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ABSTRACT  

Finding strongly connected components (SCCs) in a directed graph (digraph) has been investigated 
extensively. Tarjan’s algorithm is the most fundamental method of finding SCCs in digraphs that uses Depth-
First Search (DFS) and it has a linear time complexity. On the other hand, the Forward-Backward (FW-BW) 
algorithm is another well-known method that is based on the divide-and-conquer approach, yet it is time 
consuming. In this paper, we introduce a new approach for finding the SCCs in digraphs in linear time using 
Grey Wolf Optimizer (GWO), which is a recent metaheuristic algorithm. Experimental results show that 
finding SCCs using GWO outperforms FW-BW in terms of run time. In this context, GWO achieved 62.27% 
average run time improvement over FW-BW. Furthermore, average solution quality (accuracy) from GWO 
compared to the exact algorithm FW-BW is 97.57%.   

Keywords: Grey Wolf Optimizer; Strongly Connected Components; Metaheuristic Algorithms; 
Optimization Problem; Forward-Backward Algorithm 

 
1. INTRODUCTION 
 

Finding Strongly Connected Components 
(SCCs) in directed graphs (digraphs) has many 
applications, such as networks and 
communications, social networks, data mining, 
compilers, and much more [1] [2]. It has 
intensively been studied and researched due to its 
vitality and importance especially in analyzing 
graphs.  

Formally, let 𝐺 = (𝑉, 𝐸) be a digraph, such 
that 𝑉 = {𝑣ଵ, 𝑣ଶ, … , 𝑣} is a set of vertices (nodes) 
in 𝐺, and 𝐸 = {𝑒ଵ, 𝑒ଶ, … , 𝑒} is a set of unweighted 
edges in 𝐺, such that each edge 𝑒 connects only 
two vertices of 𝑉 together 𝑣 and 𝑣. The existence 
of a directed edge between two vertices is 
expressed as 𝑣 → 𝑣 , or (𝑣 , 𝑣) ∈ 𝐸, and is said 
that there exists and edge from vertex 𝑣 to vertex 
𝑣, or alternatively, vertex 𝑣 is adjacent to vertex 
𝑣.  

A path may exist between two vertices 𝑣௫ and 

𝑣௬, expressed 𝑣௫

∗
⇒ 𝑣௬, which means that vertex 𝑣௬ 

is reachable from vertex 𝑣௫ by a sequence of 

distinct vertices 𝑣 , 𝑣 , 𝑣 , …; that is the path 𝑃 is a 
sequence of vertices 𝑣௫ , 𝑣 , 𝑣 , 𝑣 , … , 𝑣௬ [3]. Based 
on the path definition, a SCC is defined in 
Definition 1. 

Definition 1. A Strongly Connected Component 
(SCC) is a disjoint set of vertices such that there 
exists a path from every vertex to every other 
vertex in the same SCC [2].  

A digraph is strongly connected if there is only 
one SCC in that digraph. In other words, a digraph 
is strongly connected if there exists a path from 
every vertex to every other vertex in the digraph 
[4]. 

Definition 2. A Trivial SCC is a SCC that 
contains only one vertex [5].  

Based on Definition 2, the smallest-allowed 
SCC size is 1. In other words, a vertex by itself is 
considered a SCC.  

Robert Tarjan was the first to solve the problem 
in linear time using a depth-first search technique 
[6]. Actually, his main contribution was to provide 
a solution to the problem in O(𝑉 + 𝐸) time. 
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Although there were some previous methods used 
to find SCCs in digraphs, but none of them was 
linear. However, despite its linearity, several 
algorithms followed the Tarjan’s algorithm trying 
to solve the problem using different techniques that 
can be easily parallelized, due to the P-Complete  
nature of depth-first search, which is the basis of 
the Tarjan’s algorithm, which means that depth-
first search is inherently sequential and is hard to 
parallelize [7].  

The common feature between all the 
algorithms that tried to find the SCCs in digraphs 
is that they all tried to find parallel solutions. 
Despite the efficiency of the solutions in terms of 
parallel run time, their sequential run time was 
rather higher than that of the Tarjan’s algorithm.  
 
1.1 Problem Statement 

In this paper, we introduce a new approach for 
finding the SCCs in digraphs by expressing the 
problems as an optimization problem and using 
optimization techniques to find solution to that 
problem. Basically, optimization techniques are 
used to solve NP-Complete problems [8]. 
Nevertheless, we look at finding the SCCs in a 
digraph as a maximization problem, as follows:   

𝑚𝑎𝑥𝑖𝑚𝑧𝑒 𝑆𝐶𝐶, 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 𝑆𝐶𝐶 ⊆ 𝑉 

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 ∀𝑢, 𝑣 ∈ 𝑆𝐶𝐶(∃𝑢
∗

⇒ 𝑣 ∧ 𝑣
∗

⇒ 𝑢) 

The objective is to maximize the SCC 
iteratively. This maximization is controlled by the 
constraint that each two vertices in the same SCC 
are mutually reachable by each other.  

We use Grey Wolf Optimizer (GWO) [9] for 
the first time to find the SCCs in a digraph. Then, 
we compare it with FW-BW [2], a well-known 
algorithm for finding SCCs in digraphs.  

Like all other metaheuristics, GWO is used to 
solve optimization problems by trying to find local 
optimal solutions rather than global optimal 
solutions [10]. By global optimal solutions we 
refer to exact solutions, while local optimal refers 
to satisfactory solutions that are not exact. The 
compromise between local and global optimal 
solutions is in favor of reducing the time required 
to find the solution.  

In fact, there are several factors that motivate 
us for using metaheuristic algorithms, such as 
GWO, to find SCCs in digraphs, such as:  

 Metaheuristic algorithms are very fast in 
returning solutions, albeit solutions are local 

optimal, but still they are satisfactory and do 
not require too much time, and thus the time 
in which a metaheuristic algorithm returns a 
solution is much lower than that required by 
the search techniques such as Depth-Fist 
Search (DFS) or Breadth-First Search (BFS). 

 Metaheuristic algorithms are easy to design, 
implement, and understand. On the other 
hand, the exact algorithms used to find SCCs 
in digraphs, they are very difficult to 
understand, trace, and implement.  

 Metaheuristic algorithms do not require too 
much resources. Consider DFS which requires 
a large amount of stack and intensive use of 
memory locations, in addition to great deal of 
backtracking and computation.   

 Metaheuristic algorithms are easy to 
parallelize. On the other hand, DFS and BFS 
are P-Complete and thus there are extremely 
hard to parallelize.  

The remainder of this paper is organized as 
follows: in Section 2, we provide some literature 
review related to SCC, metaheuristics, and GWO. 
In Section 3, we present the methodology used to 
conduct this research, in which we discuss both 
FW-BW and GWO algorithms including the 
algorithm design and asymptotic run time 
complexities. Section 4 presents the experimental 
results and their discussion. Finally, conclusions 
are made in Section 5 in addition to suggesting 
some future work. 

 
2. RELATED WORK  
 

Robert Tarjan [6] was the first to introduce a 
linear time solution for finding SCCs using DFS. 
Despite its linear time, the Tarjan’s method is 
criticized because of the difficulty to parallelize it, 
especially that it is based on the P-Complete DFS.  

Later, a divide-and-conquer algorithm was 
introduced by Lisa K. Fleischer et al [2]. The run 
time complexity of the later-referred-to algorithm 
as Forward-Backward (FW-BW) [11] is 
logarithmic in digraphs where degrees of vertices 
are bounded by constant. Nevertheless, FW-BW is 
a time-consuming algorithm as long finding a 
single SCC in the graph is  O(𝑉 + 𝐸).  

In 2005, W. McLendon III et al. [12] 
introduced an enhancement to the FW-BW by 
adding an initial trimming step in order to reduce 
the processing time. They implemented they work 
in parallel using C and MPI.  
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The FW-BW algorithm was then reconsidered 
by S. Hong et al [11] and introduced a solution to 
parallelize it by adding some extensions to it. Their 
results achieved more than 29x parallel speedup 
over the sequential algorithm.  

Most enhancement efforts to the problem of 
finding SCCs in digraphs were concentrated 
around finding parallel solutions that speedup the 
processing. Unlike our metaheuristic approach, we 
concentrate on finding a speed-efficient sequential 
algorithm. Afterwards, parallelization to the 
metaheuristic approach can be introduced, so as we 
can get a reasonable sequential run time as well as 
parallel speedup.   

David J. Pearce introduced a space-efficient 
algorithm to find SCCs [13]. The author noticed 
that the space requirement of the Tarjan’s 
algorithm is too high especially when dealing with 
real world application where graph sizes are very 
large. He introduced a solution to the Tarjan’s 
algorithm that reduces the memory requirements.   

SCCs were also used in social network analysis 
by S. Dhingra et al [1]. They observed that 
advertising companies on social networks target 
everybody but that causes them losing some users 
who feel uncomfortable being targeted in an 
unobjective manner. They claim a 15% loss of 
audience in response to 10% increase in the 
advertising behavior. This is considered a huge 
amount of loss provided that the number of social 
networks users exceeds billions [14]. They 
proposed to apply the detection of SCC in social 
network graph (SNG) to group users of a certain 
social network based on some criteria in order to 
target the intended groups only.  

Almost all current methods of finding SCCs in 
digraphs use one of two approaches: DFS (or 
BFS), or divide-and-conquer, or a combination of 
the two. However, these two approaches depend 
heavily on the capabilities of the machines on 
which the algorithms will run and the 
programming language in which the algorithms are 
written. Because of the recursive nature of the two 
approaches, they incorporate an extensive use of 
the machine’s stack memory, which might lead to 
stack overflow problems. Furthermore, it also 
limits the type of programming languages that can 
be used to implement those algorithms. For 
instance, not all languages support Tail-Call 
Optimization (TCO), such as Java, C#, PHP, 
Python, etc. Consequently, programmers are 

forced to write their codes in loops to avoid the 
stack overflow problem.  

Metaheuristics are high-level frameworks that 
are used as guidelines for algorithmic designs [10]. 
Unlike heuristic algorithms, metaheuristics are 
problem independent and used to express how to 
find a heuristic solution to an optimization problem 
[15]. Examples of well-known heuristic search 
algorithms are: Local search [16], A* algorithm 
[17], and IDA* [18].  

 Metaheuristics are classified into single-
solution based and population-based [19].  Single-
solution-based metaheuristics are only concerned 
with one solution and keeps on enhancing that 
solution by making more and more iterations until 
the algorithm stops. On the other hand, population-
based metaheuristics start with a population that 
comprises a number of individuals (or initial 
solutions) and the operators of the algorithm are 
applied to all, or selected, individuals of the 
populations which results in better solutions.  

Unlike the current approaches, our approach is 
based on using a metaheuristic approach rather 
than the DFS (or BFS), or divide-and-conquer 
approach. All metaheuristic algorithms consist of 
three phases: (1) initialization, (2) iteration, and (3) 
finalization [9]. Accordingly, a metaheuristic 
algorithm uses a simple loop statement that iterates 
several times before it stops upon meeting a 
predetermined stopping criterion. Thus, there is no 
more recursion and dependence on the 
specifications of both the machine and 
programming language, and there are no more 
hardware problems, such as stack overflow, also 
the expected run time of the algorithm is faster.  

Undoubtedly, parallelizing metaheuristic 
algorithms does not incur a huge overhead 
compared to DFS-based methods. Also, it does not 
require a special type of parallel architecture as in 
the divide-and-conquer approach. Metaheuristic 
algorithms can run sequentially on one machine or 
in parallel on shared-memory or distributed 
memory machines.   

Metaheuristics gained a massive momentum 
due to their tight correlation with optimization 
problems. Most optimization problems are NP-
Complete problems that are not proved to have a 
polynomial-time solution [8]. However, 
optimization is used to find near-optimal (or local 
optimal) solutions to this kind of problems in a 
reasonable time [10].  
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Optimization is used to solve many problems 
in computer science, artificial intelligence, control 
systems [20], meteorology [21], Internet and cloud 
computing [8] [22].  

Metaheuristics were also used in software 
engineering discipline. M. Alshraideh et al. used 
Genetic Algorithm (GA) to generate test data to 
execute branches in programs [23]. They 
outperformed other approaches that use single 
population in terms of search effectiveness, 
execution time, and number of executions. 
Moreover, in the field of databases, M. Alshraideh 
et al. used GA to test exception codes in Jordan 
University Hospital database [24]. In another 
work, M. Alshraideh et al. used GA to test oracle 
stored program units written in PL/SQL [25].  

Grey Wolf Optimizer (GWO) is a population-
based metaheuristic inspired by the living style and 
hunting behaviors of grey wolves (or Canis lupus) 
and was introduced by Mirjalili et al [26]. GWO is 
used extensively in research to solve too many 
optimization problems.  

Naturally, a pack of grey wolves can be divided 
into four types [9]: 

1. Alpha (𝛼): wolves that are dominants of the 
pack. These are the wolves of highest rank in 
the pack and they are responsible of the 
decision making.  

2. Beta (𝛽): the subordinate wolves that are in the 
second level of hierarchy and help alpha 
wolves in decision making.  

3. Delta (𝛿): wolves that are subordinate to both 
alpha and beta wolves, but they are dominant 
to the omega wolves.  

4. Omega (𝜔): the wolves in the lowest level of 
hierarchy. They obey all dominant wolves in 
the pack.  

Practically, the four types of wolves represent 
the GWO solutions. Alpha wolves (𝛼) represent 
the best solution, beta (𝛽) represent the second-
best solution, delta (𝛿) is the third best solution, 
and finally omega (𝜔) are the remaining solutions 
[26].  

GWO was used in research to find solution to 
different optimization problems and finding 
solutions to real-world applications. A. Shaheen et 
al. [9] used GWO to solve the travelling salesman 
problem (TSP) and it is compared with solutions 
based on chemical reaction optimization (CRO) 
and GA. They also introduced a parallelization 

approach for their GWO solution in a later work 
[27] over a hypercube interconnection network.  

A hybrid approach between GWO and Whale 
Optimization (WO) was introduced by A. Hudaib 
et el [28]. The approach was named as WGW and 
was used to prioritize software requirements. 
Accuracy of the proposed approach recorded 91%. 

MAXFLOW-GWO is a solution to the 
maximum flow problem using GWO which is 
introduced by R. Masadeh et al [29]. They tested 
their work on datasets with 50 to 1000 vertices. 
They compared their results with results of the 
Ford-Fulkerson’s approach to solve this problem. 
Results showed that MAXFLOW-GWO 
outperformed Ford-Fulkerson’s in terms of run 
time.  

Furthermore, GWO has also found a foothold 
in networking, especially in wireless sensor 
networks (WSN) area. Because sensor nodes show 
continuous power dissipation through their 
lifetime [30], a huge amount of work has been 
established around eliminating the power 
dissipation, in which optimization played an 
important role. In this context, GWO was used to 
offer a solution to the node localization problem in 
WSNs [31] in order to position unknown nodes in 
correct geographical locations. GWO was also 
used to design power-efficient protocols for WSNs 
[32], enhance the area coverage of the sensor nodes 
[33], cluster formation [34], cluster head selection 
[35], and many more.  

  
3. METHODOLOGY 
 

We start by discussing the FW-BW algorithm 
by presenting its algorithm and run time 
complexity in addition to some mathematical 
lemmas that FW-BW is based on. Afterwards, we 
design a metaheuristic algorithm using GWO to 
find SCCs in digraphs. The metaheuristic 
algorithm is asymptotically analyzed in order to 
compute its run time complexity. Then, both FW-
BW and GWO are implemented, and both 
algorithms are set to run on the designated 
machine. Results of the two algorithms are 
compared together in terms of run time. Moreover, 
the correctness of the GWO algorithm is verified 
by computing the solution quality of the GWO, or 
accuracy, as well as the error rate with respect to 
the FW-BW algorithm. Finally, we made our 
discussions, draw conclusions and suggest future 
work.  
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3.1 FW-BW Algorithm 
The FW-BW algorithm is based on both 

Lemma 1 and Lemma 2 [2]. 

Let 𝐺(𝑉, 𝐸) be a digraph, such that 𝑉 is the set 
of vertices in 𝐺 and 𝐸 is the set of edges in 𝐺, then 
Lemma 1 withstands [12]. 

Lemma 1. With respect to a given vertex 𝑣 in the 
digraph 𝐺, such that 𝑣 ∈ 𝑉, there exists three sets:  

1. 𝑃𝑟𝑒𝑑(𝐺, 𝑣): the set of predecessors of vertex 𝑣 
in the digraph 𝐺, such that 𝑃𝑟𝑒𝑑(𝐺, 𝑣) = {𝑢 ∈

𝑉|𝑢
∗

⇒ 𝑣}. 
2. 𝐷𝑒𝑠𝑐(𝐺, 𝑣): the set of descendants from vertex 

𝑣 in the digraph 𝐺, such that 𝐷𝑒𝑠𝑐(𝐺, 𝑣) =

{𝑤 ∈ 𝑉|𝑣
∗

⇒ 𝑤}. 
3. 𝑅𝑒𝑚(𝐺, 𝑣): the remainder set that contains all 

the vertices that are not predecessors or 
descendants of 𝑣 in the digraph 𝐺, such that 

𝑅𝑒𝑚(𝐺, 𝑣) = {𝑥 ∈ 𝑉|𝑥 ⇏
∗

𝑣⋁𝑣 ⇏
∗

𝑥} ∎ 

Based on these three sets, a SCC can be formed 
according to Lemma 2 [2].  

Lemma 2. A SCC in the digraph 𝐺 that contains 
the vertex 𝑣, denoted 𝑆𝐶𝐶(𝐺, 𝑣) is formed by the 
intersection between 𝑃𝑟𝑒𝑑(𝐺, 𝑣) and 𝐷𝑒𝑠𝑐(𝐺, 𝑣). 
i.e. 𝑆𝐶𝐶(𝐺, 𝑣) = 𝑃𝑟𝑒𝑑(𝐺, 𝑣) ∩ 𝐷𝑒𝑠𝑐(𝐺, 𝑣) ∎ 

The FW-BW algorithm is presented in 
Algorithm 1. The algorithm starts in line 2 by 
setting the stopping criteria which stops splitting 
the digraph and returns in order for the 
backtracking to start. In line 3, a vertex is selected 
randomly from the digraph. In line 4, we create a 
set of all vertices that can reach vertex 𝑣, i.e. 
predecessors of 𝑣, which was randomly selected in 
the previous line. All the vertices that are reachable 
from vertex 𝑣, i.e. descendants from 𝑣, are 
assigned to the set BW in line 5.  

According to Lemma 2, line 6 of Algorithm 1 
performs an intersection between the forward 
component (FW) and backward component (BW). 
In lines 8-10, the digraph is split into three distinct 
parts, the first contains all vertices that are in FW 
but not in the SCC just found (S), expressed as 
𝐹𝑊 ∖ 𝑆. The second contains all vertices in BW 
but not in S, i.e. 𝐵𝑊 ∖ 𝑆. Finally, the last part 
contains all vertices that are in the graph but 
neither in FW nor in BW, i.e. the remaining 
vertices, expressed 𝑑𝑖𝑔𝑟𝑎𝑝ℎ ∖ (𝐹𝑊 ∪ 𝐵𝑊). The 
run time complexity of Algorithm 1 is O(𝑉𝑙𝑜𝑔𝑉) 
such that 𝑉 is the number of vertices in the digraph 

𝐺 in which all digraph degrees are bounded by a 
constant [2]. 

Algorithm 1 FW-BW(digraph) 
Input: digraph – input digraph 
Output: SCC 
1: begin 
2:  if empty(digraph) then return; 
3:  v = random(digraph); 
4:  FW = Pred(digraph, v); 
5:  BW = Desc(digraph, v); 
6:  S = FW ∩ BW; 
7:  SCC = SCC ∩ S; 
8:  FW-BW(FW\S); 
9:  FW-BW(BW\S); 
10:  FW-BW(digraph\(FW ∪ BW)); 
11: end; 

 
3.2 Grey Wolf Optimizer (GWO) 

In the following subsections we introduce our 
algorithmic design for using GWO to find SCCs in 
digraphs as well as introducing an analytical 
analysis of the run time complexity of the GWO 
algorithm.  
3.2.1 Algorithm Design 

Algorithm 2 lists the steps followed to find the 
SCCs using GWO. The algorithm starts by 
generating an initial population in line 2. The size 
of the population is determined by the parameter 
𝑎𝑔𝑒𝑛𝑡𝑠. Each item in the population is called an 
agent and has a fitness value. Thus, according to 
our problem, an agent is a SCC, and therefore the 
fitness of the agent is the number of vertices 
contained in that agent.  

Initially, each agent is assigned a random 
vertex. In other words, initial population contains 
trivial SCCs (or trivial agents). This ensures that 
all agents contain feasible initial solutions and 
eliminates the need to perform a feasibility check 
whenever an agent is generated, which in turn 
reduces that time required by the algorithm’s 
initialization phase.  

The initial population is then sorted in a non-
increasing order based on the fitness values of 
agents. This is a necessary step so as we can select 
the best three agents in the population and assign 
them to 𝛼, 𝛽, and 𝛿 respectively, as shown in lines 
3-6. 

In lines 8-12, each agent of the population tries 
to improve its own solution. To do so, the 
following steps are incurred by each agent: (1) a 
random vertex 𝑣௦௧ௗ from the corresponding 
agent is selected, (2) according to Lemma 1, find 
the set FW which contains all vertices that are 
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descendent from the selected vertex 𝑣௦௧ௗ , i.e. 
that is vertex 𝑣௦௧ௗ can be reached, (3) find the 
set BW that contains all vertices that are 
predecessors of the selected vertex 𝑣௦௧ௗ  
according to Lemma 1, i.e. that is vertex 𝑣௦௧ௗ  
is reachable from, and (4) based on Lemma 2, 
create a component S as a results of intersecting 

both FW and BW sets, such that 𝑆 = 𝐹𝑊 ∩ 𝐵𝑊. 
These steps are summarized in the 
find_solution_by_agent() function and they 
are investigated in details in Algorithm 3.  

Algorithm 2 GWO(digraph, maxIterations, agents) 
Input: digraph - directed graph, maxIterations - maximum iterations,  
       agents – number of agents 
Output: Strongly Connected Components (SCCs) 
1: begin 
2:  generate_population(agents); 
3:  sort_population(DESC); 
4:  alpha = population[0]; 
5:  beta = population[1]; 
6:  delta = population[2]; 
7:  for i = 1 to maxIterations 
8:   for j = 1 to agents  
9:    current_agent = population[j]; 
10:    new_agent = find_solution_by_agent(current_agent); //call Algorithm3 
11:    population[j] = new_agent ∪ current_agent; 
12:   end for;  
13:   sort_population(DESC); 
14:   alpha = population[0]; 
15:   beta = population[1]; 
16:   delta = population[2]; 
17:  end for; 
18:  output_best_solution(); 
19: end; 

 

In line 11, the solution of the new agent is then 
joined with the solution of the original agent using 
a union operator and the result of the union 
operation is set to replace the original agent that 
was used to generate this new agent.  

Again, in lines 13-16, the population is sorted 
in a non-increasing order in terms of the fitness 
values of the agents, and the first three agents are 
selected as 𝛼, 𝛽, and 𝛿, respectively.  

The steps in lines 7-16 of Algorithm 2 are 
repeated 𝑚𝑎𝑥𝐼𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠 times in order for the 
whole algorithm to complete and a solution is 
returned (line 18).  

Algorithm 3 lists the steps required by the 
function find_solution_by_agent(). The 
algorithm creates two partial solutions FW and BW 
according to Lemma 1 and Lemma 2 in lines 3 and 
4, respectively. It is noteworthy, that we use the 
digraph 𝐺 in line 3 to create a forward component 
by finding all vertices that are descendant from the 
vertex 𝑣. Similarly, we use the transpose graph 𝐺்  
to find all components that are descendant from the 
vertex 𝑣 in 𝐺் , i.e. the predecessors of 𝑣. 

The function create_component() is used 
to create a component starting from the vertex 
𝑣௦௧௧ passed to the function as a parameter. 
Initially, an empty component is created in line 14. 
In line 17, the selected vertex is added to the 
component. In lines 18-20, we enumerate all 
vertices that are reachable from the selected vertex, 
and they are added to the component one by one if 
they are not already included. In line 21, another 
random vertex is selected, and further iterations are 
made until there are no more vertices to be 
selected. The two partial components are then 
intersected using an intersection operator in line 5. 
In line 6, a new SCC is returned. 

3.2.2 Run Time Complexity 
Before we compute the run time complexity of 

the GWO algorithm shown in Algorithm 2, we 
need to compute the run time complexity of the 
function find_solution_by_agent() which is 
shown in Algorithm 3 and called by the GWO 
algorithm. Thus, the run time complexity of 
Algorithm 3 is shown in Lemma 3. 
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Algorithm 3 find_solution_by_agent(agent, G, GT) 
Input: agent – the selected agent, G – input digraph,  
 GT – transpose of the input digraph 
Output: agent – an output agent that represents a SCC 
1: begin 
2:  vstart = select_random_vertex(agent); 
3:  FW = create_component(G, vstart); 
4:  BW = create_component(GT, vstart); 
5:  newAgent = FW ∩ BW; 
6:  return newAgent; 
7: end; 
8:  
9: Function create_component(G, vstart) 
10: begin 
11:  // G – input digraph, vstart – starting vertex 
12:  // component – a partial solution 
13:  v = vstart; 
14:  component = null; 
15:  while (v <> null) 
16:  begin 
17:   component.add(v); 
18:   for each adj_vertex ∈ adj[vertex] and adj_vertex ∉ component 
19:    component.add(adj_vertex);  
20:   end for; 
21:   v = random(adj[vertex]); 
22:  end while; 
23:  return component;  
24: end function; 

Lemma 3. The run time complexity of Algorithm 
3 is 𝑂(𝑉 + 𝐸). 

Proof. We start by finding the complexity of 
create_component() function. In the worst-
case scenario, there exists a path from every vertex 
to every other vertex in the digraph. This means 
that all the vertices of the digraph will be explored, 
and thus the body of the while loop will execute 𝑉 
times. Consequently, the loop at lines 18-20 will 
make 𝐸 iterations. Eventually, there will be 𝑉 + 𝐸 
iterations made between the lines 15-22. We 
designed the union and intersection operators to 
use Boolean arrays, which resulted in a linear run 
time complexity. Since the intersection operator in 
line 5 of Algorithm 3 is used to intersect two partial 
components together, and as long each component 
may have all the vertices of the digraph in the worst 
case, i.e. if the digraph is strongly connected, then 
the complexity of the intersection operator in line 
5 is O(𝑉). Now, let 𝐸(𝐿ଶ) be the effort of selecting 
a random vertex from the agent which is constant 
and is given by O(1), 𝐸(𝐹𝑊) and 𝐸(𝐵𝑊) the 
effort of finding the first and second partial 
solutions respectively which equals  O(𝑉 + 𝐸) 
each, 𝐸(∩) the effort of the intersection operator 
which equals (𝑉), and 𝐸(𝐿) is the effort of the 
return statement at line 6 of Algorithm 3 which is 

constant and equals O(1). Then, the run time 
complexity (effort) of Algorithm 3, denoted 𝐸(𝐴ଷ) 
is computed as follows:  

𝐸(𝐴ଷ) = 𝐸(𝐿ଶ) + 𝐸(𝐹𝑊) + 𝐸(𝐵𝑊) +
𝐸(∩) + 𝐸(𝐿)  

 = O(1) + O(𝑉 + 𝐸) + O(𝑉 + 𝐸)  +
O(𝑉) + O(1)  

 = 2O(1) + 2O(𝑉 + 𝐸) + O(𝑉) 
 = O(3𝑉 + 2𝐸) 
 = O(𝑉 + 𝐸)∎ 

Based on the above, the run time complexity of 
the GWO algorithm given in Algorithm 2 is given 
by Theorem 1.  

Theorem 1. The run time complexity of finding 
the strongly connected components (SCCs) using 
the Grey Wolf Optimizer (GWO) is O(𝑉 + 𝐸). 

Proof. Line 2 of Algorithm 2 starts by generating 
the population by creating a predefined number of 
agents, such that the fitness value of each agent is 
initially 1, since each agent is assigned a random-
selected vertex. Let the number of agents be 𝑁, 
then the effort of generating 𝑁 initial trivial agents, 
denoted 𝐸(𝑃), is 𝐸(𝑃) = O(𝑁). In line 3, the 
population is sorted in a non-increasing order, its 
effort 𝐸(𝑠𝑜𝑟𝑡𝑖𝑛𝑔) is done in O(𝑁𝐿𝑜𝑔𝑁). Finally, 
the effort of each statement in lines 4-6 is constant, 
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i.e. O(1). Accordingly, the effort of lines 4-6, 
𝐸(𝐿ସି) = O(𝑁𝐿𝑜𝑔𝑁) + 3 × O(1) = O(𝑁𝐿𝑜𝑔𝑁). 
Lines 7-17 are dominating Algorithm 2 in terms of 
run time complexity. The outer loop will make a 
number of iterations 𝑥 that is equal to 
𝑚𝑎𝑥𝐼𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠, while the inner loop will make a 
number of iterations that is equal to the number of 
agents 𝑁. Thus, we need to find the complexity of 
these lines prior to finding the complexity of the 
whole algorithm given in Algorithm 2. The 
complexity of the inner loop (lines 8-12) is denoted 
𝐸(𝐿଼ିଵଶ) and is calculated as the sum of selecting 
an agent from the population 𝐸(𝐿ଽ) which is 
constant, the effort of finding a solution by the 
agent 𝐸(𝐴ଷ) as proved in Lemma 3, and the effort 
of the union operation between the current agent 
and the new agent that is returned by 
find_solution_by_agent() function, which 
is similar to the intersection operator is also a linear 
operator with run time complexity 𝐸(∪) = O(𝑉). 
Furthermore, lines 8-12 are repeated several times 
that are equal to the number of agents 𝑁. Thus, 
𝐸൫𝐿଼ିଵଶ,൯ is computed as follows:  

𝐸(𝐿଼ିଵଶ) = 𝑁 × (𝐸(𝐿ଽ) + 𝐸(𝐴ଷ) + 𝐸(∪)) 
 = 𝑁 × (O(1) + O(𝑉 + 𝐸) + O(𝑉)) 
 = 𝑁 × O(𝑉 + 𝐸)  

∵ 𝑁 ≪ 𝑉 + 𝐸   
∴ 𝐸(𝐿଼ିଵଶ) = O(𝑉 + 𝐸)  

The effort of lines 13-16 is the same as the effort 
of lines 3-6, i.e. 𝐸(𝐿ଵଷିଵ) = 𝐸(𝐿ଷି). Thus, the 
effort of Algorithm 2 denoted 𝐸(𝐺𝑊𝑂) is 
computed as follows:   

𝐸(𝐺𝑊𝑂) = 𝐸(𝑃) + 𝐸(𝐿ସି) + 𝑥 ×
(𝐸(𝐿଼ିଵଶ) + 𝐸(𝐿ଵଷିଵ))  

 = O(𝑁) + O(𝑁𝐿𝑜𝑔𝑁) + 𝑥 ×
(O(𝑉 + 𝐸) + O(𝑁𝐿𝑜𝑔𝑁))  

 = O(𝑁𝐿𝑜𝑔𝑁) + 𝑥 × ൫O(𝑉 + 𝐸)൯  
 = 𝑥 × ൫O(𝑉 + 𝐸)൯  

∵ 𝑥 ≪ O(𝑉 + 𝐸)   
∴ 𝐸(𝐺𝑊𝑂)  =  O(𝑉 + 𝐸) ∎   

 
4. EXPERIMENTAL RESULTS 
 

In the following subsections, we introduce our 
computing environment which consists of the 
machines used as well as the datasets used. We 
then present our results and discuss them in detail.  

4.1 Environment and Tools 
We used a server machine with a dual Intel® 

Xeon® CPUs E5-2620 v4 processors each with 2.1 
GHz. Each CPU is an 8-core CPU with Hyper-
Threading (HT) support. Totally, we have a 

machine with 32 logical processors with 64 GB 
RAM. L1 cache is 1 MB, L2 cache is 4 MB, and 
L3 cache is 40 MB. The operating system is 
Windows Server 2012 R2 Datacenter. We 
implement both algorithms, GWO and FW-BW, in 
Java 8 using NetBeans IDE 8.2.  

We run our experiments on a number of 
datasets that are collected from different 
benchmarks, these are namely: (1) Koblenz 
Networks Collection [36], (2) SNAP database 
[37], (3) Any Beat Dataset [38], and (4) the Social 
Computing Data Repository at Arizona State 
University [39].  

The datasets we used in our experiments have 
different sizes. The size of the dataset, according 
to our implementation, controls the 
𝑚𝑎𝑥𝐼𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠 parameter of the GWO algorithm. 
Thus, we divide the datasets into four groups with 
respect to their sizes.  

Table 1 lists the datasets in Group 1 (G1). Sizes 
of the datasets in this group ranges between 17 and 
219 vertices. 

Table 1: Group 1 (G1) Datasets 

Dataset name Size LSCC Size 
Rhesus 17 16 
Bison 28 26 
Hens 34 31 
Florida ecosystem dry 130 103 
Residence hall 219 214 
 
Group 2 (G2) datasets are listed in Table 2. 

This group comprises 4 datasets with sizes 
between 1,006 and 2,941 vertices.  

Table 2: Group 2 (G2) Datasets 

Dataset name Size LSCC Size 
email-Eu-core 1,006 803 
Blogs 1,226 793 
UC Irvine messages 1,901 1,294 
OpenFlights 2,941 2,868 
 
The third group is Group 3 (G3) and contains 

6 datasets with sizes between 12,647 and 220,972 
vertices. G3 datasets are listed in Table 3.  

Table 3: Group 3 (G3) Datasets 

Dataset name Size LSCC Size 
Any Beat Dataset 12,647 8,518 
FOLDOC 13,358 13,274 
Edinburgh Associative 
Thesaurus 23,134 7,751 
BlogCatalog 88,786 88,784 
Buzznet 101,170 95,470 
Libimseti.cz 220,972 81,145 
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The last group is Group 4 (G4) with sizes 

between 863,846 and 2,523,390 vertices. The 
datasets of G4 are listed in Table 4.  

Table 4: Group 4 (G4) Datasets 

Dataset name Size LSCC Size 
Wikipedia talk, Italian 863,846 36,356 
Wikipedia talk, Arabic 1,095,799 8,797 
Wikipedia talk, Chinese 1,219,243 10,831 
Wikipedia talk, French 1,420,367 56,011 
Hudong internal links 1,984,484 365,558 
Flixster 2,523,390 99,803 

 
The parameters settings for GWO are as 

follows:  
 𝑎𝑔𝑒𝑛𝑡𝑠: we set this value to 5.  
 𝑚𝑎𝑥𝐼𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠: we set the value of this 

parameter with respect to the group G1, G2, 
G3, and G4 to 2, 10, 32, and 128 respectively.  

We set to run each algorithm 30 times. Each 
time, we record the run time and solution, and 
calculate the solution quality and error rate. Then, 
the average run time, average solution quality, and 
average error rate are computed for each 
algorithm, they are listed in tables and figures for 
the purpose of comparisons.  

4.2 Results and Discussions  
In Table 5, we record the run times and 

solutions obtained by both GWO and FW-BW. 

Then, we use the values in Table 5 to draw the run 
time curves shown in Figure 1. 

In Figure 1, we show the run time comparison 
between GWO and FW-BW algorithms for all 
dataset groups (G1, G2, G3, and G4). Results show 
that GWO outperforms FW-BW in terms of run 
time for all groups. 

As expected, GWO outperforms FW-BW due 
to the algorithm design of GWO. The heuristic 
nature of the GWO algorithm is the reason of the 
fast run times GWO algorithm achieved. 
According to the create_component() shown 
in Algorithm 3, random vertices are selected at 
each iteration of the function rather than all 
vertices that are descendent from the selected 
vertex as in the case of FW-BW algorithm. This 
reduces the run time dramatically especially as the 
size of the digraph grows.  

On the other hand, when using the function 
create_component() to create components, 
the selection of random vertices that are 
descendant from a given vertex rather than 
selecting all descending vertices causes some 
degradation to the solution quality, or accuracy, of 
the metaheuristic algorithm. Thus, solution quality 
(𝑠𝑞) is given in Definition 3.  

 

 

Table 5: GWO vs FW-BW Solutions and Run Times (Seconds) 

Group 
Dataset 

Size 
GWO FW-BW 

Solution Run Time Solution Run Time 

G1 

17  16  3.400x10-04 16  1.826x10-04 
28  26  4.682x10-04 26  3.521x10-04 
34  31  4.612x10-04 31  4.693x10-04 

130  103  5.814x10-04 103  0.003 
219  214  0.001 214  0.005 

G2 

1,006  784  0.014 803  0.027 
1,226  733  0.016 793  0.022 
1,901  1,262  0.061 1,294  0.065 
2,941  2,659  0.048 2,868  0.060 

G3 

12,647  7,903  0.200 8,518  0.228 
13,358  12,752  0.302 13,274  0.327 
23,134  7,751  0.427 7,751  0.620 
88,786  88,784  9.651 88,784  16.295 

101,170  95,470  11.773 95,470  19.802 
220,972  81,145  14.632 81,145  24.187 

G4 

863,846  34,741  42.298 36,356  142.375 
1,095,799  8,312  67.920 8,797  265.196 
1,219,243  10,249  97.456 10,831  281.280 
1,420,367  53,261  147.254 56,011  414.677 
1,984,486  365,558  199.812 365,558  729.756 
2,523,390  99,803  497.642 99,803  992.472 
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Figure 1: Run Time Comparisons between GWO and FW-BW Algorithms Applied to Four Dataset Groups 

Definition 3. Solution Quality (𝒔𝒒) is a measure 
of the correctness of the metaheuristic algorithm, 
and is measured as a ratio between the fitness value 
of the optimized solution (𝑓) and the value of the 
exact solution (𝑓௫) as shown in Equation (1).  

 𝑠𝑞 =
𝑓

𝑓௫

 (1) 

We need also to compare the two algorithms, 
the metaheuristic and the exact one in terms of 
solution quality. In this context, let 𝑓 ௐை be the 
fitness value of the solution generated by GWO 
and 𝑓ிௐିௐ be the fitness value of the solution 
generated by the FW-BW algorithms, then 𝑠𝑞ீௐை 
is the GWO solution quality which is given by 
Equation (2). 

 𝑠𝑞ீௐை =
𝑓 ௐை

𝑓ிௐିௐ

 (2) 

The compliment of the solution quality is 
referred to as the error rate and is defined in 
Definition 4.  

Definition 4. Error Rate (𝜼) is a measure of how 
far the solution given by the metaheuristic 
algorithm from that given by the exact algorithm, 
and is it computed as shown in Equation (3) as a 
compliment of the solution quality (𝑠𝑞). 

 𝜂 = 1 − 𝑠𝑞 (3) 
According to Equations (2) and (3) we 

calculate both the solution quality (𝑠𝑞) and the 
error rate (𝜂) and list them in Table 6.  Then, in 
Figure 2 we depict the solution qualities for all 
datasets.  

According to Table 6 and Figure 2, we can 
easily figure out that the minimum solution quality 
obtained by running the GWO algorithm on all 
datasets is more than 92%. On the other hand, the 
maximum error rate obtained is less than 8%.  

Also, in Table 6, we calculated the average 
solution quality for the GWO algorithm. It is 
97.57%, and thus the average error rate is below 
2.5%. 
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Table 6: GWO Accuracy and Error Rates 

Group Dataset Size Solution Quality (𝒔𝒒) Error Rate (𝜼) 

G1 

17 100% 0 
28 100% 0 
34 100% 0 

130 100% 0 
219 100% 0 

G2 

1,006 97.63% 2.37% 
1,226 92.43% 7.57% 
1,901 97.53% 2.47% 
2,941 92.71% 7.29% 

G3 

12,647 92.78% 7.22% 
13,358 96.07% 3.93% 
23,134 100% 0 
88,786 100% 0 

101,170 100% 0 
220,972 100% 0 

G4 

863,846 95.56% 4.44% 
1,095,799 94.49% 5.51% 
1,219,243 94.63% 5.37% 
1,420,367 95.09% 4.91% 
1,984,486 100% 0 
2,523,390 100% 0 

Average 97.57% 2.43% 

 

Figure 2: GWO Solution Quality Compared to FW-BW 

Our last assessment measure is the 
improvement factor which is give in Definition 5.  

Definition 5. Run Time Improvement Factor 
(𝑰𝑭) is the percentage by which an algorithm has 
achieved enhancement over another algorithm. Let 
algorithms A and B be two algorithms with run 
times 𝑇 and 𝑇 respectively. The 𝐼𝐹 of Algorithm 
A over Algorithm B is given by equation (4).  

 𝐼𝐹(𝐴, 𝐵) = 1 −
𝑇

𝑇

 (4) 

 In Table 7, we calculate the average run time 
of each group of datasets for both GWO ( 𝑇തீௐை) 
and FW-BW (𝑇തிௐௐ). Then, we find the 
improvement factor for GWO over FW-BW 
(𝐼𝐹(𝐺𝑊𝑂, 𝐹𝑊𝐵𝑊)). 
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Table 7: Improvement Factors 

Group 𝑻ഥ𝑮𝑾𝑶 𝑻ഥ𝑭𝑾𝑩𝑾 𝑰𝑭(𝑮𝑾𝑶, 𝑭𝑾𝑩𝑾) 

G1 0.00057 0.0018008 68.34% 

G2 0.035 0.044 20.11% 

G3 6.164 10.243 39.82% 

G4 175.397 470.959 62.76% 

Average 45.399 120.312 62.27% 
 

According to the results shown in Table 7, 
GWO achieved best improvement over FW-BW 
by more than 68% for G1 datasets.  

In summary, the validity of research is proved 
internally and externally. Internal validity is 
proved by having results that comply to our 
asymptotic analysis which proved GWO to have a 
O(𝑉 + 𝐸) run time complexity which is less than 
the FW-BW O(𝑉𝐿𝑜𝑔𝑉) run time complexity. 
According to our experimental results, we were 
able to provide a metaheuristic solution to find the 
SCCs in digraphs using GWO in a reasonable time 
and solution quality compared to the FW-BW 
exact method. On average, GWO achieves 62.27% 
improvement over FW-BW. On the other hand, 
external validity of the research is proved by 
applying the GWO algorithms to different datasets 
from different sources which represent different 
real-world graphs.  

 
5. CONCLUSIONS AND FUTURE WORK 
 

In this paper, we introduced a metaheuristic 
algorithm to find SCCs in digraphs using the Grey 
Wolf Optimizer (GWO). First, the worst-case run 
time complexity of the GWO algorithm is shown 
and proved asymptotically to be O(𝑉 + 𝐸). Then, 
we set the GWO algorithm to run against a number 
of datasets downloaded from different benchmarks 
used frequently in research. We also implemented 
a well-known algorithm, which is the FW-BW 
algorithm. Experimental results show that GWO 
outperformed FW-BW in terms of run time. This 
conforms to the asymptotic run time complexity 
which is proved to be linear for GWO and 
O(𝑉𝐿𝑜𝑔𝑉) for the FW-BW algorithm. It is also 
related to the algorithmic design of both 
algorithms. Since FW-BW uses the divide-and-
conquer approach to find exact solutions, GWO 
uses metaheuristics to find near-optimal solutions 
attempting to compromise solution accuracy in 
favor of run time. In this context, results also show 
that the average solution quality for the GWO 

algorithm was 97.57%. Also, GWO achieved 
62.27% average run time improvement over FW-
BW. 

As a future work, more metaheuristic 
algorithms can be designed to find SCCs in 
digraphs and compare to GWO or FW-BW. Also, 
GWO can also be parallelized and compared to the 
sequential GWO. In this context, the problem can 
be implemented in parallel using different 
interconnection networks such as: the hypercube, 
mesh, Chained-Cubic Tree (CCT) [40], as well as  
optoelectronic interconnection networks such as: 
the OTIS-Hypercube, OTIS-Mesh, OTIS Hyper 
Hexa-Cell, or Optical Chained-Cubic Tree 
(OCCT) interconnection networks [16] [41] [42].  
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