
Journal of Theoretical and Applied Information Technology
15th September 2019. Vol.97. No 17

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

4519

A DETAILED ANALYSIS OF NEW INTRUSION DETECTION
DATASET

1 MOHAMMED HAMID ABDULRAHEEM, 2 NAJLA BADIE IBRAHEEM
1Department of Computer Sciences, University of Mosul, Iraq
2Department of Computer Sciences, University of Mosul, Iraq

E-mail: 1 Mohammed.hamed@uomosul.edu.iq, 2 Najla.dabagh@uomosl.edu.iq

ABSTRACT

The increasing use of Internet networks has led to increased threats and new attacks day after day. In order
to detect anomaly or misused detection, Intrusion Detection System (IDS) has been proposed as an
important component of secure network. Because of their model free properties that enable them to identify
the network pattern and discover whether they are normal or malicious, Machine-learning technique has
been useful in the area of intrusion detection. Different types of machine learning models were leveraged in
anomaly-based IDS. There is an increasing demand for reliable and real-world attacks dataset among the
research community. In this paper, a detailed analysis of most-recent dataset CICIDS2017 has been made.
During the analysis, many problems and shortcoming in a dataset were found. Some solutions are proposed
to fix these problems and produce optimized CICIDS2017 dataset. A 36-feature has been extracted during
the analysis, and compared to 23-featured extracted by the dataset from literatures. The 36-features gave the
best result of losses, accuracy and F1-score metrics for the testing model.

Keywords: CICIDS2017, Network Anomaly Detection, Imbalance Dataset, Quantile Transform, Machine
Learning.

1. INTRODUCTION

Network security is becoming increasingly
important with the rising growth of computer
networks and the vast growing use of computer
applications on these networks. All computer
systems suffer from security gaps. It becomes
difficult in practice and economically costly to
solve these gaps by manufacturers. The role of
intrusion detection systems in detecting anomalies
and attacks in the network has become very
important.

The use of intrusion detection systems is very
important in research because it has the ability to
detect new attacks while misuse detection systems
are used in commercial applications. Several
methods use machine intelligence methods in
intrusion detection systems, few of them are based
on the methods of detecting anomalies. To discover
the percentage and decrease in this area, a lot of
researches have been accomplished in this field and
found that the datasets used contain potential
problems.

Current Anomaly Intrusion detection methods are
suffering from accurate performance. This is
because no reliable tested are conducted and
datasets are not verified. Since 1998 until now
eleven datasets have appeared. Some of these
datasets suffer from providing diversity and volume
of network traffic, some do not contain different or
latest attack patterns, while others lack feature set
metadata information. Hence, there is a need for
comprehensive framework for generating intrusion
detection system benchmarking dataset. In 2016
Gharib et al., [1] have identified 11 criteria that are
important for building a reliable dataset. None of
the existing (intrusion detection system) datasets
could cover all the 11 criteria. The 11 criteria of this
framework are "complete network configuration,
complete traffic, labeled dataset, complete
interaction, complete capture, available protocols,
attack diversity, anonymity, heterogeneity, feature
set and metadata". Researchers at Canadian Institute
of Cyber security have shown that most datasets are
out of date and unreliable for evaluation purposes
[2].

During the search for a realistic benchmark
dataset that look likes the real-world network
traffic, we found a recent dataset (CICIDS2017).

Journal of Theoretical and Applied Information Technology
15th September 2019. Vol.97. No 17

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

4520

Researchers at Canadian Institute of Cyber security
provide this dataset. It contains up-to-date attacks
and fulfills all the criteria of IDS that mentioned
above. The dataset consists of CSV files for flow
records generated with CICFlowMeter, and the
sniffed network traffic PCAP files. Traffic Data
captured for a total of five days. Attacks carried out
on working days (Tuesday-Friday) in both morning
and afternoon. The implemented attacks include
DoS, DDoS, Heartbleed, Web Attacks, FTP Brute
Force, SSH Brute Force, Infiltration, Botnet and
Port Scans. Monday is the normal day and includes
only legitimate traffic [3].

The CICIDS2017 Dataset builds from an abstract
behavior of 25 internet users, which are based on
email protocols and the HTTP HTTPS FTP SSH. It
involves labeled network flows comprising full
packet payloads in PCAP format, the corresponding
profiles and the labeled flows
(GeneratedLabelledFlows.zip), and CSV files for
deep learning purpose (MachineLearningCSV.zip)
are accessible [4]. Table 1 [5] shows the description
of CICIDS2017 dataset.

The CICIDS 2017 is a new intrusion dataset, and
not been studied well, so it is likely to contain
mistakes and shortcomings. In this research we are
trying to ask questions against the dataset, these
questions contribute to optimized and prepare the
dataset to be ready for consuming by machine
learning algorithms. Consequently, it contributes to
a high detection rate of the intrusion detection
system for all attacks in the data set. The following
questions will be the search path:

 Is the dataset contains null values? Null values
not accepted by Machine Learning algorithms.

 What type of values of the features in the data
set? The suitability of those values for
Machine Learning algorithms.

 Are there any high correlations between the
features in the data set? Highly correlations
mean redundant features.

 What is the important value of the features for
classifying given attacks? Some features may
have no effect in the detection of the given
attacks.

 Is the data set balanced, and what is the best
method for balancing the dataset? Imbalanced

dataset makes the machine learning algorithm
bias to large instances for a given attack.

 What is the suitable normalization function
that results in the best detection rate? Not all
normalization functions are suitable for all
data set.

Table 1: CICIDS2017 dataset [5]
Flow
Record
ing
Day
(Worki
ng
Hours)

pcap
File
size

Duration CS
V
File
Size

Attack name Flow
count

M
on

da
y

10
GB

All Day 257
MB

No Attack

529918

T
ue

sd
ay

10
GB

All Day 166
MB

FTP-Patator,
SSH-Patator

445909

W
ed

ne
sd

ay

12
GB

All Day 272
MB

Dos Hulk,
 DosGoldenEye,
DOSslowloris,
DosSlowhttptest,
Heartbleed

692703

T
hu

rs
da

y

7.7
GB

Morning

87.7
MB

Web Attacks
(Brute Force, XSS,
Sql Injection)

170366

Afternoo
n

103
MB

Infiltration 288602

F
ri

da
y

8.2
GB

Morning

71.8
MB

Bot

192033

Afternoo
n

92.7
MB

DDoS 225745

Afternoo
n

97.1
MB

Port Scan

286467

Few works are done by researchers and few
papers handled this dataset since its appearance.
Sharafaldin et al. [3] the author of the dataset used a
Random Forest Regressor to determine the best set
of features to detect each attack family. The authors
examined the performance of these features with
different algorithms. Panigrahi et al. [6] provided

Journal of Theoretical and Applied Information Technology
15th September 2019. Vol.97. No 17

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

4521

solutions to inherent shortcomings in this dataset
and relabeling it to reduce high-class imbalance.
Hossen et al. [4] explored the performance of a
Network Intrusion Detection System (NIDS) that
can detect various types of attacks in the network
using Deep Reinforcement Learning Algorithm,
they worked on 85 attributes of CICIDS2017 which
aided as an effective means in the detection of
different types of attacks. Kostas [5] tried to detect
network anomaly by using machine-learning
algorithms, the CICIDS2017 is used due to its up-to
date, and has wide attack diversity. Feature
selection made by using the Random Forest
Regressor algorithm. Seven Different machine-
learning methods are used in the implementation
step and achieved high performance. Boukhamla et
al. [7] described optimized CICIDS2017 dataset,
and then evaluated the performance by using
machine-learning algorithms. Again, the study used
CSV file, which contains features obtained from
network flow. Mieden [8] presented many
experiments on classifying unwanted behavior in
CICIDS2017 dataset using deep learning with
tensor flow. They worked on CSV files which
contains 85 features. Pektas et al. [9] presented
deep learning architecture combining CNN and
LSTM to enhance the intrusion detection
performance. The CICIDS2017 dataset is used for
testing the model. Vijayanand et al. [10] proposed
IDS that used the genetic algorithm as a feature
selection method and multiple Support Vector
Machines (SVM) for classification. A small portion
of the CICIDS2017 dataset instances are used to
evaluate the system. Radford et al. [11] compared
and contrasted a frequency-based model from five
sequence of aggregation rules with sequence-based
modeling of the Long Short-Term Memory (LSTM)
recurrent neural network. Lavrova et al. [12]
analyzed the CICIDS2017 dataset using digital
wavelets. Watson [13] applied the Multi-Layer
Perceptron (MLP) classifier algorithm and a
Convolutional Neural Network (CNN) classifier
that used the Packet Capture file of CICIDS2017.
They selected specified network packet header
features for their study. Aksu et al. [14] proposed a
denial of service IDS that used the Fisher Score
algorithm for features selection and Support Vector
Machine (SVM), K-Nearest Neighbor (KNN) and
Decision Tree (DT) as the classification algorithm.
Marir et al. [15] use a distributed Deep Belief
Network (DBN) as the dimensionality reduction
approach. The obtained features are fed to a multi-
layer ensemble SVM. The researchers divided
CICIDS2017 dataset into training and test datasets
using a ratio of 60% to 40%, respectively. Bansal

[16] proposed a data dimensionality reduction
method for network intrusion detection. The model
has been evaluated on both the datasets NSL-KDD
and CICIDS 2017. And the comparison between
both the proposed approaches has also been
represented.

The CICIDS2017 dataset consists of two zipped
files: GeneratedLabelledFlows and
MachineLearningCVE. the first file consists of 85
features plus one for attacks type labels, while the
second file consist of 78 features plus one for
attacks type labels. The difference between the
features in the files is 6 features these features in
the first file is for identification the flow as stated
by the authors of the dataset. All previous works on
CICIDS2017 dataset except [3] used all 85 features
of data. Some of these features such as “FlowID,
SourceIP, SourcePort, DestinationIP” in the first
file wrongly considered as a features to train the
model. For example, the IP addresses and the
source ports are changing continuously throughout
the network. Inaddition the FlowID consist of 4
tuple they are “SourceIP, SourcePort,
DestinationIP, DestinationPort” is considered a
repeated feature. Therefore we used the second file
for analysis and training. For the imbalance
problem, the study [6] solve class imbalance
problem by relabeling of classes. They merged a
few minority class to form new attack classes (DoS
and DDoS merged in one class, all Web attacks
merged in one class too), the merging process
incorrect. According to our result, DoS attack and
DDoS attacks can be discriminated clearly. For
dataset normalization, all of the previous literature
used MiniMax or Standard scaling function. Our
work use Quintile transform which give us better
results.

The aim of the research is to focus on analysis

and preprocess that we conduct on the CICIDS2017
dataset. Our purpose is to prepare the dataset to
train and test an Anomaly intrusion detection model
based on machine learning. A preprocess on the
dataset has an important effect on the detection rate
of the model. This trained model considered the
building block of a network intrusion detection
system. Contributions of the research in this work
are: Detecting faults and problems never explored
before in the CICIDS2017 and finding solutions for
them. The research includes features analysis, their
importance in detecting the attack, find the high
correlated between features and study the balancing
in the data set. In addition, the best normalization

Journal of Theoretical and Applied Information Technology
15th September 2019. Vol.97. No 17

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

4522

function of the data. We evaluated the performance
of the optimized dataset by using machine-learning
algorithm multilayer perceptron (MLP). The rest of
this paper is organized as follows: Section 2
presents the analysis solutions and optimization of
dataset in two stages. First, the solutions to clean up
and remove shortcoming in the dataset are
presented followed by analysis stage to select the
best features and produce optimized dataset.
Section 3 shows the model setting and metrics used
to measure Performance of the new featured dataset
using MLP machine-learning algorithm . Section 4
presents the results and discussion and finally
section 5 shows the conclusions.

2. ANALYSIS AND OPTIMIZATION OF
CICIDS2017 DATASET

The Hardwar and software tools used in

this research are CPU: Intel ® Core ™ i5-2450M
CPU @ 2.5 GHz, RAM 8 GB OS: Windows 10 64-
bit, Programming Language: Python. Libraries
used: python package for scientific computing
Numpy [17], machine-learning library Scikit-learn
[18], Python Data Analysis Library Pandas [19],
Python Deep Learning library Keras and Tensor
flow [20], and python dataset balancing library
IMBLEARN [21], Figure 1 shows overall process
during this research.

2.1 Preparing the Dataset for Machine Learning

 The machine learning file of the
CICIDS2017 dataset (MachineLearningCSV.zip)
downloaded from [2], the zipped file contains eight
CSV files that represent the profile of the network
traffic for five days, which includes normal and
attack traffic for each day. After reading all the files
in the analysis environment using Pandas, the
details of the normal and attack traffic records for
each File are shown in Table 2. The dataset shape
in terms of the number of records and number of
features was as follows, 2830743 rows, 78 feature
Columns, 1 label Column.

Referring to Table 2, it is noted that the data set
contains a number of records with null values.
Machine learning algorithms do not consume null
values. Since these values represent a small
percentage of the number of records associated with
each attack. Therefore, we delete those records
from the data set.

The following Pandas library commands illustrate
the operation of reading, viewing and cleaning one
of the eight files:

Read the file in a Bot dataframe:

 import pandas as pd

Bot=pd.read_csv
("F:\MachineLearningCVE\Friday-WorkingHours-
Morning.pcap_ISCX.csv")

The following command view information about

columns in the Bot data farm:

Bot.info ()

Part of the output is shown in Table 3. We notice

the file contain 79 columns the label column is an
object type and the rest is of the numerical, float or
integer. The numbers of records are 191033. The
following command counts the label column
values:

Bot['Label'].value_counts()

Output:
BENIGN 189067
Bot 1966

The file contains 189067 record of BENIGN

label and 1966 records of Bot label. To search for
columns of Null values in the Bot data frame, we
run the command:

null_columns=Bot.columns[Bot.isnull().any()]
Bot[null_columns].isnull().sum()

Output:

FlowBytesPs 122
FlowPacketsPs 122
dtype: int64

The file has two columns FlowBytesPs and

FlowPacketsPs with 122 values of Null in each. To
see if the null values are in the witch label record
we run the command:

 Nullvalues=Bot[Bot.isnull().any(1)]
 Nullvalues['Label'].value_counts()

Output:

BENIGN 112
Bot 10
The output indicate that there is 112 records of

records that have Null values with label of
BENIGN ,while there is 10 records of records that

Journal of Theoretical and Applied Information Technology
15th September 2019. Vol.97. No 17

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

4523

have null values with label of Bot. To delete any
record have a Null values we run the command:

Bot=Bot.dropna(axis=0, how='any')

The same operations are applied to all

files. Then we merge all files to form a dataset for
all attacks, by run the following commands:

AllAttacks=pd.concat([bot,ddos,dosH,infilt,ports
,ssh,web,benign],ignore_index=True)

Then the dataset shape becomes 2827876 rows,

78 feature Columns, 1 label Column. The
distribution of records by traffic type in the data set
shown in Table 4.

Table 4: Traffic flow type Distribution
Attack type Record

Count
BENIGN
DoS Hulk
PortScan
DdoS
DoS GoldenEye
FTP-Patator
SSH-Patator
DoS slowloris
DoS Slowhttptest
Bot
Web Attack-Brute Force
Web Attack-XSS
Infiltration
Web Attack-Sql Injection
Heartbleed

2271320
230124
158804
128025
10293
7935
5897
5796
5499
1956
1507
652
36
21
11

Total 2827876

From Table 4, it is noted that the data set

is imbalanced, as the number of normal traffic
records is very large compared to other records of
attacks, and the existence of a few records of some
types of attacks. Many records for one class make
the machine-learning model to bias to that class,
while little records make the machine-learning
model learn nothing about that class. To solve the
problem of imbalance, the normal traffic records
(BENIGN) is downsampled to 250000 records by
using RandomUnderSampler a python algorithm in
Imblearn balancing library. In addition, in order to
increase the sensitivity of the classifier to detect
attacks with few records in multi-class
classification problems, the number of records for
the few attacks (Bot Web Attack-Brute Force Web
Attack-XSS Infiltration Web Attack-Sql Injection

Heartbleed) are increased so that minimum number
of records of any attack type is not less than 5000
records. This is done using SMOTE (Synthetic
Minority Over-sampling Technique), a python
algorithm in Imblearn balancing library, which do
upsample (generate new samples) from few records
based on the n-nearest neighbor. The semi-balanced
dataset becomes as shown in Table 5. After semi-
balancing, the data set shape becomes as follows:
832,373 rows, 78 feature columns, 1 label Column.

Table 5: Semi-balanced dataset

Attack type Record
Count

BENIGN
DoS Hulk
PortScan
DDoS
DoS GoldenEye
FTP-Patator
SSH-Patator
DoS slowloris
DoS Slowhttptest
Bot
Web Attack-Brute Force
Web Attack- XSS
Infiltration
Web Attack-Sql Injection
Heartbleed

250000
230124
158804
128025
10293
7935
5897
5796
5499
5000
5000
5000
5000
5000
5000

Total 832,373

The following commands illustrate the

process of downsampling. We import the balancing
library then define a dictionary with the number of
records for each class:

from imblearn.under_sampling import
RandomUnderSampler

Define a dictionary:

Down-Dic = {
 'BENIGN' : 250000,
'DoS Hulk' : 230124,
'PortScan' : 158804,
'DDoS' : 128025,
'DoS GoldenEye' : 10293,
'FTP-Patator' : 7935,
'SSH-Patator' : 5897,
'DoS slowloris' : 5796,
'DoS Slowhttptest' : 5499,

'Bot' : 1956,
'Web Attack-Brute Force’:1507,
'Web Attack-XSS' : 652,
'Infiltration' : 36,

Journal of Theoretical and Applied Information Technology
15th September 2019. Vol.97. No 17

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

4524

'Web Attack-Sql Injection' :21,
'Heartbleed' : 11,}

We create an instance of the downsampler
according to the defined dictionary above:

DownSamp=RandomUnderSampler
(sampling_strategy=Down-Dic,
random_state=0)

The labels are moved from the dataset in a

separate list. Then the features data frame and the
labels list become an input to the downsample. The
output is a new feature data frame and new label
list.

AllAttacks,AllAttacks_lable=DownSamp.fit_
sample(AllAttacks,AllAttacks_lable)

The upsampling is conducted in the same

way, but the up sampler now is SMOTE and the
dictionary is defend as follow:

UP_DIC= {
 'BENIGN' : 250000,
'DoS Hulk' : 230124,
'PortScan' : 158804,
'DDoS' : 128025,
'DoS GoldenEye' : 10293,
'FTP-Patator' : 7935,
'SSH-Patator' : 5897,
'DoS slowloris' : 5796,
'DoS Slowhttptest' : 5499,
'Bot' : 5000,
'Web Attack-Brute Force': 5000,
'Web Attack-XSS' : 5000,
'Infiltration' : 5000,
'Web Attack-Sql Injection' : 5000,
'Heartbleed' : 5000,}

2.2 Features Analysis
 The data set contains 78 features in
addition to one feature representing the traffic
category (label). By viewing some basic statistical
details of those data set features, 8 features were
detected to have zero values, as shown in Table 6.
That means those features have no effect on any
calculation on the data set. Therefore, we removed
them from the data set, the shape of the data set
become 832,373 rows, 70 feature Columns, 1 label
Column.
The values in Table 6 is obtained by following
command: (that give us a statistical description
about the dataset, such as maximum, minimum,
standard deviation of each feature)

AllAttacks. Describe()

 To analysis the remaining 70 features. we
make feature reduction, two methods are used. The
first is to find the importance of each feature in the
dataset as a whole, through The Random Forest
Algorithm. One of the main benefits of decision
trees is interpretability. We can compare and
visualize the relative importance of each feature.
Features with splits that have a greater mean
decrease in impurity. In scikit-learn machine
learnning library, Random Forests can report the
relative importance of each feature [22]. Where the
algorithm gives the number between 0 and 1 for
each feature and the total importance of all features
is equal to 1, as shown in Figure 2.

The following commands illustrate the

process to find feature importance by Random
Forest classifier:

Load libraries.

From sklearn.ensemble import
RandomForestClassifier

 Create an instance of the classifier.

RF =
RandomForestClassifier(random_state=0,
n_jobs=-1)

RFmodel=RF.fit(AllAttacks,AllAttacks_labl)

Calculate feature importances.

Importances=RFmodel.feature_importance_

 The Importance variable is an array of the

importance values of each feature in the data set.
The following are some of the array values.

array([5.30263130e-02,
1.45516598e-02, 1.25230448e-02,
1.14137657e-02,2.57068785e-02,
2.35771754e-02, 1.87165275e-02,
4.19273221e-04,2.73702987e-02
,.....,5.49352364e-
04,8.77259231e-04, 2.03702912e-
02, 5.41161681e-05])

From Figure 2, we notice less important

features, we put a threshold any features
importance less than 0.001 is removed from the
data set,where 14 features are candidate to remove

Journal of Theoretical and Applied Information Technology
15th September 2019. Vol.97. No 17

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

4525

they are: (BwdIATMin, ActiveMax,
URGFlagCount, ActiveMean, FwdPSHFlags,
FINFlagCount, SYNFlagCount,
BwdPacketLengthMin, IdleStd, FwdURGFlags,
CWEFlagCount, ActiveStd, ECEFlagCount,
RSTFlagCount).

The dataset shape becomes as follows,
832,373 rows, 56 feature Columns, 1 label Column.

The second feature reduction method is to
find the highly correlation between the features.
Whenever the highly correlation between any two
features is strong either directly or inversely, then
one of them is considered redundant and preferably
deleted. The correlation function [23] is used to
find the correlation between the features. In
addition, we put a threshold, if the correlation
between two features is greater than (0.95) is
considered highly correlation and one of the
features should be removed. The Highly Correlated
20 Features (redundant) candidate to drop are:
(TotalBackwardPackets,
TotalLengthofBwdPackets,
BwdPacketLengthMean, BwdPacketLengthStd,
FwdIATTotal, FwdIATMax, FwdPacketsPs,
MaxPacketLength, PacketLengthStd,
AveragePacketSize, AvgFwdSegmentSize,
AvgBwdSegmentSize, FwdHeaderLength,
SubflowFwdPackets, SubflowFwdBytes,
SubflowBwdPackets, SubflowBwdBytes,
IdleMean, IdleMax, IdleMin).

The remaining 36 features are:
(DestinationPort, FlowDuration, TotalFwdPackets,
TotalLengthofFwdPackets, FwdPacketLengthMax,
FwdPacketLengthMin, FwdPacketLengthMean,
FwdPacketLengthStd, BwdPacketLengthMax,
FlowBytesPs, FlowPacketsPs, FlowIATMean,
FlowIATStd, FlowIATMax, FlowIATMin,
FwdIATMean, FwdIATStd, FwdIATMin,
BwdIATTotal, BwdIATMean, BwdIATStd,
BwdIATMax, FwdHeaderLength,
BwdHeaderLength, BwdPacketsPs,
MinPacketLength, PacketLengthMean,
PacketLengthVariance, PSHFlagCount,
ACKFlagCount, DownPUpRatio,
InitWinBytesForward, InitWinBytesBackward,
ActDataPktFwd, MinSegSizeForward, ActiveMin).

The data set shape became as follows,
832,373 rows, 36 feature Columns, 1 label Column.

3. MODEL SETTING AND METRICS USED
TO MEASURE THE PERFORMANCE OF
THE NEW OPTIMIZED DATASET

normalization is required for any dataset

before applying any machine-learning algorithm we
try three different normalization functions to
choose the best one. In this, work, the process is
done by Separation of data set into training data
70% and test data 30%. We try to use Three
different normalization functions as follows:

a. Minimax or Unit Scaling: The aim of this

transformation is to convert the range of
a given feature into a scale that goes from
0 to 1. Given a feature f with a range
between fmin and fmax the
transformation is given by equation 1
[24].

 𝑓௦ௗ ൌ
ି

௫ି
 (1)

b. Standard scaling (z-Score Scaling): An

alternative method for scaling our features
consists of taking into account how far
away data points are from the mean. In
order to provide a comparable measure,
the transformation needed to carry out for
a feature f with mean µf and standard
deviation σf, is given by equation 2 [24].

 𝑓𝑧 _𝑠𝑐𝑜𝑟𝑒 ൌ
ିఓ

ఙ
 (2)

c. Quantile scaling: A quantile refers to
dividing a probability distribution into
areas of equal probability. For example
The median is a quantile; the median is
positioned in a probability distribution so
that precisely half of the data is lower than
the median and half of the data is above
the median. The median cuts a distribution
into two equal areas and so it is referred to
as 2-quantile. The median as the 0.5
quantile, with the ability that the
percentage 0.5 (half) will be beneath the
median and 0.5 will be above it. Equation
3 estimates the ith observation:

𝑖𝑡ℎ 𝑜𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛 ൌ 𝑞 ሺ𝑛 1ሻ (3)

Where q is the quantile, n is the number of
items in a dataset [25].

Journal of Theoretical and Applied Information Technology
15th September 2019. Vol.97. No 17

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

4526

To evaluate the performance of the three
normalization functions, we used the dataset of 36
features and comparing the performance of a
machine learning MLP model. The model is
implemented in keras library; the structure of the
model is shown in Figure 3.

Figure 3 the structure of the MPL model

The first layer is the input layer with nodes

equal to the number of features in the dataset,
followed by three dense layers with Relu activation
function, and the final layer for classification of 15-
class type with Softmax activation function
corresponding to 15 categories of traffic types. The
setting of hyper parameters for the model are:
optimizer: Adam, Losses function:
Categorical_Crossentropy, epochs: 70, batch_size:
128, number of class: 15, as shown in the Table 7.

Table 7: Classes name

Class No. Class Name
 class0 BENIGN
class1 Bot
class2 DDoS
class3 DoS GoldenEye
class4 DoS Hulk
class5 DoS Slowhttptest
class6 DoS slowloris
class7 FTP-Patator
class8 Heartbleed
class9 Infiltration
class10 PortScan

class11 SSH-Patator
class12 Web Attack-Brute Force
class13 Web Attack-Sql Injection
class14 Web Attack-XSS

 The 3 normalization functions have been

evaluated each with separate running of 70 epoch
of the model, and then the best normalization
function has been chosen based on the metrics
below. Then the two datasets (36 features dataset,
and 23 dataset features extracted by the authors in
[3]) are evaluated using the best normalization
function, each with separate running of the same
model except the input layer to accommodate each
feature number. The metrics used for evaluation
multi-class classifier are:

a. Confutation matrix: For binary classifier the

confusion matrix consist of four items they
are, True Positives (TP): the classifier predict
the true positive label as positive. True
Negatives (TN): the classifier predicts the true
negative label as negative. False Positives
(FP): the classifier predicts the true negative
label as positive. False Negatives (FN): the
classifier predicts the true positive label as
negative and arranged in a matrix as shown in
Table 8.

Table 8: Confutation matrix

Confutation
matrix

prediction

positive negative

T
ar

ge
t

positive TP FN

negative FP TN

b. Accuracy Precision Recall and F1-Score:

From the confusion matrix, the following
Metrics can be computed corresponding to the
equations 4,5,6,7 below [26]:

 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 ൌ
் ା ்ே

் ା ்ே ା ிே ା ி
 (4)

 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ൌ
்

் ା ி
 (5)

 𝑅𝑒𝑐𝑎𝑙𝑙 ൌ
்

் ା ிே
 (6)

 𝐹1 𝑠𝑐𝑜𝑟𝑒 ൌ 2 ∗
୮୰ୣୡ୧ୱ୧୭୬ ୰ୣୡୟ୪୪

୮୰ୣୡ୧ୱ୧୭୬ ା ୰ୣୡୟ୪୪
 (7)

Journal of Theoretical and Applied Information Technology
15th September 2019. Vol.97. No 17

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

4527

c. AUC - ROC curve: A receiver operating
characteristic curve (ROC) is a probability
curve, and the area under the curve (AUC)
represents degree or measure of separability. It
is one of the most important evaluation
metrics for testing the performance of any
classification model at different threshold
settings. It tells how much model is capable
of distinguishing between classes. Higher the
AUC better the model is at predicting 0s as 0s
and 1s as 1s, see Figure 4 [28].

Figure 4: AUC - ROC curve

4. RESULTS AND DISCUSSION

To find the best normalization function,

the classifier model is run with the three different
functions as mentioned above, and then the
accuracy and losses of the classifier are computed
as shown in Figure 5.

Figure 5: Scaling functions evaluation

In addition, F1-score of the classifier is

computed with the three scaling functions, the
result is shown in Figure 6.

According to the previous results, the

Quantile scaling function gave better result than the
two other functions, so it is the one used in our
classifier.

 The second step is to run the classifier
model and evaluate a metrics according to the
extracted 36 features dataset, and compare it to a
23- features dataset. The accuracy and losses of the
classifier computed using our 36-features optimized
data set and 23- features dataset, are summarized in
Table 9.

Table 9: Accuracy and losses for the two dataset
No. of
features

Accuracy losses

36 0.9927 0.0186

23 0.9886 0.0323

F1-score is computed for the classifier

using two datasets, the results are shown in Figure
7.

From Table 9 it is noticed that our
optimized dataset gave slightly better accuracy and
less loss than 23-features dataset. By observing the
results of Figure 7, it is noticed that the classifier
with 36-features optimized dataset gave more
accurate results than the results of 23-features
dataset in the case of the following attacks (Bot,
DoS Slowhttptest, FTP-Patator, SSH-Patator, Web
Attack brute-force).

Journal of Theoretical and Applied Information Technology
15th September 2019. Vol.97. No 17

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

4528

The confusion matrix for each class with
regard to 36 features and 23 features is shown in
Figure 8 and Figure 9 respectively. It is noticed that
the majority of the Web Attack-XSS and Web
Attack Brute-Force attacks samples are distributed
between those two attacks, which indicates that
those attacks have the same traffic properties, so
they can be merged into one attack type.

The ROC- AUC curve for each class with
36 features and 23 features is shown in Figures 10
and 11 respectively, the average of AUC values of
the 36 features dataset seemed to be slightly better
than 23 features dataset.

5. CONCLUSIONS

There is an increasing demand for a
reliable and real-world attacks dataset among
research community. In this research, we
investigated into a new intrusion dataset
CICIDS2017. The analysis of the data set
comprises of removing records of Null values,
remove features with zero values, conduct a semi-
balancing on the dataset to prevent biased to a large
data and detect little records attacks. The features
reduction process conducted by find the importance
of the features in the dataset and removes less
important features for classification and finds the
high association between the features then removes
the redundant features. The obtained result was a
dataset of 36 features. To check this result we
design an MLP model and split the dataset into
training and test sets. At this point, the dataset
needs to be normalized before feeding the model.
We investigated for the best normalization function
among MiniMax, standard, Quantile functions. To
choose the best normalization function we training
the MLP model 3 times each time using one
normalizing function and compare the performance
of the 3 classifiers on the test set and compute a
classification metrics for each model, that comprise
of accuracy, losses, F1-score, confusion matrix, and
Roc-Auc curve. The best normalization function
was the Quintile transform. Also, we compared the
performance of the obtained 36 features dataset
with a 23 features dataset, by training two MLP
models (with the same preprocessing and the
Quintile as a normalization function), one model on
36 features training set and the second on 23
features training set. Then we test the two models
each one with its own tested set. Finally, we
compute classification metrics for each model and
compare it. From this research, we conclude the
following results:

1. The CICIDS2017 dataset contains null values.

2. The CICIDS2017 dataset includes eight zero

value features(BwdIATMin, ActiveMax,
URGFlagCount, ActiveMean, FwdPSHFlags,
FINFlagCount, SYNFlagCount,
BwdPacketLengthMin, IdleStd,
FwdURGFlags, CWEFlagCount, ActiveStd,
ECEFlagCount, RSTFlagCount). The features
in the dataset are obtained by CICFlowMeter
packet capture application as stated by the
author of the data set [3], it needs to be revised
to see why the CICFlowMeter does not obtain
the values of this features. These features may
be significant to detect some attacks. This point
never explored before.

3. The dataset includes redundant features

detected with highly correlation function. The
highly correlated features mean the features are
redundant and contain the same information.
Also the CICFlowMeter need to be tuned for
redundant features.

4. The dataset includes less important features for

classify any attack identified by random forest
algorithm.

5. There is a trouble with the two attacks (Web

Attack-Brute Force Web Attack-XSS) the most
of the records of the two attacks classified as
Web Attack-XSS, as clear in the confusion
matrix of the two data sets, the trouble either
came from the similarity between the two
attacks or due to balancing algorithm. This
point needs to be more investigated.

6. A Quantile scaling function is the best

normalization function for this dataset, it gives
the best metric values of the losses, accuracy,
and F1-score compared to other scaling
functions. We conclude that not all the data set
is statistically the same. For each field of the
data, there is more relevant normalization
function for it. This point never explored
before.

7. We extracted 36-feature, the 36-features gave

the best result of losses, accuracy and F1-score
metrics in the multi-class classifier MPL model
compared to 23 features datasets.

As a future work, it is possible to work in

several directions, at one direction enhancing the

Journal of Theoretical and Applied Information Technology
15th September 2019. Vol.97. No 17

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

4529

current work by implementing various balancing
algorithm and investigate its effects on model
learning. Study the trouble with the two attacks
(Web Attack-Brute Force Web Attack-XSS). In
addition, applying deep learning algorithms on this
data set such as convolution and recurrent neural
networks. At another direction a new dataset CSE-
CIC-IDS2018 [2] dataset need to explored and
analyzed. This dataset is huge and needs more
hardware and computing resources to be analyzed.

REFRENCES:

[1] Gharib A, Sharafaldin I, Lashkari AH,

Ghorbani AA., “An Evaluation Framework
for Intrusion Detection Dataset”, International
Conference on Information Science and
Security (ICISS), 2016, 1-6.

[2] Search UNB [Internet]. University of New
Brunswick est.1785. [cited 2019May26].
Available from:
https://www.unb.ca/cic/datasets/ids-2017.html

[3] Sharafaldin I, Lashkari AH, Ghorbani AA.,
“Toward Generating a New Intrusion Detection
Dataset and Intrusion Traffic
Characterization”, Proceedings of the 4th
International Conference on Information
Systems Security and Privacy, 2018, 108-116.

[4] Hossen, S., Janagam A., “Analysis of Network
Intrusion Detection System with Machine
Learning Algorithms (Deep Reinforcement
Learning Algorithm)” [master’s thesis].
Karlskrona, Sweden: Faculty of Computing at
Blekinge Institute of Technology; 2018.

[5] Kostas, K., “Anomaly Detection in Networks
Using Machine Learning” [master’s thesis].
Colchester, UK: School of Computer Science
and Electronic Engineering, University of
Essex; 2018.

[6] Panigrahi R, Borah S., “A detailed analysis of
CICIDS2017 dataset for designing Intrusion
Detection Systems”, International Journal of
Engineering & Technology 7 (3.24), 2018,
479-482.

[7] Boukhamla A, Gaviro JC., “CICIDS2017
dataset: performance improvements and
validation as a robust intrusion detection
system testbed” [pdf]. 2018 [cited
2019May26]. Available from:
https://www.researchgate.net/publication/3277
98156_CICIDS2017_Dataset_Performance_Im
provements_and_Validation_as_a_Robust_Intr
usion_Detection_System_Testbed

[8] Mieden, P., “Implementation and evaluation of
secure and scalable anomaly-based network

intrusion detection” [bachelor thesis]. Munich:
the Ludwig maximilians university, institute
fur informatics; 2018.

[9] Pektaş A., Acarman T., “A deep learning
method to detect network intrusion through
flow‐based features”, International Journal of
Network Management 29(3), 2018, e2050.

[10] Vijayanand R, Devaraj D, Kannapiran B.,
“Intrusion Detection System For Wireless
Mesh Network Using Multiple Support Vector
Machine Classifiers With Genetic-Algorithm-
Based Feature Selection”, Computers &
Security (77), 2018, 304–314.

[11] Radford BJ, Richardson BD, Davis SE.,
“Sequence Aggregation Rules for Anomaly
Detection in Computer Network Traffic”,
arXiv preprint arXiv: 1805.03735, 2018.

[12] Lavrova D, Semyanov P, Shtyrkina A,
Zegzhda P., “Wavelet-Analysis Of Network
Traffic Time-Series For Detection Of Attacks
On Digital Production Infrastructure”, SHS
Web of Conferences, EDP Sciences (44), 2018,
00052.

[13] Watson, G., “A Comparison of Header and
Deep Packet Features When Detecting
Network Intrusions”, Technical Report,
University of Maryland: College Park, MD,
USA, 2018.

[14] Aksu D, Üstebay S, Aydin MA, Atmaca
T., “Intrusion Detection With Comparative
Analysis Of Supervised Learning Techniques
And Fisher Score Feature Selection
Algorithm”, International Symposium on
Computer and Information Sciences , Springer,
Cham , 2018, 141-149.

[15] Marir N, Wang H, Feng G, Li B, Jia M. ,
“Distributed Abnormal Behavior Detection
Approach Based On Deep Belief Network And
Ensemble Svm Using Spark”, IEEE Access
(6),2018,59657-71.

[16] Bansal, A., “DDR Scheme and LSTM

RNN Algorithm for Building an Efficient
IDS”, [Master’s Thesis]. Punjab, India: Thapar
Institute of Engineering and Technology; 2018.

[17] NumPy [Internet]. NumPy. [cited
2019May26]. Available from:
https://www.numpy.org/

[18] Learn [Internet]. scikit. [cited
2019May26]. Available from: https://scikit-
learn.org/stable/

[19] Python Data Analysis Library [Internet].
Pandas. [cited 2019May26]. Available from:
https://pandas.pydata.org/index.html

Journal of Theoretical and Applied Information Technology
15th September 2019. Vol.97. No 17

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

4530

[20] Keras: The Python Deep Learning library
[Internet]. Home - Keras Documentation.
[Cited 2019May26]. Available from:
https://keras.io/

[21] Lemaître G, Nogueira F, Aridas CK.,
“Imbalanced-learn: A Python Toolbox to
Tackle the Curse of Imbalanced Datasets in
Machine Learning”, The Journal of Machine
Learning Research 18(1), 2017, 559-63.

[22] Albon, Chris. Machine Learning with
Python Cookbook: Practical Solutions from
Preprocessing to Deep Learning. OReilly
Media, 2018.

[23] pandas.DataFrame.corr [Internet].
pandas.DataFrame.corr - pandas 0.25.1
documentation. Available from:
https://pandas.pydata.org/pandas-
docs/stable/reference/api/pandas.DataFrame.c
orr.html

[24] Rogel-Salazar J., “Data Science and
Analytics with Python”, Philadelphia, PA:
Chapman and Hall/CRC, 2018,161-163

[25] Quantile: Definition and How to Find
Them in Easy Steps [Internet]. Statistics How
To. 2018 [cited 2019May26]. Available from:
https://www.statisticshowto.datasciencecentral.
com/quantile-definition-find-easy-steps/

[26] Kelleher JD, Namee BM, DArcy A.
Fundamentals Of Machine Learning For
Predictive Data Analytics: Algorithms, Worked
Examples, And Case Studies. Cambridge
(Massachusetts): MIT Press, 2015.

[27] Understanding Categorical Cross-Entropy
Loss, Binary Cross-Entropy Loss, Softmax
Loss, Logistic Loss, Focal Loss and all those
confusing names. [cited 2019May26].
Available from:
https://gombru.github.io/2018/05/23/cross_entr
opy_loss/

[28] Narkhede S. Understanding AUC - ROC
Curve [Internet]. Towards Data Science.
Towards Data Science; 2018 [cited
2019May26]. Available from:
https://towardsdatascience.com/understanding-
auc-roc-curve-68b2303cc9c5

Journal of Theoretical and Applied Information Technology
15th September 2019. Vol.97. No 17

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

4531

Figure 1 Flowchart of Analysis and Optimization of CICIDS2017 Dataset

 Concatenate all
dataset files

 Remove zero
values features

 Feature important,
Random Forest :(removes
less important features
Threshold< 0.001)

Semi-balancing

 Remove Null
values records

 MLP model, multi-class classifier

Correlation: (remove
redundant features
Threshold >0.95)

 Minimax

8 files CICIDS2017
dataset (79 features)

 36 features
dataset

 Normalization

 Standard Quantile

 Model Evaluate evaluation (accuracy, losses,

F1score, Confusion Matrix, ROC-AUC curve)

 Model evaluation
(accuracy, losses, F1score)

MLP model, multi-class classifier

 Quantile

(Best scaling)

23
features
dataset

36
features
dataset

Journal of Theoretical and Applied Information Technology
15th September 2019. Vol.97. No 17

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

4532

Table 2 CICIDS2017 Dataset description
CICIDS2017 Dataset file name Attack type No. of

records
 per
Attack

No. of
null
records
Per
Attack

No. of
records
after
removing
the null
record

MachineLearningCVE\Friday-
WorkingHours-Afternoon
DDos.pcap_ISCX.csv

DdoS
BENIGN

128027
 97718

 2
32

128025
 97686

MachineLearningCVE\Friday-
WorkingHours-Afternoon
PortScan.pcap_ISCX.csv

PortScan
BENIGN

158930
127537

126
245

158804
127292

Machine Learning
CVE\FridayWorkingHours-
Morning.pcap_ISCX.csv

Bot
BENIGN

 1966
189067

10
112

 1956
188955

Machine Learning CVE\Monday-
WorkingHours.pcap_ISCX.csv

BENIGN

529918 437 529481

MachineLearningCVE\Thursday-
WorkingHours-Afternoon-
Infilteration.pcap_ISCX.csv

Infiltration
BENIGN

 36
288566

 0
207

 36
288359

Machine Learning CVE\Tuesday-
WorkingHours.pcap_ISCX.csv

FTP-Patator
SSH-Patator
BENIGN

 7938
 5897
432074

 3
 0
261

 7935
 5897
431813

Machine Learning
CVE\Wednesday-
workingHours.pcap_ISCX.csv

DoS Hulk
DoS Golden Eye
DoS slowloris
DoS Slowhttptest
Heartbleed
BENIGN

231073
 10293
 5796
 5499
 11
440031

949
 0
 0
 0
 0
348

230124
 10293
 5796
 5499
 11
439683

MachineLearningCVE\Thursday-
WorkingHours-Morning-
WebAttacks.pcap_ISCX.csv

WebAttack-BruteForce
WebAttack-XSS
WebAttack-SqlInjection
BENIGN

 1507
 652
 21
168186

 0
 0
 0
135

 1507
 652
 21
168051

Total records 2830743 2867 2827876

Journal of Theoretical and Applied Information Technology
15th September 2019. Vol.97. No 17

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

4533

Table 3 the output of the command Bot.info ()
Output

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 191033 entries, 0 to 191032
Data columns (total 79 columns):
DestinationPort 191033 non-null int64
FlowDuration 191033 non-null int64
TotalFwdPackets 191033 non-null int64
TotalBackwardPackets 191033 non-null int64
TotalLengthofFwdPackets 191033 non-null int64
TotalLengthofBwdPackets 191033 non-null int64
FwdPacketLengthMax 191033 non-null int64
FwdPacketLengthMin 191033 non-null int64
FwdPacketLengthMean 191033 non-null float64
FwdPacketLengthStd 191033 non-null float64
.
.
.
.
IdleMean 191033 non-null float64
IdleStd 191033 non-null float64
IdleMax 191033 non-null int64
IdleMin 191033 non-null int64
Label 191033 non-null object
dtypes: float64(24), int64(54), object(1)
memory usage: 115.1+ MB

Table 6: Features with zero values

BwdPSHFl
ags

BwdURGFl
ags

FwdAvgBytes
PBulk

FwdAvgPac
ketsPBulk

FwdAvgB
ulkRate

BwdAvgBytes
PBulk

BwdAvgPa
cketsPBulk

BwdAvgB
ulkRate

count 832,373 832,373 832,373 832,373 832,373 832,373 832,373 832,373

mean 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Std 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

min 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

25% 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

50% 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

75% 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

max 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Journal of Theoretical and Applied Information Technology
15th September 2019. Vol.97. No 17

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

4534

Figure 2 Features importance

Journal of Theoretical and Applied Information Technology
15th September 2019. Vol.97. No 17

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

4535

Figure 6: F1-score of multi class classifier with different scaling functions

Figure 7: F1-score for the two datasets

Journal of Theoretical and Applied Information Technology
15th September 2019. Vol.97. No 17

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

4536

Figure 8: Confusion matrix of 36 features

Figure 9: Confusion matrix of 23 features

Journal of Theoretical and Applied Information Technology
15th September 2019. Vol.97. No 17

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

4537

Figure 10: AUC - ROC curve of 36 features

Figure 11: AUC - ROC curve of 23 features

