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ABSTRACT 
 

In this paper we performed a mathematical study of an SEIR epidemic model on dynamical network. We 
propose a mathematical SEIR model that consider Watts-Strogatz type complex network that involve 
contact among individuals. The stability conditions are obtained by using the Lyapunov function, and 
interpreted using a new threshold noted Ks. In order to show the effect of the network structure on the 
disease transmission and its asymptotic behavior. Using an algorithm programmed in R, a numerical 
simulation is presented to illustrate the influence of the small world network properties on the spreading of 
the disease in our model. This simulation can be used to determine the statute of different diseases in a 
region using data in this region and the corresponding parameters of the infectious diseases. 

Keywords: SEIR Epidemic Model, Complex Network, Lyapunov Function, Global Stability, Infectious 
Diseases. 

 
1. INTRODUCTION  
 

    Mathematical epidemiology has a long history 
in the study of infectious diseases. Starting with 
daniel bernoulli in 1760 when he developed a 
model for the spread of smallpoxand and 
established a new analysis of smallpox mortality 
and the benefits inoculation to prevent it [1]. Then 
continuing with Ross, Hamer, Mc kendrick and  
Kermack who established the foundations of the 
epidemiology approach based on compartmental 
models, between 1900 and 1935 [4]. 

In 1911, Ross gived the first compartmental 
model using differential equations to describe the 
dynamics of malaria [15], where he has divided  the  
population into two compartments S the susceptible 
and R  the recovered individuals, and used the 
concept of threshold elementarily, without naming 
it. This notion was later established by Kermack 
and Mc Kendrick in 1927  in their famous threshold 
theorem [9]. This threshold is represented by the 
basic reproduction number R0, which is interpreted 
as the average number of new cases generated by an 
infectious subject in a susceptible population.  

The standard representation of a compartmental 
model is a graph . The vertices represent the 
compartments and the arcs are weighted by the 
fractional transfer functions. Nodes are often 
represented by rectangles, circles, or dots. 

Several models exist in the literature modeling 
the various statues of the disease during the 
infection. The population may be divided according 
to the nature of the disease into several 
compartments representing the different steps of 
infection, for example SI (susceptible, infected), 
SIR (susceptible, infected, removed), SEIR 
(susceptible, exposed, infected, removed), etc. The 
simplest epidemic models suppose that the 
population is homogeneous. So that, each individual 
has the same probability of contact with any other 
individual in the graph .  This hypothesis is not 
realistic.  

Lately, models gained an increasing level of 
complexity[24,25,26,27,28]. Many authors were 
interested in stochastic models [8,16,7] and other in 
the effect of the network structure of contacts on the 
disease transmission [20,12,2,22]. In order to be 
more realistic and predictive. 

Including the effect of networks in classical 
models, helps to study the impact of spatial 
structure and serve to better understand the 
structure of social contacts. In networks the 
members of population are modeled  

as the nodes, and the edges represent the contact 
between people that could potentially lead to a 
transmission of the disease. Individuals are linked 
with a probability p. For regular network p=0 the 
lattice is highly clustered, and for random network 
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p=1 the lattice is poorly clustered [13]. The small 
world (SW) network is between them neither  
highly  clustered like regular nor poorly clustered 
like random network, and in this network infectious 
diseases spread more easily [23]. 

The aim of this article is to study the spreading  
of  infectious disease  in the small-world  network, 
in order to better understand the structure of social 
contact networks and their role in epidemiology. 
Many authors have been interested in SW networks 
:   Samaki and Kaski have studied the SIR model in 
SW [19];  Han studied the SI model  disease 
spreading with epidemic alert on SW [5]; Liu and 
Xiao studied the local stability of SEIR in SW [12]; 
Wang Cao Alsaedi and Ahmad  considering 
infection across the edge on random networks [22]. 

In this work, we study the stability of the SEIR 
model in SW. We prove the global stability using a 
Lyapunov function.  We give a new expression of   
the threshold which involves the degree of 
distribution of the SW. Which leads us to propose 
an equivalent threshold that will show the influence 
of social contact in the disease spreading on small 
world.  

2.         MODEL FORMULATION 
 

The total population at time t, denoted by 
N(t), is subdivided into four disjoint classes S(t), 
E(t), I(t) and R(t). With S(t) denoting the number of 
susceptible individuals at time t, E (t) the number 
exposed of individuals, I(t) the number of infective 
individuals, and R(t) the number of recovered 
individuals, the model takes the form, 

 

 
 
With :  
µ : Birth and death rate proportional to total 
population N,  
α : Rate of transmission of the disease, 
β : Rate of exposed individuals who become 
infectious, 
γ : Recovery rate. 
 
In the following we note: a = µ+β and b = µ+γ. 
From the system (1) we have : 

 
 
 
 
 
 
 

Where :   
 
s(t)=S(t)/N, e(t)=E(t)/N, i(t)=I(t)/N and 
r(t)=R(t)/N indicating the density of S(t), E(t), I(t) 
and R(t) respectively.  
The term αN s(t) implies that all the infectious can 
contact all the susceptibles, in other words the 
graph modeling the population is completely 
connected, In the Small world complex network 
[23], of which each node has  <k> links on the 
average, the assumption of complete connection 
seems unreasonable, hence the interest of 
implementing the small world network in the 
previous model.  
 
2.1   Small world complex network  
 
A complex network is a set of nodes and links 
linking them to each other. Different types of 
networks are defined according to the nature of the 
nodes and the links fig (b), (c) and (d). In social 
networks, nodes, also called network actors, can 
represent individuals, organizations, or groups of 
individuals and the links represent the interactions 
or social relations between the actors of the 
network: kinship, collaboration between businesses, 
sexual relations. 
The small world complex network is between the 
regular network and the random network. 
The small world network is closer to reality. The 
nodes in this network are linking between each 
others with a probability p with (0 < p < 1) fig (e).  
It is a network within which the propagation of 
information is faster, while retaining certain 
properties of conventional networks. Moreover, 
between any pair of vertices, there is a very short 
path that can be found easily. In this paper, we are 
interested in this model. One of the parameters 
characterizing the network is < k > the average 
degree of distribution and which represents the 
average number of neighbors an individual can 
have in the network. 
Several authors were interested in the 
epidemiological modeling in the complex networks 
in the works. They consider that the contacts in 
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network are random. So in the equations of 
evolutions they introduce the degree of distribution 
of the law between nodes noted by < k > . This 
modeling is more realistic because the connection 
between nodes is not sure . < k > is the average of 
this distribution law. 
 

 

 
(a) SEI- small world model 

 
Hence the interest of replacing the term αN s(t) 
with α<k>s(t), where <k> is the average degree of 
distibution [13], that represent the average number 
of neighbors that an individual can have in the 
population [14,10]: 

 
 
 
 
 
 
 
 
 

Further, unlike in the aforementioned modeling 
studies, detailed rigorous mathematical analysis of 
the model (3) represented in figure (a) will be 
provided. 
 
 
 

 
 

(b) Regular model 

 

 
 

(c) Small world model  
 
 

 
 

(d) Random model 
 
 

 
 
 

(e) Watts and Strogatz model. From a regular 
network to a random network, where random 
rewiring of some edges in a regular network 
produces a small world network with high 
clustering coefficient and low average path length 
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2.2 Basic Properties 
 
        Our model monitors human populations, so all 
its associated parameters must be nonnegative. 
Further, the following nonnegative result holds. 

 
Theorem 2.1. 
 
Let the initial data for the model be positive  
s(0) ≥ 0, e(0) ≥ 0, i(0) ≥ 0 and r(0) ≥ 0, then the 
variables of the model s(t), e(t), i(t) and r(t) will 
remain positive for all solutions of system (3) for 
all t>0. 
 
Proof. 
Let be 
T=sup{τ ≥ 0 |∀ 0 ≤ t ≤ τ such that s(t) ≥ 0, e(t) ≥ 0, 
i(t) ≥ 0, r(t) ≥ 0}. Let’s prove that T=+∞. 
 
Suppose that  0< T < +∞ then by the continuity of 
solutions we will have : s(T)=0 or i(T)=0 or e(T)=0 
or r(T)=0. If s(T)=0 then : 
 

s(T)=0=>
𝒅𝒔(𝑻)

𝒅𝒕
= 𝐥𝐢𝐦

𝒕→𝑻ି

𝒔(𝑻)ି𝒔(𝒕)

𝑻ି𝒕
= 𝐥𝐢𝐦

𝒕→𝑻ି

ି𝒔(𝒕)

𝑻ି𝒕
 ≤ 0 

 
But from the first equation of the system (3) we 

have 
𝒅𝒔(𝑻)

𝒅𝒕
 = µ > 0. Similar proof for e(t), i(t) and 

r(t). So T could not be finite, hence, all solutions of 
model (3) remain positive for all time t > 0 as 
required. This concludes the proof. 
 
2.3 The invariant set  
 
        Since the population is constant so:   
         s + e + i + r =1      i.e.    r = 1-s-e-i 
And solutions are positive as shown in the theorem 
2.1, so we are interest in working only in the 
positive orthant. 
 
Proposition 2.2. 
 
        The closet set G is positively invariant, such 
that: 
 
 

G={(s,e,i,r) ∈ 𝑹ା
𝟑 such that s+e+i+r ≤ 1}   

 
 
Proof. 
Let be H: Rା

ଷ     R defined as: 
  

H(s , e , i) = s + e + i – 1 
So for all, 

(s,e,i) ∈ H-1(0)={(s,e,i) ∈ 𝐑ା
𝟑 ∶ 𝐇(𝐬, 𝐞, 𝐢) = 𝟎}, 

we have:  

<𝛁H(s,e,i),(s’,e’,i’)>=<(1,1,1),(
𝐝

𝐝𝐭
s, 

𝐝

𝐝𝐭
e, 

𝐝

𝐝𝐭
i)>=-γi≤0. 

 
Therefore, according to barrier's theorem [17, 6],  
G is a positive invariant set for the system (3). 
 
3. STABILITY OF THE DISEASE FREE 
EQUILIBRIUM 
 
       The system has an unique Disease Free 
Equilibrium (DFE) given by: 

 
                  E0=(s*,e* ,i*)=(1,0,0)             (4) 
 

 
3.1   Local stability of Disease Free Equilibirum 
 

     In this section we will study the local stability 
of Disease Free Equilibrium. 

 
Theorem 3.1. 
  
The Disease Free Equilibrium E0 of the model (3), 
given by (4), is locally asymptotically stable (LAS) 
if  R0< 1. 
  
Proof. 
The local stability of the DFE is studied using the 
Poincaré-Lyapunov theorem [3], we first start by 
calculating the R0 using the next generation matrix 
FV-1 [21]: 

  R0=ρ(FV-1) 
 

Where F is the nonnegative matrix of the new 
infection terms, and V is the M-matrix of the 
transition terms associated with the model (3), so: 
 

 
              
 
 

Hence the basic reproduction number is given by: 

           R0=α<k>
𝜷

𝒂𝒃
                (5) 

 
According to the Poincaré-Lyapunov theorem [3], 
if all the eigenvalues of the jacobian matrix of the 
system in the DFE, have a real part strictly 
negative, then DFE is (LAS) Locally 
Asymptotically Stable. 
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(9) 

The jacobian matrix of the system is given by:  
 
 
 
 
 
 
 
The jacobian matrix of the system in the DFE is 
given by: 

 
 
 
 
 
 

The characteristic equation: 
 
  | J(E0)-λI |=0   i.e. (a+λ)(b+λ)-βα<k>=0 
 
It is clear that this characteristic equation has one 
positive real root if R0>1, and two negative real 
roots or two complex conjugate real roots with 
negative real parts if R0<1. This concludes the 
proof. 
 
 
3.2   Global stability of Disease Free Equilibirum 
 
        To investigate the global stability of the DFE 
we use the Lyapunov method. 
If a V function is globally positive defined, 
Radially unbounded and its temporal derivative is 
globally negative, 

𝑽̇(x) < 0 for all x ≠ x0 
Then the equilibrium x0 is globally stable. 
In our model the proposed Lyapunov function is: 
 

V(s,e,i)=
𝟏

𝒂
(s-s*-s*ln(

𝒔

𝒔∗
))+

𝟏

𝒂
 e+ 

𝟏 

𝜷
 i          

 
Theorem 3.2. 
 
Assume R0<1, Then the Disease-free equilibrium of 
the model (3), given by (4), is Globally 
Asymptotically Stable on G. 
 
Proof. 
Consider the following candidate for a Lyapunov 
function on G: 
 

   V(s,e,i)=
𝟏

𝒂
(s-s*-s*ln(

𝒔

𝒔∗
))+

𝟏

𝒂
 e+ 

𝟏 

𝜷
 i         (7)   

     

At DFE, E0, it is clear that V(E0)=0. To establish 
that V > 0 for all (s,e,i) ≠ (1,0,0), it is sufficient to 
notice that: 
 
𝟏

 𝒂
(s-s*-s*ln(

𝒔

𝒔∗
))> 0 i.e. 

𝒔∗

𝒂
(

𝒔

𝒔∗
-1-ln(

𝒔

𝒔∗
)) > 0 

 
 

Since the function f(x)= x-1-lnx reaches its global 
minimum in x=1 and f(1)=0 then f(x)>0 for all  
x ≠1 hence: 
 
         V (s,e,i)> 0 for all (s,e,i) ≠ (1,0,0) 
 
Furthermore, it is also clear that V is Radially 
unbounded: 
 
          V(s,e,i)       ∞ when ||x||          ∞ 
 
The temporal derivative of V is given by: 
 

      𝑽̇(s,e,i)= 
𝟏

𝒂
(1- 

𝒔∗

𝒔
) 

𝒅

𝒅𝒕
 s+ 

𝟏

𝒂

𝒅

𝒅𝒕
 e+ 

𝟏

 𝜷

𝒅

𝒅𝒕
 i         (8) 

 
Let's prove that the temporal derivative of V is 
strictly negative for all (s,e,i) ∈ G and  
(s,e,i) ≠(1,0,0). 
 
Hence, if R0 < 1 we have 𝑽̇ ≤0 and the set 
L={(s,e,i) ∈ G such that   𝑽(̇ s,e,i)=0} is reduced to 
E0. 
Therefore, according to the Lyapunov theorem, the 
Disease Free Equilibrium is Globally 
Asymptotically Stable on G when R0 <1. 
 
4. STABILITY OF THE ENDEMIC 
EQUILIBRIUM 
 
        In this section we are going to explore the 
local and the global stability of the endemic 
equilibrium. Since solutions are positive as shown 
in the theorem 2.1, the following result holds. 
 
Proposition 4.1.  

If R0>1, then the system (3) has a unique endemic 

equilibrium. 
The Endemic Equilibrium (EE) is given by:  
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4.1  Local stability of the Endemic Equilibrium 
 
In this section we investigate the local stability of 
the endemic equilibrium. 
 
 
Theorem 4.2. 
 
The Endemic Equilibrium E1 of the model (3), 
given by (9), is locally asymptotically stable (LAS) 
if R0 > 1.  
 
 
Proof. 
As done previously in the proof of the theorem 3.1, 
we start by calculating the jacobian matrix of the 
system in the EE. 
 
 
 
 
 
 
 
The characteristic polynomial: 
 
P(λ)=λ3+λ2(µR0+a+b)+λµR0(a+b)+µab(R0-1) 

 
Using the Routh-Hurwitz Criteria [11], to prove the 
negativity of the eigenvalues, it is sufficient to 
verify that: 
1)- (µR0+a+b)>0, 
2)- µab(R0-1)>0, 
3)- (µR0+a+b)µR0(a+b)> µab(R0-1). 
 
The first condition is already verified, the second 
one is verified if R0>1, and for the third inequality 
we have: 
 
(µR0+a+b)R0(a+b)-ab(R0-1)=R0(a2+b2+ab+µ)+ab 
 
Which is positive, hence, if R0>1 all the roots of the 
characteristic polynomial are negative or have 
negative real parts. This concludes the proof. 
 
4.2  Global stability of the Endemic Equilibrium 
 
Lemma 4.3.  
Let x1, . . . ,xn be n positive numbers.  

 Then their arithmetic mean is greater than or equal 
to their geometric mean: 
 
Theorem 4.4.  
 
Assume R0 > 1. Then the Endemic Equilibrium of 
the model (3), given by (9), is Globally 
Asymptotically Stable. 
 
Proof. 
Consider the following candidate for a Lyapunov 
function on G. 
 
 

V(s,e,i)=s-s**-s**ln(
௦

௦∗∗
+e+e**-e**ln(

௘

௘∗∗
)+

µାఉ

ఉ
(i-i**-i**     

ln(
௜

௜∗∗
)))                                                              (10) 

 
Notice that V(s, e,i)=0 only for (s, e, i)=(s**,e**,,i**), 
for all (s,e,i) ≠(s**,e**,i**) we have V(s,e,i) > 0, and 
V(s,e,i) is radially unbounded. So the condition that 
remains to be proved is that the time derivative of 

V, is strictly negative for all  
(s, e, i) ≠ (s**, e**, i**):   
   
From the first equilibrium equation of the system    

(3), we have µ=α<k>s** i** +µs**. 

From the second equilibrium equation of the system 

(3), and the expression of the Endemic Equilibrium, 

 we obtain: 

 

Hence,  
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The two last terms are equal to zero, since from (9) 

s**α<k> = 
௔

ఉ
𝑏, and if we use the lemma 4.3. we 

will obtain the following inequality: 

 

 

Hence if R0 >1, the derivative 𝑉 ̇ is negative for all 

(s,e,i) ∈ 𝐺, and we have:  

 

And, 

 

 

If s=s** then 
ௗ௦

ௗ௧
= 0 so from the first equation of 

the system (3), we get i=i**, and from the equality 

above we conclude that e=e**, Therefore,  

 

if and only if,  

 
 
Hence according to the Lyapunov theorem, the 
Endemic Equilibrium is Globally Asymptotically 
Stable on G, GAS, when R0 >1. 
The basic reproduction number plays the role of a 
threshold, for epidemic appearances, this concept 
was used by Ross elementarily in his "mosquito 

theorem" [15] and afterwards 
by Kermack and McKendrick in their famous 
threshold theorem In 1927 [9]. In our paper we are 
going to use this famous concept to  find a 
threshold, that we note Ks, for the average degree 
distribution <k>, since this latter is proportional to 
the basic reproduction number as shown in the 
equation (eq 5). 

 
 

Then, 

 

 

Therefore  

Ks = 
𝒂𝒃

𝜶𝜷
 

can be used as threshold for the average degree of 
distribution, and the results established previously 
in theorem 3.2 and theorem 4.4 can be written as 
follows in the theorem 4.5. 
 
Theorem 4.5. 

If the average degree distribution <k> < 
𝒂𝒃

𝜶𝜷
 =Ks 

 then the Disease Free Equilibrium is Globally 

Asymptotically Stable. Else if < k > > 
௔௕

ఈఉ
  

then the Endemic Equilibrium is GAS. 
 
The quantity <k> measures the average number of 
neighbors in the Small-World network. 
Theorem(4.5) implies that the disease can be 

eliminated from the community if <k> < 
𝒂𝒃

𝜶𝜷
 , and it 

may be more practical for health decision makers to 
eradicate the disease and limit its spread. 
 
5. SIMULATION AND DISCUSSION 
 
In this section, we make a numerical simulation 
using R, to test how well the proposed model (3), 
may be applied in practice. From the stability 
analysis in Sections 3 and 4, we can notice that 
some factors, such as α and < k>, are key 
parameters in epidemic diffusion system. Since α is 
a parameter related to the disease, so it cannot be 
controlled, we decided to do a short sensitivity 
analysis for  <k>.  
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(b) Simulation of SEIR-Small World model with <k>=2 

 

  
(c) Simulation of SEIR-Small World model with < k >=3 
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(d) Simulation of SEIR-Small World model with < k >=4 

 
 

 

  
(e) Simulation of SEIR-Small World model with < k >=6 
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Holding all the other parameters fixed, except  that 
< k > takes on four different values, two greater 
than the threshold Ks and two less than this latter. 
To perform the simulation we used the 
following parameters in table1. 
 
Parameters Values  

µ 1 

α 0.17 

β 0.3 

γ 0.65 

Table 1 .Parameters values of SEIR-SW model 
 

For subfigures (a) and (b), when < k > is less than 
Ks, the disease disappears from the population, i.e. 
there is a stability of the DFE, contrary to the case of 
< k > greater than Ks where the disease spreads in 
the population as shown in the subfigures (c) and 
(d), and it corresponds to the results found 
previously (Theorem 4.5). This simulation transfers  
important information that is, self-quarantine and 
reducing the average number of neighbors in the 
society to less than the Ks, are effective strategies for 
controlling epidemic diffusion. 
 
6. CONCLUSION  
 
In this paper to have studied the spreading  of  
infectious disease  in the small-world  network, in 
order to better understand the structure of social 
contact networks and their role in epidemiology. 
We first studied the local and global stability of the 
Disease Free Equilibrium  
 
                  E0=(s*,e* ,i*)=(1,0,0)              
 
and the Endemic Equilibrium 
 

 
 
 of the SEIR  model within small world complex 
network, using the Lyapunov method, and 
expressed the results obtained using the average 
degree of distribution < k > of the network, and 
interpreted them according to a new threshold noted 
Ks. 

 
 If the average degree of distribution 
 < k > < Ks then DFE is GAS; 
  If the average degree of distribution 
 < k >  > Ks  then EE is GAS. 

These results show the influence of the social aspect 
and the evolution of the network in the propagation 
of the epidemics, and in their asymptotic behaviors. 
And represent an important tool in decision-making 
and in the development of control strategies.  
 
It implies that the disease can be eliminated from 

the community if <k> < 
𝒂𝒃

𝜶𝜷
 , and it may be more 

practical for health decision makers to eradicate the 
disease and limit its spread. However we can’t deny 
that this work has some limitations, such for 
modeling disease caused by more than one strain of 
pathogen, such as tuberculosis [30], HIV [31], 
dengue fever [32] and other sexually transmitted 
diseases, that requires to be modeled with SIR and 
SEIR multi-strains models.  
 
REFRENCES:  
 
 [1] Daniel Bernoulli. Essai d’une nouvelle analyse 

de la mortalité causée par la petite vérole et des 
avantages de l’inoculation pour la prévenir. 
Histoire de l’Acad. Roy. Sci.(Paris) avec Mém. 
des Math. et Phys. and Mém, 1760, pages 1–45. 

 [2] Martin Dottori and Gabriel Fabricius. Sir model 
on a dynamical network and the endemic state 
of an infectious disease. Physica A: Statistical 
Mechanics and its Applications, 2015, 434:25–
35. 

[3] Jean-Pierre Françoise. La théorie de la stabilité. 
Oscillations en biologie: Analyse qualitative et 
modèles, 2005, pages 27–51. 

[4] William Heaton Hamer. The Milroy lectures on 
epidemic disease in England: the evidence of 
variability and of persistency of type. Bedford 
Press, 1906. 

[5] Xiao-Pu Han. Disease spreading with epidemic 
alert on small-world networks. Physics Letters 
A, 2007, 365(1):1–5. 

 [6] A. Iggidr. An introduction to ODE. INRIA 
Nancy-Grand Est LMAM, UPV-Metz, 2012. 

[7] Chunyan Ji and Daqing Jiang. Threshold 
behaviour of a stochastic sir model. Applied 
Mathematical Modelling, 2014, 38(21):5067–
5079. 

 



Journal of Theoretical and Applied Information Technology 
31st August 2019. Vol.97. No 16 

 © 2005 – ongoing  JATIT & LLS   

 

ISSN: 1992-8645                                                                  www.jatit.org                                                      E-ISSN: 1817-3195 

 
4280 

 

[8] Daqing Jiang, Jiajia Yu, Chunyan Ji, and 
Ningzhong Shi. Asymptotic behavior of global 
positive solution to a stochastic sir model. 

Mathematical and Computer Modeling, 2011 
54(1):221–232. 

[9] William O Kermack and Anderson G 
McKendrick. A contribution to the 
mathematical theory of epidemics. In 
Proceedings of the Royal Society of London A: 
mathematical, physical and engineering 
sciences, volume 115, 1927, pages 700–721.  

[10] Guangzheng Li, Dinghua Shi, and Zhongzhi 
Zhang. The discrete-time sis model in small-
world networks. In Computer Science & 
Service System (CSSS), 2012 International 
Conference on IEEE, 2012 pages 1378–1380.  

[11] Michael Y Li and Liancheng Wang. A criterion 
for stability of matrices. Journal of 
mathematical analysis and applications, 1998, 
225(1):249–264. 

[12] Ming Liu and Yihong Xiao. Modeling and 
analysis of epidemic diffusion within small-
world network. Journal of Applied 
Mathematics, 2012. 

[13] Mark EJ Newman, Steven H Strogatz, and 
Duncan J Watts. Random graphs with arbitrary 
degree distributions and their applications. 
Physical review E, 2001, 64(2):026118. 

[14] Romualdo Pastor-Satorras and Alessandro 
Vespignani. Epidemic dynamics and endemic 
states in complex networks. Physical Review E, 
2001, 63(6):066117. 

[15] Ronald Ross. The prevention of malaria. John 
Murray; London, 1911. 

[16] Mohammad A Safi and Salisu M Garba. Global 
stability analysis of seir model with holling type 
II incidence function. Computational and 
mathematical methods in medicine,  2012. 

[17] G. Sallet. Introduction à l’Epidémiologie 
Mathématique et aux Systèmes Dynamiques. 
Equipe Projet INRIA MASAIE INRIA Nancy 
Grand Est, 2012. 

[18] Funda Samanlioglu, Ayse Humeyra Bilge, and 
Onder Ergonul. A susceptible-exposed-infected-
removed (seir) model for the 2009-2010 a/h1n1 
epidemic in istanbul. arXiv preprint 2012, 
arXiv:1205.2497. 

[19] Jari Saramäki and Kimmo Kaski. Modelling 
development of epidemics with dynamic small-
world networks. Journal of Theoretical Biology, 
234(3):413–421, 2005. 

[20] MM Telo da Gama and A Nunes. Epidemics in 
small world networks. The European Physical 
Journal BCondensed Matter and Complex 
Systems, 50(1):205–208, 2006. 

[21] Pauline Van den Driessche and James 
Watmough. Reproduction numbers and sub-
threshold endemic equilibria for compartmental 
models of disease transmission. Mathematical 
biosciences, 180(1):29–48, 2002. 

[22] Yi Wang, Jinde Cao, Ahmed Alsaedi, and 
Bashir Ahmad. Edge-based seir dynamics with 
or without infectious force in latent period on 
random networks. Communications in 
Nonlinear Science and Numerical Simulation, 
2017, 45:35–54. 

[23] Duncan J Watts and Steven H Strogatz. 
Collective dynamics of ‘small-world’networks. 
Nature, 1998, 393(6684):440–442. 

[24]  Na Yi, Qingling Zhang, Kun Mao, Dongmei 
Yang, and Qin Li. Analysis and control of 
an seir epidemic system with nonlinear 
transmission rate. Mathematical and computer 
modeling, 2009, 50(9-10):1498{1513. 

[25] Yi Wang, Jinde Cao, Ahmed Alsaedi, and 
Bashir Ahmad. Edge-based seir dynamics with 
or without infectious force in latent period on 
random networks. Communications in 
Nonlinear Science and Numerical Simulation, 
2017, 45:35–54. 

[26]  Syafruddin Side, Wahidah Sanusi, Muhammad 
Kasim Aidid, and Sahlan Sidjara. 
Global stability of sir and seir model for 
tuberculosis disease transmission with lya-
punov function method. Asian. J. Appl. Sci, 
2016, 9:87{96. 

[27] Azizeh Jabbari, Carlos Castillo-Chavez, 
Fereshteh Nazari, Baojun Song, and Hossein 
Kheiri. a two-strain tb model with multiple 
latent stages. Math. Biosci. Eng, 2016 
13:741{785. 

[28] Ebenezer Bonyah, Muhammad Altaf Khan, KO 
Okosun, and Saeed Islam. A theoretical model 
for zika virus transmission. PloS one, 2017, 
12(10):e0185540. 

[29] Bentaleb D, Amine S. Lyapunov function and 
global stability for a two-strain seir model with 
bilinear and non-monotone incidence. 
International Journal of Biomathematics 2019. 

[30] JE Golub, S Bur, WA Cronin, S Gange, N 
Baruch, GW Comstock, and RE Chaisson. 
Delayed tuberculosis diagnosis and tuberculosis 
transmission. The international journal of 
tuberculosis and lung disease, 2006, 
10(1):24{30. 



Journal of Theoretical and Applied Information Technology 
31st August 2019. Vol.97. No 16 

 © 2005 – ongoing  JATIT & LLS   

 

ISSN: 1992-8645                                                                  www.jatit.org                                                      E-ISSN: 1817-3195 

 
4281 

 

[31] Duane J Gubler. Epidemic dengue and dengue 
hemorrhagic fever: a global public health 
problem in the 21st century. In Emerging 
infections 1, pages 1{14. American Society of 
Microbiology, 1998. 

[32] Jason M Brenchley, David A Price, Timothy W 
Schacker, Tedi E Asher, Guido Silvestri, 
Srinivas Rao, Zachary Kazzaz, Ethan Bornstein, 
Olivier Lambotte, Daniel Altmann, et al. 
Microbial translocation is a cause of systemic 
immune activation in chronic HIV infection. 
Nature medicine, 2006, 12(12):1365. 


