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ABSTRACT 
 

This paper considers the analytical solutions of a time-space fractional intermediate scalar transportation 
model via the application of Conformable Decomposition Algorithm. The method is a blend of Adomian 
Decomposition coupled with fractional derivative defined in conformable sense; herein referred to as 
CADM.  Illustrative examples (cases) are considered in order to clarify the effectiveness of the proposed 
method, and the solutions are presented in infinite series form with high level of convergence to the exact 
form of solution.  

Keywords: Advection-Dispersion Model, Adomian Decomposition Method, Fractional Calculus, 
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1. INTRODUCTION  
 

The Advection Dispersion equation (ADE) also 
known as Advection diffusion equation is a well-
known method in applied engineering and physics. 
It is mostly applied in the area of transportation 
modelling. This equation can be used to solve and 
analyse time and space differences in a particle 
activity [1-2]. Mostly, the results of this particular 
equation equipped with boundary conditions 
require the application of numerical methods. 
Meanwhile, the corresponding model has been 
investigated by many scholars using the stochastic, 
analytic and numerical approaches [2-4]. It is a 
generally accepted fact that in life fluids moves 
through the combined effect of advection and 
diffusion motion. The coupling of Fractional 
Complex Transform (FCT) with modified version 
of differential transform method has been applied 
for exact solutions of time fractional ADE [5].  

Several authors have also examined the 
governing equation that is classically and 
traditionally used to model the dissolve solutes, 
mainly for this equation to be well positioned some 
important assumptions must be valid [6-7]. 

ADE has been used to illustrate a dynamical 
system, for example, a groundwater pollution 
model, coupled with a generalised analytical 
solution for one-dimensional solute transport in 
countable spatial domain. This method can also 
take two-dimensional form, which can be 
approximated but it poses a lot of challenges for the 
researcher and it is equally very important to 
consider. This is in recent time has actually 
motivated a lot of strong research work [8-9]. 

Over the years, many scholars have developed 
Fractional Advection-Dispersion Equation (FADE) 
from the advection-dispersion equation, some 
solved a notable number of problems using the 
finite difference approach, while some considered 
an open channel shallow water, and some set of 
scholars have also combined ADE with KDV 
which was solved numerically by the use of 
(FCCS) scheme and their results proffered 
significant solutions [ 9-16]. 

The classical advection-dispersion model takes 
the form: 
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where  ,w w    represents the dissolved 

concentration, 1 2 and u u  are Darcy velocity and 

dispersion coefficient respectively.  

Sayed and Behiry and Raslan [17] extended (1) 
to time-fractional form: 
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In their work [17], they used (2) to describe the 
intermediate process that occurs between advection 
and dispersion using fractional derivative in the 
Caputo sense with the aid of Adomian's 
decomposition method. In this paper, (1) and (2) 
will be considered for extension in the direction of 
time-space fractional derivative as regards 
conformable view of fractional derivative. Hence, 
time-space fractional intermediate scalar 
transportation model of the form: 
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                                                (3) 

 In considering the solutions of classical, and 
fractional differential models, various solution 
methods include the views of [18-31]. Here, 
Adomian Decomposition Method coupled with 
fractional derivative defined in conformable sense 
(CADM) is mainly applied for the first time, 
regarding analytical solution of a time-space 
fractional intermediate scalar transportation model.  

The structure of the remaining parts of the paper 
will be as follows, we have in section 2: a brief 
notion of conformable differential operator and its 
properties, section 3 is on the proposed solution 
method (CADM), section 4 contains the application 
while section 5 is on concluding remarks. 

2. BASIC NOTIONS OF CONFORMABLE 
DIFFERENTIAL OPERATORS [32-35] 

Definition (1): For a function  : 0,h    , 

the conformable derivative of h  of order 

 0,    is defined as:  
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2.1 Properties of Conformable Differential 
Operators CDOs 

Let  h h t ,  1 1h h t  and  2 2h h t  be 

differentiable   functions at 0t   for  . 
Then the following hold: 
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(P7): Suppose further that  h t  is an n -times 
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where    denotes the smallest integer such that 

   . 
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3. THE CONFORMABLE SENSE OF THE 
DECOMPOSITION METHOD [32-35]   
 

Consider a general fractional (nonlinear) partial 
differential equation (NLFDE) of the form: 

          , , , ,L h x t R h x t N h x t q x t   
                                   (5) 

where  L   denotes a linear operator based on 

conformable derivative of order  , with respect to 

t , such that  , 1n n   , R  is the remaining 

part of the linear conformable differential operator, 

N  denotes the nonlinear operator, while  ,q x t  

is the associated non-homogeneous part (source 
term).  

Suppose    L C     is invertible such that 

 1L
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Hence, by the differential property of the 

conformable derivative (P7), we have: 
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The inverse operator is defined as follows:  
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So, applying (9) to both sides of (8) gives: 
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For the decomposition of the solution, we write: 
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while the nonlinear term with the Adomian 

polynomials nA  is defined as: 
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Hence, in recursive relation, we have: 
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and  ,h x t  is therefore confirmed as: 
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4. APPLICATIONS AND ILLUSTRATIVE 
EXAMPLES  

 
Here, the CADM as proposed above will be 

applied to some time-space fractional advection-
dispersion model (TSFADM) as follows: 

Example 1: Consider the following form of 
TSFADM: 
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By (P6), we have: 
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Therefore, the recursive relation in (23) yields: 
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Hence, 
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Equation (27) yields the solution of (18) in 
analytical form corresponding to the time-space 
fractional advection-dispersion.  

In what follows, we present the graphical views 
of the solution for different values associated with 
the model parameters. This is considered for 
integer and fractional orders as contained in Fig. 1 
through Fig. 8. 

If  1,  and 1    (for integral order, not 

fractional order) then the Eq. (1) reduces to pure 
advection equation (one may see Eq. (16) of refer 
[17]) and for this Eq. (1) reduces to  

  txetxh , .                                              (28) 

If  2,  and 1    (for integral order, not 

fractional order ) then the Eq. (1) reduces to pure 
diffusion equation (one may see Eq. (17) of refer 
[17]) and for this Eq. (1) reduces to  

       txetxh , .                              (29) 

 

Figure 1. Plot of (27) at 1,  & 1    

 

Figure 2. Plot of (27): 1,  2,  0.01.      

 

Figure 3. Plot of (27) at 0.2,& 1.     

 

Figure 4. Plot of (27) at 0.5,& 1.    
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Figure 5. Plot of  (27) at 0.8,& 1.    

 
Figure 6. Plot of (27) at 1 , 2.1 and 

01.0 . 

 

Figure 7. Plot of (27) at 
0.5,  1.8,  0.01.       

 
Note: Figures 1 through 7, show the graphical 
representations of the solutions at different values 
of the associated parameters.  All these are 
obtained via the maple software. It is remarked that 
the approach can be linked to other 
transformational techniques such as cosine 

transformation, slant transformation, Adomian 
decomposition, Haar transformation,  Dobeshi-4 
transform, Hankel transformation, hadamard 
transformation and so on with various aspect of 
applications including textural images, high way 
transportation, etc  [36-40]. 
  
 
5. CONCLUDING REMARKS 

 
In this paper, Adomian Conformable 

Decomposition Method (CADM) has been 
successfully implemented for the solutions of a 
time-space fractional intermediate scalar 
transportation model as posed by Sayed and Behiry 
and Raslan [17]. The results from the Illustrative 
applications considered showed the efficiency and 
effectiveness of the proposed technique, while the 
solutions expressed in infinite series form 
converged to their exact form of solution. The 
effects of the time and space fractional parameters 
were considered for the cases of pure advection 
and pure diffusion. The considered algorithm or 
proposed solution method has special feature with 
ease in overcoming the tedious nature posed by 
space-fractional models unlike the time-fractional 
models. Hence, our recommendation of this 
approach. 
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