
Journal of Theoretical and Applied Information Technology
30th September 2019. Vol.97. No 18

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

4837

APPLICATION OF FITNESS SWITCHING GENETIC
ALGORITHM FOR SOLVING MULTIDIMENSIONAL

KNAPSACK PROBLEM

KIM JUN WOO1
1Dong-A University, Department of Industrial and Management Systems Engineering, South Korea

E-mail: 1kjunwoo@dau.ac.kr

ABSTRACT

Combinatorial optimization problems with constraints typically have many infeasible solutions, which
cannot be used as a final solution. Therefore, metaheuristic algorithms for such problems must be carefully
designed so that the infeasible solutions are dealt with appropriately. For example, repair and penalization
are well-known feasibility handling approaches for genetic algorithm. However, those conventional
approaches are problem-specific, which means that they must be appropriately tailored in order to be
applied for solving a specific problem. On the contrary, fitness switching strategy is a general search
strategy that can be used to develop genetic algorithms for solving a wide range of combinatorial
optimization problems with constraints. Genetic algorithms based on fitness switching strategy need not to
be equipped with repair or penalization procedures. Moreover, the strategy enables to utilize the infeasible
solutions, typically ignored in conventional genetic algorithms. In order to investigate the usefulness of
fitness switching strategy, this paper aims to extend the existing fitness switching strategy and develop a
fitness switching genetic algorithm for multidimensional knapsack problem, which is a generalization of
classical 0-1 knapsack problem. The experiment results demonstrate that fitness switching strategy can be
used to develop effective metaheuristic algorithms for solving combinatorial optimization problems with
multiple constraints.

Keywords: Fitness Switching Strategy, Genetic Algorithm, Infeasible Solution, Multidimensional
Knapsack Problem, Metaheuristic

1. INTRODUCTION

Multidimensional knapsack problem
(MKP) is a well-known extension of classical 0-1
knapsack problem (KP), where MKP has two or
more resource constraints while KP has only one
resource constraint [1][2]. Since MKP is a practical
combinatorial optimization problem that has many
application domains, it has been well-studied during
past decades [3].

Typically, MKP is characterized by a

number of items and a number of resources. Let N
denote a set of n discrete items, 1, 2, …, n and vi
denote the value of item i (i = 1, 2, …, n). The
objective of MKP is to find a subset of N which
maximizes total value, where each item consumes
m resources and tj is the total amount of resource j (j
= 1, 2, …, m). Let wij be the amount of resource j
consumed by an item i. Then, MKP can be
formulated as follows [3][4]:

Max. Total Value = (1)

Subject to , j = 1, 2, …, m (2)

xi ∈ {0, 1}, i = 1, 2, …, n (3)

For convenience, let us assume that wij > 0

for all i and j. When n is relatively small, the
optimal solution of MKP can be obtained by
applying exact solution methods such as branch and
bound method. However, MKP is a sort of NP-hard
combinatorial optimization problem, which is
difficult to solve by applying exact solution method
when n is large. Therefore, approximate solution
methods such as metaheuristic algorithms can be
more effective for large MKP [4][5].

Conventional metaheuristic algorithms

such as genetic algorithm (GA) [6], tabu search
(TS) [7], simulated annealing (SA) [8] and particle
swarm (PS) [9] provide stochastic search strategies
that can be tailored to specific combinatorial
optimization problems. Such strategies are designed
to effectively explore the search space of given
problems, however, they have to be carefully

Journal of Theoretical and Applied Information Technology
30th September 2019. Vol.97. No 18

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

4838

customized to solve a specific problem. One of the
main challenges in applying metaheuristic
algorithms to a specific problem is handling the
infeasible solutions.

A solution for s specific combinatorial

optimization problem is infeasible if and only if it
violates one or more constraints. For example, a
solution for MKP is likely to be infeasible if it
contains too many items, since it may consume too
much resources. Moreover, it is straightforward that
an infeasible solution cannot be a final solution for
given problem. Therefore, they must be handled
appropriately during the search procedure of
metaheuristic algorithms. Especially, population-
based metaheuristic algorithms such as GA and PS
have to generate many alternative solutions, so they
should be equipped with appropriate feasibility
handling procedures [10]. However, traditional
feasibility handling procedures are often problem-
specific or require non-trivial configurations.

On the contrary, fitness switching (FS)

strategy is a recently proposed feasibility handling
approach for GA that can be applied to a wide
range of combinatorial optimization problems [11].
Hence, this strategy can help to address the
feasibility issue of metaheuristic algorithms,
however, it had been not applied to MKP, yet. In
this context, this paper aims to apply FS strategy to
develop fitness switching genetic algorithm
(FSWGA) for MKP and investigate the features of
FSWGA for combinatorial optimization problems
with multiple constraints.

The remainder of this paper is organized as

follows: Section 2 provides a brief literature review
on GA and MKP. Moreover, the concept of existing
FSWGA is also explained in this section. Section 3
explains the search procedures of FSWGA for MKP,
which is developed by extension of previous
FSWGA for KP. Section 4 demonstrates the
experiment results obtained by applying the
extended FSWGA to MKP. Finally, Section 5
represents some discussions on FSWGA and
concluding remarks.

2. RESEARCH BACKGROUNDS

GA is a sort of population-based

metaheuristic algorithm, and it has been
successfully applied to a wide range of
combinatorial optimization problems during the last
decades [5][11][12]. In order to apply GA to a
specific combinatorial optimization problem,

solutions of given problem must be represented as a
simple string called chromosome. Moreover, a
chromosome consists of a number of elements
called gene, where single gene represents a feature
of the associated solution [13]. For n-item KP and
MKP, binary encoding scheme that utilizes the
chromosomes with n genes indicating the count of a
specific item is most widely used [14][15]. In other
words, if an item i is included within a solution, the
value of i th gene of the associated chromosome is
1, and otherwise, the gene’s value is 0. This
encoding scheme is also used in this paper.

Standard GA (SGA) is a most popular

version of GA, and it is characterized by three
genetic operators, selection, crossover, and
mutation [13][16]. The objective of selection is to
choose a number of solutions in population, which
will be included within mating pool. Moreover, the
desirability of a solution is evaluated by using
fitness function, and the goal of GA is to discover
the optimal solution which maximizes or minimizes
the fitness function. For example, the total value in
(1) or its modification can be used as the fitness
function of GA for KP or MKP. Crossover operator
is used to create a new solutions (offspring) by
recombining the genes of solutions in mating pool
(parents). 1-point, 2-point and uniform crossovers
are the most well-known crossover operators [17].
On the contrary, mutation is used to slightly modify
the offspring in hopes that better solutions would be
obtained. Mutation operator must be applied to a
very small number of genes, and bit flip mutation is
the most widely used one for binary encoding
scheme. Note that this mutation operator changes
the value of a gene from 0 to 1, and vice versa [18].

Besides the above three genetic operators,

additional procedures can be applied to GA, which
enables more effective search procedure. For
example, feasibility handling procedures are widely
used in designing GA for a specific combinatorial
optimization problem, and they are classified into
two categories, repair and penalization. The former
is used to convert the infeasible solutions into
feasible ones [19][20], while the objective of the
latter is to apply penalty term to the fitness value of
infeasible solutions [21][22][23]. The repair and
penalization procedures are widely used in previous
GAs for MKP [24][25][26][27], however, they are
often problem-specific and complex to implement.
Moreover, infeasible solutions can contain some
genes useful for exploring the search space in
effective manner, even though they cannot be final

Journal of Theoretical and Applied Information Technology
30th September 2019. Vol.97. No 18

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

4839

solution of given problem. Such useful information
can be lost when repair procedure is applied [11].

On the contrary, FS strategy is a

generalized search strategy that can be applied to a
wide range of combinatorial optimization problems.
This strategy suggests that both feasible and
infeasible solutions should be utilized during search
procedure, and their fitness values should be
evaluated in different manners.

In more detail, FS strategy provides three

distinguishing procedures, fitness switching, fitness
leveling, and simple local search. Among them,
fitness switching is the most important procedure,
and it suggests that the fitness values of feasible
and infeasible solutions should be evaluated in
different manners. That is, a fitness value of a
solution s, fitness(s), is computed as follows:

fitness(s) = fitness+(s), if s is feasible, (4.1)

and

fitness(s) = fitness–(s), if s is infeasible. (4.2)

Note that fitness+(s) and fitness–(s) are the

fitness functions for feasible and infeasible
solutions, respectively, and fitness switching
procedure also suggests that these two functions
should be inversely proportional to each other. Let
X(s) denote the desirability of solution s. Then,
fitness+(s) and fitness–(s) should satisfy

fitness+(s) ∝ X(s) ∝ 1 / fitness–(s). (5)

Note that the fitness value of infeasible

solution should be inversely proportional to the
desirability of solution, which is directly
proportional to the fitness value of feasible solution.
Moreover, fitness+(s) and fitness– (s) for
maximization problem such as MKP should satisfy

fitness+(s) ≥ fitness–(s). (6)

However, if | fitness+(s) – fitness–(s) | is

too large, high selection pressure is imposed on the
solutions within population, and this can occur
premature convergence to local optima. In order to
address this problem, FS strategy recommends
modifying the initial fitness+(s) and fitness–(s) by
applying fitness leveling procedure as follows:

fitness+’(s) =

1 + L×(fitness+(s) – mins∈F fitness+(s)) /

(maxs∈F fitness+(s) – mins∈F fitness+(s)) (7)

and

fitness–’(s) = (1 – α)×fitness–(s) /

maxs∈I fitness–(s), (8)

where

F = { s | s ∈ N and s is feasible } (9)

and

I = { s | s ∈ N and s is infeasible }. (10)

L in (7) is the scale factor of fitness

leveling, which is used to prioritize feasible
solutions over infeasible ones, and its value should
be larger than or equal to 1. Moreover, α in (8) is
the location factor of fitness leveling, which is used
to slightly decrease the modified fitness value of
the best infeasible solution., and 0 < α < 1.

Similarly with the initial fitness+(s) and

fitness–(s), the modified fitness values, fitness+’(s)
and fitness– ’(s) also satisfy

fitness+’(s) ≥ fitness–’(s), (11)

since

1 ≤ fitness+’(s) ≤ L (12)

and

0 ≤ fitness–’(s) ≤ (1 – α) (13)

Consequently, FSWGA uses the modified

fitness values, fitness+’(s) and fitness–’(s), in
evaluating the solutions within population.

In addition, simple local search procedure

is used to slightly modify the infeasible solutions in
hopes that it may become feasible. Note that the
role of this procedure is similar with traditional
mutation operator, however, simple local search
procedure is applied to only infeasible solutions.

Initially, FS strategy was developed to

solve combinatorial optimization problems with
rare feasible solutions, where it is hard to find any
feasible solutions from scratch [11][28]. More

Journal of Theoretical and Applied Information Technology
30th September 2019. Vol.97. No 18

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

4840

recent research paper has demonstrated that
FSWGA can be applied to combinatorial
optimization problems with many feasible solutions
such as classical 0-1 KP, which has a single
resource constraint [29]. However, FSWGA has
been not applied to combinatorial optimization
problems with many feasible solutions and multiple
constraints. In this context, this paper aims to
extend the existing FS strategy to solve MKP.

3. FITNESS SWITCHING GENETIC
ALGORITHM FOR MULTIDIMENSIONAL
KNAPSACK PROBLEM

3.1 Fitness Switching Strategy

In this paper, previous FSWGA for
classical KP is extended to solve MKP with n items
and m resource constraints. However, the fitness
leveling and simple local search procedures of
FSWGA for KP can be also applied to MKP. Hence,
this section focuses on developing a refined fitness
switching procedure for MKP.

The objective of MKP is to maximize the
total value. Hence, total value is used as fitness
value of feasible solutions in this paper. That is,

fitness+(s) = . (14)

On the contrary, total value of infeasible
solutions should be decreased by deleting some
items, in order to convert it into a feasible solution.
In this context, this paper proposes a basic
alternative for fitness– (s) as follows:

fitness–

1(s) = 1 / (15)

Also, it can be said that an infeasible
solution can be converted into a feasible solution by
decreasing its resource consumptions. Since MKP
has multiple resource constraints, this paper
proposes a second alternative for fitness–(s) as
follows:

fitness–

2(s) = 1 / , (16)

where consumption of jth resource,

Cj = (w1jꞏx1 + w2jꞏx2 + … + wnjꞏxn) /
(w1j + w2j + … + wnj), if s contains one or
more items, (17.1)

and

Cj = 1, if x1 = x2 = … = xn = 0. (17.2)

Note that fitness–

2(s) = 1 / m when x1 = x2
= … = xn = 1 or x1 = x2 = … = xn = 0. Otherwise,
fitness–

2(s) is larger than 1 / m, and especially, a
solution s that contains a small number of items
tend to have larger fitness–

2(s). Moreover, it is not

guaranteed that fitness–
2(s) ≤ 1. Therefore, fitness

leveling procedure must be applied to this type of
fitness function before it is used to evaluate the
fitness values of the solutions within population.

In addition, infeasibility of a solution

occurs due to its exceeding one or more tj s. Taking
this into account, this paper proposes third and
fourth alternatives for fitness–(s) as follows:

fitness–

3(s) = 1 / V(s) (18)

and

fitness–

4(s) = (19)

where V(s) is the number of resource
constraints violated by a solution s and excess
consumption of resource j, Ej is defined as follows:

Ej = (–) /

(–), if > (20.1)

and

Ej = 1, otherwise. (20.2)

The fitness–

3(s) simply indicates that an
infeasible solution that violates a larger number of
resource constraints should have smaller fitness
value.

On the other hand, fitness–

4(s) utilizes
more sophisticated information on the resource
consumption of s. In the right hand side of (20.1),
the denominator is the minimum unconsumed
amount of resource j, while the numerator is the
actual unconsumed amount of resource j. In other
words, Ej in (20.1) is the proportion of the
unconsumed amount of resource j, and fitness–

4(s)
suggests that an infeasible solution with larger Ej s
should have larger fitness values. Note that both
fitness–

3(s) and fitness–
4(s) are smaller than or equal

to 1.

Journal of Theoretical and Applied Information Technology
30th September 2019. Vol.97. No 18

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

4841

In this paper, the extended FSWGAs for
MKP are developed by applying fitness–

1(s)~
fitness–

4(s), and their performances are compared
by conducting numerical experiments.

3.2 Design of Genetic Algorithm

The proposed fitness switching procedure
can be easily applied to the conventional SGA
algorithm. The FSWGA in this paper uses binary
encoding scheme and the solutions within the initial
population are randomly generated, similarly with
the existing FSWGA for KP.

01: single fitness_switching(int[] s, int n, int m, int type)
02: {
03: SET weight[][] = array of weights
04: SET value[] = array of values
05:
06: SET cst[] = array of resource consumptions
07: SET initial_fitness = 0
08: SET t[] = array per bounds of resource

 consumptions
09:
10: FOR j = 1 TO m
11: SET cst[j] = getConsumption(s, n, weight, j)
12: NEXT j
13:
14: IF isFeasible(cst, t, m) THEN
15: SET initial_fitness = getValue(s, n, value)
16: ELSE IF type = 1 THEN
17: SET initial_fitness = 1/getValues(s, n, value)
18: ELSE IF type = 2 THEN
19: SET r_consumption = 0
20:
21: FOR j = 1 TO m
22: r_consumption += conRatio(s, n, weight, j)
23: NEXT j
24:
25: SET initial_fitness = 1 / r_consumption
26: ELSE IF type = 3 THEN
27: SET initial_fitness = 1 / vCount(cst, t, m)
28: ELSE IF type = 4 THEN
29: SET r_excess = 1
30:
31: FOR j = 1 TO m
32: r_excess = r_excess × excessRatio(s, n,

weight, t, j, cst[j])
33: NEXT j
34:
35: SET initial_fitness = r_excess
36: END IF
37:
38: RETURN initial_fitness
39: }

Figure 1: Fitness Switching Procedure

Next, the fitness values of the solutions are
computed by applying the proposed fitness
switching procedure, which is summarized in figure

1. Note that the procedure in figure 1 is used to
compute the fitness value of an individual solution
s. Moreover, the integer variable type indicates that
fitness–

type(s) is used to obtain the initial fitness
values.

As shown in line 10~12 of figure 1, the

resource consumptions of given solution s are
computed by using getConsumption() procedure,
which is described in figure 2. Then, isFeasible()
procedure in line 14 of figure 1, which is described
in figure 3, is used to evaluate the feasibility of the
solution s. If s satisfies all resource constraints, it is
a feasible solution and its total value is used as the
initial fitness value, as shown in line 15 of figure 1.
The getValue() procedure described in figure 4 is
used to compute the total value of a given solution s.

01: single getConsumption(int[] s, int n, int[][] weight, int
j)
02: {
03: SET consumption = 0
04:
05: FOR i = 1 TO n
06: SET consumption += s[i] × weight[i][j]
07: Next i
08:
09: RETURN consumption
10: }

Figure 2: getConsumption Procedure

01: boolean isFeasible(single[] cst, int[] t, int m)
02: {
03: SET feasible = TRUE
04:
05: FOR j = 1 TO m
06: IF cst[j] > t[j] THEN
07: SET feasible = FALSE
08: END IF
09: Next i
10:
11: RETURN feasible
12: }

Figure 3: isFeasible Procedure

01: single getValue(int[] s, int n, int[] value)
02: {
03: SET value = 0
04:
05: FOR i = 1 TO n
06: SET value += s[i] × value[i][j]
07: Next i
08:
09: RETURN value
10: }

Figure 4: getValue Procedure

Journal of Theoretical and Applied Information Technology
30th September 2019. Vol.97. No 18

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

4842

On the other hand, the initial fitness value
of s is computed by using fitness–

1(s)~ fitness–
4(s),

as shown in line 16~35 of figure 1.

Figure 5~7 represent the additional

procedures used to compute the initial fitness value
of an infeasible solution. Among them, conRatio()
procedure in figure 5 is used to compute the
consumption of resource j, Cj in (17.1)~(17.2),
which is in turn used to calculate fitness–

2(s) in (16).
vCount() procedure in figure 6 counts the number
of resource constraint violated by given solution s,
which is used to compute fitness–

3(s) in (18).

The role of excessRatio() procedure

summarized in figure 7 is to compute the excess
consumption of resource j, Ej in (20.1)~(20.2).
Moreover, Ej computed by excessRatio() procedure
is in turn used to calculate fitness–

4(s) in (19).
Consequently, the initial value of an arbitrary
solution s can always be determined appropriately,
by using the fitness switching procedure in figure 1.

After the initial fitness values are

computed, simple local search procedure is applied
to the solutions within the population, in order to
slightly modify the infeasible solutions.
Subsequently, fitness leveling procedure is applied
to the solutions in order to adjust the initial fitness
values.

In addition, conventional selection,

crossover, and mutation operators are used to
develop FSWGA for MKP. Above all, FSWGA
proposed in this paper uses well-known roulette
wheel selection operator to generate mating pool
from the existing solutions. Note that the
probability with which a solution s is selected by
roulette wheel selection operator is proportional to
the fitness value of the solution.

There are several elementary crossover

operators that can be used to develop GAs based on
the binary encoding scheme. Among them, the
well-known uniform crossover is adopted by the
proposed FSWGA for MKP. In order to create two
offspring, offspring1 and offspring2, from two
existing solutions, parent1 and parent2, uniform
crossover operator generates random binary
numbers for each gene. Moreover, the values of
genes in offspring are determined according to the
generated random binary number. For example, if a
random binary number for ith gene (i = 1, 2, …, n)
is 0, offspring1 inherits the ith gene of parent1,
while offspring2 inherits the ith gene of parent2. On

the other hand, if a random binary number for ith
gene is 1, the ith gene of parent2 is inherited to
offspring1, and ith gene of parent1 is inherited to
offspring2.

01: single conRatio(int[] s, int n, int[][] weight, int j)
02: {
03: SET actual_consumption = 0
04: SET max_consumption = 0
05: SET n_item = 0
06:
07: FOR i = 1 TO n
08: SET actual_consumption += weight[i][j]×s[i]
09: SET max_consumption += weight[i][j]
10:
11: IF s[i] = 1 THEN
12: n_item++
13: END IF
14: NEXT i
15:
16: IF n_item = 0 OR n_item = n THEN
17: RETURN 1
18: ELSE
19: RETURN actual_consumption /

max_consumption
20: }

Figure 5: conRatio Procedure

01: int vCount(single[] cst, int[] t, int m)
02: {
03: SET n_violation = 0
04:
05: FOR j = 1 TO m
06: IF cst[j] > t[j] THEN
07: n_violation++
08: END IF
09: NEXT j
10:
11: RETURN _violation
12: }

Figure 6: vCount Procedure

01: int excessRatio(int[] s, int n, int[][] weight, int[] t, int
j, single the_cst)
02: {
03: SET total_weight = 0
04: SET eRatio = 0
05:
06: FOR i = 1 TO n
07: total_weight += weight[i][j]
08: NEXT i
09:
10: IF the_cst <= t[j] THEN
11: SET eRatio = total_weight – the_cst /
 total_weight – t[j]
12: END IF
13:
14: RETURN eRatio
15: }

Figure 7: excessRatio Procedure

Journal of Theoretical and Applied Information Technology
30th September 2019. Vol.97. No 18

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

4843

The last genetic operator of SGA,

mutation is used to randomly modified the
offspring obtained by applying crossover operator.
This operator is important in that it helps to
maintain the diversity of the solutions within
population. In other words, GA without mutation
operator is more likely to converge to local optima.
However, if mutation is too often applied, the
useful information accumulated during previous
search procedure cannot be exploited appropriately.
Therefore, mutation operator is applied with very
small probability, and this paper uses the well-
known bit flip mutation to develop FSWGA for
MKP.

From the practical perspectives, the

proposed FSWGA has several benefits as follows:
(i) Fitness switching, fitness leveling, and simple
local search procedures are not associated with
conventional genetic operators, selection, crossover,
and mutation, since those procedures of FSWGA
can be incorporated into the evaluation procedure
of GA. This means that the conventional genetic
operators are directly used in FSWGA without any
modification. (ii) No problem-specific feasibility
handling procedures such as repair and penalization
are required in FSWGA. (iii) In order to develop
FSWGA, the three procedures, fitness switching,
fitness leveling, and simple local search, must be
implemented. Among them, however, fitness
leveling is not problem-specific, and we need not to
customize this procedure to solve a specific
combinatorial optimization problem. On the other
hand, fitness switching and simple local search
procedures are problem-specific, but the latter is
inherently easy to design and implement. For
example, FSWGA for MKP proposed in this paper
uses a simple local procedure that is very similar
with conventional bit flip mutation operator.

Consequently, FSWGA can be developed

in very efficient manner, if appropriate fitness
switching procedure is provided. Note that fitness
switching procedure is the key element of FSWGA,
and it is problem-specific. Especially, fitness–(s)
should be carefully designed to solve given
combinatorial optimization problem in an effective
manner. In other words, the most important step in
developing FSWGA is to define fitness–(s). Of
course, fitness–(s) can be simply defined as a
reciprocal of fitness+(s), as shown in (15), and this
is the original concept of fitness switching.
However, if such simple fitness–(s) does not work
well, we have to develop alternative approaches for

calculating fitness–(s), such as fitness–
2(s)~ fitness–

4(s) in this paper.

4. EXPERIMENT RESULTS

Table 1: MKP With 50 Items
ID Resource1 Resource2 Resource3 Value
1 19 22 39 66
2 10 22 19 60
3 16 24 34 21
4 15 11 13 139
5 13 22 15 65
6 16 15 17 95
7 19 12 31 6
8 11 10 12 91
9 11 18 21 12

10 19 11 24 85
11 10 29 23 12
12 10 11 11 53
13 20 26 40 99
14 14 16 32 48
15 18 27 36 96
16 15 13 38 81
17 15 29 20 70
18 11 24 13 122
19 17 16 28 83
20 19 19 17 129
21 11 14 26 54
22 17 28 36 31
23 20 29 33 52
24 19 15 29 96
25 17 21 17 57
26 19 18 33 45
27 16 12 35 16
28 10 24 38 130
29 17 30 35 58
30 15 22 13 37
31 15 21 27 116
32 14 22 20 64
33 20 29 14 43
34 17 19 14 108
35 19 18 13 75
36 14 14 23 121
37 13 11 35 67
38 17 17 25 60
39 18 13 33 33
40 15 30 34 48
41 17 30 23 98
42 18 27 15 91
43 18 12 24 102
44 20 13 39 120
45 10 11 23 61
46 11 17 28 58
47 16 15 23 119
48 14 15 20 122
49 17 26 32 71
50 10 17 28 64

Journal of Theoretical and Applied Information Technology
30th September 2019. Vol.97. No 18

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

4844

The performances of the alternatives
fitness–(s) are compared by applying the proposed
FSWGA to a MKP with 50 items and 3 resource
constraints, and the resource consumptions and
values of the 50 items are summarized in table 1. In
addition, the descriptive statistics of resource
consumptions are summarized in table 2, where we
can see that Resouce3 is the most highly utilized
resource on average, while the average
consumption of Resource1 is smaller than the other
2 resources.

Furthermore, figure 8~10 provide the

scatter plots that display the relationships between
resource consumptions and item value, and it seems
that no resource consumption is highly correlated
with the item value.

Table 2: Summary Of Resource Consumptions
 Resource1 Resource2 Resource3

Average 15.47 19.27 25.42
Total 772 967 1271
Min. 10 10 10
Max. 20 30 40

In this paper, the MKP with given items

are solved under 3 experiment conditions
summarized in table 3, where different experiment
conditions have different upper bounds of resource

constraints, t1, t2 and t3. Note that t1 < t2 < t3 for all
experiment conditions.

The numerical experiments have been

performed under crossover rate = 0.8, mutation rate
= 0.01, L = 2 and α = 0.01, with varying population
size Np. In addition, the termination condition is
defined by using maximum iteration number = 200,
and elitism policy is applied so that 5 best solutions
within every population are always included within
the mating pool. Furthermore, 10 repetitions of
experiments have been performed for each case,
and the experiment results are summarized in table
4~6. Note that table 4~6 shows the average (Avg.)
and standard deviation (St. Dev) of Best-Total-
Value, the total value of final solution discovered
by FSWGA with a specific fitness switching
procedure.

Consequently, we can make following

observations: (i) Above all, FSWGA has shown
better performances under larger Np. This indicates
that the performance of FSWGA can be further
enhanced by modifying the experiment parameters.
(ii) The relative performance of FSWGA can vary
with experiment conditions. For example, FSWGA

with fitness–
4(s) shows relatively good

performances under low upper bounds as shown in
table 4. However, its performances are degraded
under moderate or high upper bounds as shown in
table 5~6. On the other hand, FSWGA with fitness–

1(s) shows good performances especially under
moderate or high upper bounds and large Np. (iii)
Simple alternatives for fitness–(s) also have a
significant competitiveness in terms of the total
value of final solution. Among fitness–

1(s)~fitness–

4(s), fitness–
1(s) and fitness–

3(s) are easy to compute
and implement due to their simple structure.
Especially, fitness–

1(s) is just a reciprocal of
fitness+(s) for given problem, total value. On the
contrary, the other alternatives, fitness–

2(s) and
fitness–

4(s) has relatively complex structure.

Figure 8: Item Values Versus Resource1 Consumption

Figure 9: Item Values Versus Resource2 Consumption

Journal of Theoretical and Applied Information Technology
30th September 2019. Vol.97. No 18

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

4845

Figure 10: Item Values Versus Resource3 Consumption

Table 3: Upper Bounds of Resource Consumption
Condition t1 t2 t3

Low 150 175 200
Moderate 300 400 500

High 700 850 1000

Table 4: Best-Total-Values For Low Upper Bounds
 fitness–

1 fitness–
2 fitness–

3 fitness–
4

Np=25
Avg. 1160.5 1169.5 1185.2 1185.6

St. Dev. 35.74 26.51 13.06 14.17

Np=50
Avg. 1179.3 1192.0 1179.5 1189.8

St. Dev. 28.92 15.00 20.72 13.45

Table 5: Best-Total-Values For Moderate Upper Bounds

 fitness–
1 fitness–

2 fitness–
3 fitness–

4

Np=25
Avg. 2091.8 2091.4 2096.0 2092.9

St. Dev. 19.47 23.85 11.89 13.94

Np=50
Avg. 2102.6 2100.7 2102.7 2101.6

St. Dev. 11.97 11.82 9.12 9.37

Table 6: Best-Total-Values For High Upper Bounds
 fitness–

1 fitness–
2 fitness–

3 fitness–
4

Np=25
Avg. 3433.3 3422.9 3445.3 3441.6

St. Dev. 26.62 21.65 20.26 17.87

Np=50
Avg. 3452.2 3449.9 3452.5 3446.6

St. Dev. 13.31 16.11 10.94 14.66

However, the complex alternatives do not
always outperform the simpler ones. This implies
that we need not to define too complicated
alternatives for fitness–(s), in order to develop
FSWGA for specific combinatorial optimization
problems. (iv) Overall, fitness–

3(s), a reciprocal of
the number of resource constraints violated by
given solution, is the best alternative for fitness–(s)
in table 4~6, in terms of the best-total-values. Of
course, fitness–

3(s) may be ineffective for KP, since
the classical KP has a single resource constraint.
However, the experiment results in this paper

suggests that it is useful for solving combinatorial
optimization problem with multiple constraints.
Moreover, fitness–

3(s) is a simple type alternative
for fitness–(s), which is appropriate for practical use.

Figure 11 shows an example of changes in

total value of feasible solutions within population
during the search procedure. In addition, this result
is obtained from a single repetition of experiment
under lower upper bounds. Due to the low upper
bounds of resource constraints, FSWGA could not
discover any feasible solutions during the early
period of search procedure in figure 10. In other
words, it is not easy to generate an arbitrary
feasible solution from scratch in this case, and
therefore, the populations at early iterations consist
of only infeasible solutions. Note that both average
and maximum values of the total value of feasible
solutions are 0 in this figure. However, figure 10
also shows that FSWGA has succeeded in
discovering feasible solutions at 11th iteration, and
the total values of feasible solutions are
continuously improved after this iteration.
Therefore, we can conclude that the FS strategy is
useful for solving combinatorial optimization
problems with multiple constraints, such as MKP,
in that FSWGA can effectively generate feasible
solutions by utilizing the infeasible solutions within
population and improve the fitness values of the
feasible solutions in order to discover the optimal
solution for given problem.

Figure 11: An Example Of Change In Total Value Of

Feasible Solutions Under Low Upper Bounds

Journal of Theoretical and Applied Information Technology
30th September 2019. Vol.97. No 18

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

4846

Figure 12: An Example Of Change In Number Of

Feasible Solutions Under Low Upper Bounds

As shown in figure 12, the number of
feasible solutions within population rapidly
increases after some feasible solutions are
discovered. However, the number of feasible
solutions still fluctuate during the later period in
search procedure, as shown in figure 12. It is
straightforward that this fluctuation is occurred by
the genetic operators, crossover and mutation.
Especially, crossover operator is likely to generate
infeasible solutions that contain too many items
when it is applied to 2 parent solutions that contain
considerable numbers of items, even if both of them
are feasible solutions. It is possible to avoid such
infeasible solutions by using more sophisticated
crossover operators that is designed to generate
only feasible offspring, however, such operators are
also problem-specific and complicated inherently.
In other words, designing and implementing
crossover operators that do not generate infeasible
solutions for a specific combinatorial optimization
problem is often a non-trivial task. Moreover,
infeasible solutions sometimes can have useful
genes for discovering better solutions. Thus, the
infeasible solutions can help to maintain the
diversity of the solutions within population. In this
context, FS strategy can be a very effective
feasibility approach for combinatorial optimization
problems with constraints.

On the other hand, figure 13 and figure 14

depicts examples of changes in total value of
feasible solutions and number of feasible solutions
under high upper bounds, which are obtained from
another single repetition of experiment. In these
figures, we can see that even initial population

contains feasible solutions. More exactly, all of the
solutions within the initial population are feasible,
as shown in figure 14. It is straightforward that an
arbitrary feasible solution can be generated more
easily under high upper bounds. Therefore,
fitness+(s) is used to compute the fitness values of
solutions more often in this case. In other words,
FSWGA operates similarly with conventional GAs
to a certain extent if feasible solutions can be
generated easily.

Figure 13: An Example Of Change In Total Value Of

Feasible Solutions Under High Upper Bounds

Figure 14: An Example Of Change In Number Of

Feasible Solutions Under High Upper Bounds

However, figure 14 shows that the number
of feasible solutions also fluctuate during the entire

Journal of Theoretical and Applied Information Technology
30th September 2019. Vol.97. No 18

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

4847

search procedure even if upper bounds of resource
constraints are high, and this means that the genetic
operators still can generate infeasible solutions.
Hence, infeasible solutions must be appropriately
handled even if they rarely appear, and experiment
results in this paper suggests that FS strategy also
can be an effective feasibility handling approach for
combinatorial optimization problems with rare
infeasible solutions.

In conventional GAs, repair and
penalization procedures are widely used to deal
with infeasible solutions. However, they are not
included within the framework of SGA. Thus,
FSWGA is easier to implement than GAs with
repair or penalization. Especially, repair procedure
is used to convert infeasible solutions into feasible
ones, which means that infeasible solutions are not
allowed in GAs with repair procedure. On the
contrary, FSWGA can maintain diversity in
population more effectively in that it allows
infeasible solutions to be included within
population. Penalization procedure also can be used
to handle the infeasible solutions within population,
however, it must be carefully configured so that
each infeasible solution has appropriate fitness
value. In contrast, values of FSWGA’s parameters,
L and α, can be determined in an ad-hoc manner.
Consequently, FS strategy can be an effective
approach in solving combinatorial optimization
problems with constraints.

5. CONCLUSIONS

Feasibility handling is one of the major
challenges in developing metaheuristic algorithms
for solving combinatorial optimization problems
with constraints. For example, repair and
penalization methods are widely used feasibility
handling approaches for GA. However, such
conventional approaches are often problem-specific
or require non-trivial configurations.

On the contrary, FS strategy is a

generalized fitness handling strategy, and it is easy
to implement. That is, FS strategy can be applied to
GAs for a wide range of combinatorial optimization
problems without modifying the existing genetic
operators. In summary, fitness value of a solution
for a combinatorial optimization problem with
constraints is typically improved by consumptions
of given resources. Inversely, FS strategy suggests
that infeasible solutions can be converted to
feasible ones by worsening the fitness values. In
order to investigate the applicability of FS strategy,
this paper developed FSWGA for MKP.

The key element of FS strategy is fitness–

(s), which must be carefully defined in developing
FSWGA. The original concept of FS strategy
suggests that a reciprocal of fitness value of
feasible solution can be used as is fitness–(s),
however, this paper demonstrated that more
complicated alternatives can be defined if required.

Numerical experiments revealed that

FSWGA is also useful for solving combinatorial
optimization problems with multiple constraints,
such as MKP. Moreover, experiment results
showed that the complicated fitness–(s) does not
always outperform the simple fitness–(s), such as
the reciprocals of the total value or the number of
violated constraints. Therefore, FSWGA can be
designed in a more straightforward manner than
other GAs that use conventional feasibility
handling approaches.

MKP is a well-known combinatorial

optimization problem with multiple constraints.
However, the constraints are of same type in that all
of them are resource constraints. In this context, the
author plans to apply FS strategy to combinatorial
optimization problems with multi-type constraints
in future. Also, developing simple but more
sophisticated alternatives for fitness–(s) can be
another valuable future research topic.

ACKNOWLEDGEMENTS

This work was supported by the National
Research Foundation of Korea(NRF) grant funded
by the Korea government(Ministry of Science, ICT
& Future Planning) (NRF-2017R1C1B1008650).

REFRENCES:

[1] A. Fréville, “The Multidimensional 0-1 Knpsack

Problem: An Overview”, European Journal of
Operational Research, Vol. 155, No. 1, 2004,
pp. 1-21.

[2] T. Lust, and J. Teghem, “The Multiobjective
Multidimensional Knapsack Problem: A Survey
and a New Approach”, International
Transactions in Operational Research, Vol. 19,
No. 4, 2012, pp. 495-520.

[3] J. Puchinger, G. R. Raidl, and U. Pferschy, “The
Core Concept for the Multidimensional
Knapsack Problem”, Proceeding of European
Conference on Evolutionary Computation in
Combinatorial Optimization, 2006, pp. 195-208.

Journal of Theoretical and Applied Information Technology
30th September 2019. Vol.97. No 18

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

4848

[4] J. Puchinger, G. R. Raidl, and U. Pferschy, “The
Multidimensional Knapsack Problem: Structure
and Algorithms”, INFORMS Journal on
Computing, Vol. 22, No. 2, 2010, pp. 250-265.

[5] J. W. Kim, “Candidate Order Based Genetic
Algorithm (COGA) for Constrained Sequencing
Problems”, International Journal of Industrial
Engineering: Theory, Applications and Practice,
Vol. 23, No. 1, 2016, pp. 1-12.

[6] J. H. Holland, Adaptation in Natural and
Artificial Systems, University of Michigan Press,
1975.

[7] F. Glover, “Tabu Search for Large Scale
TimeTabling Problems”, European Journal of
Operational Research, Vol. 54, No. 1, 1991, pp.
39-47.

[8] S. Kirkpatrick, “Optimization by Simulated
Annealing: Quantitative Studies”, Journal of
Statistical Physics, Vol. 34, No. 5-6, 1984, pp.
975-986.

[9] J. Kennedy, and R. Eberhaard, “Particle Swarm
Optimization”, Proceedings of IEEE
International Conference on Neural Networks,
Vol. 4, 1995, pp. 1942-1948.

[10] Z. Beheshti, and S. M. H. Shamsuddin, “A
Review of Population-based Meta-heuristic
Algorithms”, International Journal of Advances
in Soft Computing and Its Applications, Vol. 5,
No. 1, 2013, pp. 1-35.

[11] J. W. Kim, and S. K. Kim, “Fitness Switching
Genetic Algorithm for Solving Combinatorial
Optimization Problems with Rare Feasible
Solutions”, Journal of Supercomputing, Vol. 72,
No. 9, 2016, pp. 3549-3571.

[12] M. Kumar, M. Husian, N. Upreti, and D. Gupta,
“Genetic Algorithm: Review and Application”,
International Journal of Information
Technology and Knowledge Management, Vol.
2, No. 2, 2010, pp. 451-454.

[13] D. Whitley, “A Genetic Algorithm Tutorial”,
Statistics and Computing, Vol. 4, No. 2, 1994,
pp. 65-85.

[14] Z. Michalewicz, and J. Arabas, “Genetic
Algorithms for the 0/1 Knapsack Problem”,
International Symposium on Methodologies for
Intelligent Systems, 1994, pp. 134-143.

[15] R. P. Singh, “Solving 0-1 Knapsack Problem
Using Genetic Algorithms”, Proceedings of
2011 IEEE 3rd International Conference on
Communication Software and Networks
(ICCSN), 2011, pp. 591-595.

[16] J. Andre, P. Siarry, and T. Dongon, “An
Improvement of the Standard Genetic

Algorithm Fighting Premature Convergence in
Continuous Optimization”, Advances in
Engineering Software, Vol. 32, No. 1, 2001, pp.
49-60.

[17] E. Semenkin, and M. Semenkina, “Self-
configuring Genetic Algorithm with Modified
Uniform Crossover Operator”, Proceedings of
International Conference in Swarm Intelligence,
pp. 414-421.

[18] F. Chicano, A. M. Sutton, L. D. Whitley, and E.
Alba, “Fitness Probability Distribution of Bit-
Flip Mutation”, Evolutionary Computation, Vol.
23, No. 2, 2015, pp. 217-248.

[19] P. Chootinan, and A. Chen, “Constraint
Handling in Genetic Algorithms Using
Gradient-based Repair Method”, Computer and
Operations Research, Vol. 33, No. 8, 2006, pp.
2263-2281.

[20] S. Salcedo-Sanz, “A Survey of Repair Methods
Used as Constraint Handling Techniques in
Evolutionary Algorithm”, Computer Science
Review, Vol. 3, No. 3, 2009, pp. 175-192.

[21] D. W. Coit, A. E. Smith, and D. M. Tate,
“Adaptive Penalty Methods for Genetic
Optimization of Constrained Combinatorial
Problem”, INFORMS Journal on Computing,
Vol. 8, No. 2, 1996, pp. 173-182.

[22] Ö, Yeniay, “Penalty Function Methods for
Constrained Optimization with Genetic
Algorithms”, Mathematical and Combinatorial
Applications, Vol. 10, No. 1, 2005, pp. 45-56.

[23] M. Schlüter, and M. Gerdts, “The Oracle
Penalty Method”, Journal of Global
Optimization, Vol. 47, No. 2, 2010, pp. 293-325.

[24] A. Hoff, A. Løkketangen, and I. Mittet,
“Genetic Algorithms for 0/1 Multidimensional
Knapsack Problems”, Proceedings of Norsk
Informatikk Konferanse, 1996, pp. 291-301.

[25] P. C. Chu, and J. E. Beasley, “A Genetic
Algorithm for the Multidimensional Knapsack
Problem”, Journal of Heuristics, Vol. 4, No. 1,
1998, pp. 63-86.

[26] M. J. Alves, and M. Almeida, “MOTGA: A
Multiobjective Tchebycheff based Genetic
Algorithm for the Multidimensional Knapsack
Problem”, Computers and Operations Research,
Vol. 34, No. 11, 2007, pp. 3458-3470.

[27] F. Djannaty, and S. Doostdar, “A Hybrid
Genetic Algorithm for the Multidimensional
Knapsack Problem”, International Journal of
Contemporary Mathematical Sciences, Vol. 3,
No. 9, 2008, pp. 443-456.

Journal of Theoretical and Applied Information Technology
30th September 2019. Vol.97. No 18

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

4849

[28] J. W. Kim, and S. K. Kim, “Genetic Algorithms
for Solving Shortest Path Problem in Maze-type
Network with Precedence Constraints”,
Wireless Personal Communications,
forthcoming.

[29] J. W. Kim, “Application of Fitness Switching
Genetic Algorithm for Solving 0-1 Knapsack
Problem”, Journal of Theoretical and Applied
Information Technology, Vol. 96, No. 2, 2018,
pp. 7339-7348.

