2 fitness–

3 fitness–
4

Np=25 
Avg. 3433.3 3422.9 3445.3 3441.6 

St. Dev. 26.62 21.65 20.26 17.87 

Np=50 
Avg. 3452.2 3449.9 3452.5 3446.6 

St. Dev. 13.31 16.11 10.94 14.66 
 

However, the complex alternatives do not 
always outperform the simpler ones. This implies 
that we need not to define too complicated 
alternatives for fitness–(s), in order to develop 
FSWGA for specific combinatorial optimization 
problems. (iv) Overall, fitness–

3(s), a reciprocal of 
the number of resource constraints violated by 
given solution, is the best alternative for fitness–(s) 
in table 4~6, in terms of the best-total-values. Of 
course, fitness–

3(s) may be ineffective for KP, since 
the classical KP has a single resource constraint. 
However, the experiment results in this paper 

suggests that it is useful for solving combinatorial 
optimization problem with multiple constraints. 
Moreover, fitness–

3(s) is a simple type alternative 
for fitness–(s), which is appropriate for practical use. 

 
Figure 11 shows an example of changes in 

total value of feasible solutions within population 
during the search procedure. In addition, this result 
is obtained from a single repetition of experiment 
under lower upper bounds. Due to the low upper 
bounds of resource constraints, FSWGA could not 
discover any feasible solutions during the early 
period of search procedure in figure 10. In other 
words, it is not easy to generate an arbitrary 
feasible solution from scratch in this case, and 
therefore, the populations at early iterations consist 
of only infeasible solutions. Note that both average 
and maximum values of the total value of feasible 
solutions are 0 in this figure. However, figure 10 
also shows that FSWGA has succeeded in 
discovering feasible solutions at 11th iteration, and 
the total values of feasible solutions are 
continuously improved after this iteration. 
Therefore, we can conclude that the FS strategy is 
useful for solving combinatorial optimization 
problems with multiple constraints, such as MKP, 
in that FSWGA can effectively generate feasible 
solutions by utilizing the infeasible solutions within 
population and improve the fitness values of the 
feasible solutions in order to discover the optimal 
solution for given problem. 
 

 
Figure 11: An Example Of Change In Total Value Of 

Feasible Solutions Under Low Upper Bounds 
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Figure 12: An Example Of Change In Number Of 

Feasible Solutions Under Low Upper Bounds 
 

As shown in figure 12, the number of 
feasible solutions within population rapidly 
increases after some feasible solutions are 
discovered. However, the number of feasible 
solutions still fluctuate during the later period in 
search procedure, as shown in figure 12. It is 
straightforward that this fluctuation is occurred by 
the genetic operators, crossover and mutation. 
Especially, crossover operator is likely to generate 
infeasible solutions that contain too many items 
when it is applied to 2 parent solutions that contain 
considerable numbers of items, even if both of them 
are feasible solutions. It is possible to avoid such 
infeasible solutions by using more sophisticated 
crossover operators that is designed to generate 
only feasible offspring, however, such operators are 
also problem-specific and complicated inherently. 
In other words, designing and implementing 
crossover operators that do not generate infeasible 
solutions for a specific combinatorial optimization 
problem is often a non-trivial task. Moreover, 
infeasible solutions sometimes can have useful 
genes for discovering better solutions. Thus, the 
infeasible solutions can help to maintain the 
diversity of the solutions within population. In this 
context, FS strategy can be a very effective 
feasibility approach for combinatorial optimization 
problems with constraints. 

 
On the other hand, figure 13 and figure 14 

depicts examples of changes in total value of 
feasible solutions and number of feasible solutions 
under high upper bounds, which are obtained from 
another single repetition of experiment. In these 
figures, we can see that even initial population 

contains feasible solutions. More exactly, all of the 
solutions within the initial population are feasible, 
as shown in figure 14. It is straightforward that an 
arbitrary feasible solution can be generated more 
easily under high upper bounds. Therefore, 
fitness+(s) is used to compute the fitness values of 
solutions more often in this case. In other words, 
FSWGA operates similarly with conventional GAs 
to a certain extent if feasible solutions can be 
generated easily. 

 

 
Figure 13: An Example Of Change In Total Value Of 

Feasible Solutions Under High Upper Bounds 
 

 
Figure 14: An Example Of Change In Number Of 

Feasible Solutions Under High Upper Bounds 
 

However, figure 14 shows that the number 
of feasible solutions also fluctuate during the entire 
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search procedure even if upper bounds of resource 
constraints are high, and this means that the genetic 
operators still can generate infeasible solutions. 
Hence, infeasible solutions must be appropriately 
handled even if they rarely appear, and experiment 
results in this paper suggests that FS strategy also 
can be an effective feasibility handling approach for 
combinatorial optimization problems with rare 
infeasible solutions. 

In conventional GAs, repair and 
penalization procedures are widely used to deal 
with infeasible solutions. However, they are not 
included within the framework of SGA. Thus, 
FSWGA is easier to implement than GAs with 
repair or penalization. Especially, repair procedure 
is used to convert infeasible solutions into feasible 
ones, which means that infeasible solutions are not 
allowed in GAs with repair procedure. On the 
contrary, FSWGA can maintain diversity in 
population more effectively in that it allows 
infeasible solutions to be included within 
population. Penalization procedure also can be used 
to handle the infeasible solutions within population, 
however, it must be carefully configured so that 
each infeasible solution has appropriate fitness 
value. In contrast, values of FSWGA’s parameters, 
L and α, can be determined in an ad-hoc manner. 
Consequently, FS strategy can be an effective 
approach in solving combinatorial optimization 
problems with constraints. 
 
5. CONCLUSIONS 
 

Feasibility handling is one of the major 
challenges in developing metaheuristic algorithms 
for solving combinatorial optimization problems 
with constraints. For example, repair and 
penalization methods are widely used feasibility 
handling approaches for GA. However, such 
conventional approaches are often problem-specific 
or require non-trivial configurations. 

 
On the contrary, FS strategy is a 

generalized fitness handling strategy, and it is easy 
to implement. That is, FS strategy can be applied to 
GAs for a wide range of combinatorial optimization 
problems without modifying the existing genetic 
operators. In summary, fitness value of a solution 
for a combinatorial optimization problem with 
constraints is typically improved by consumptions 
of given resources. Inversely, FS strategy suggests 
that infeasible solutions can be converted to 
feasible ones by worsening the fitness values. In 
order to investigate the applicability of FS strategy, 
this paper developed FSWGA for MKP. 

 
The key element of FS strategy is fitness–

(s), which must be carefully defined in developing 
FSWGA. The original concept of FS strategy 
suggests that a reciprocal of fitness value of 
feasible solution can be used as is fitness–(s), 
however, this paper demonstrated that more 
complicated alternatives can be defined if required. 

 
Numerical experiments revealed that 

FSWGA is also useful for solving combinatorial 
optimization problems with multiple constraints, 
such as MKP. Moreover, experiment results 
showed that the complicated fitness–(s) does not 
always outperform the simple fitness–(s), such as 
the reciprocals of the total value or the number of 
violated constraints. Therefore, FSWGA can be 
designed in a more straightforward manner than 
other GAs that use conventional feasibility 
handling approaches. 

 
MKP is a well-known combinatorial 

optimization problem with multiple constraints. 
However, the constraints are of same type in that all 
of them are resource constraints. In this context, the 
author plans to apply FS strategy to combinatorial 
optimization problems with multi-type constraints 
in future. Also, developing simple but more 
sophisticated alternatives for fitness–(s) can be 
another valuable future research topic. 
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