
Journal of Theoretical and Applied Information Technology
31st August 2019. Vol.97. No 16

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

4439

METAHEURISTIC APPROACH USING GREY WOLF
OPTIMIZER FOR FINDING STRONGLY CONNECTED

COMPONENTS IN DIGRAPHS
1ALA'A AL-SHAIKH, 2BASEL A. MAHAFZAH, 3MOHAMMAD ALSHRAIDEH

Department of Computer Science, King Abdullah II School of Information Technology, The University of
Jordan, Amman 11942, Jordan

E-mail: 1alaamsh@hotmail.com, 2b.mahafzah@ju.edu.jo, 3mshridah@ju.edu.jo

ABSTRACT

Finding strongly connected components (SCCs) in a directed graph (digraph) has been investigated
extensively. Tarjan’s algorithm is the most fundamental method of finding SCCs in digraphs that uses Depth-
First Search (DFS) and it has a linear time complexity. On the other hand, the Forward-Backward (FW-BW)
algorithm is another well-known method that is based on the divide-and-conquer approach, yet it is time
consuming. In this paper, we introduce a new approach for finding the SCCs in digraphs in linear time using
Grey Wolf Optimizer (GWO), which is a recent metaheuristic algorithm. Experimental results show that
finding SCCs using GWO outperforms FW-BW in terms of run time. In this context, GWO achieved 62.27%
average run time improvement over FW-BW. Furthermore, average solution quality (accuracy) from GWO
compared to the exact algorithm FW-BW is 97.57%.

Keywords: Grey Wolf Optimizer; Strongly Connected Components; Metaheuristic Algorithms;
Optimization Problem; Forward-Backward Algorithm

1. INTRODUCTION

Finding Strongly Connected Components
(SCCs) in directed graphs (digraphs) has many
applications, such as networks and
communications, social networks, data mining,
compilers, and much more [1] [2]. It has
intensively been studied and researched due to its
vitality and importance especially in analyzing
graphs.

Formally, let 𝐺 = (𝑉, 𝐸) be a digraph, such
that 𝑉 = {𝑣ଵ, 𝑣ଶ, … , 𝑣} is a set of vertices (nodes)
in 𝐺, and 𝐸 = {𝑒ଵ, 𝑒ଶ, … , 𝑒} is a set of unweighted
edges in 𝐺, such that each edge 𝑒 connects only
two vertices of 𝑉 together 𝑣 and 𝑣. The existence
of a directed edge between two vertices is
expressed as 𝑣 → 𝑣 , or (𝑣 , 𝑣) ∈ 𝐸, and is said
that there exists and edge from vertex 𝑣 to vertex
𝑣, or alternatively, vertex 𝑣 is adjacent to vertex
𝑣.

A path may exist between two vertices 𝑣௫ and

𝑣௬, expressed 𝑣௫

∗
⇒ 𝑣௬, which means that vertex 𝑣௬

is reachable from vertex 𝑣௫ by a sequence of

distinct vertices 𝑣 , 𝑣 , 𝑣 , …; that is the path 𝑃 is a
sequence of vertices 𝑣௫ , 𝑣 , 𝑣 , 𝑣 , … , 𝑣௬ [3]. Based
on the path definition, a SCC is defined in
Definition 1.

Definition 1. A Strongly Connected Component
(SCC) is a disjoint set of vertices such that there
exists a path from every vertex to every other
vertex in the same SCC [2].

A digraph is strongly connected if there is only
one SCC in that digraph. In other words, a digraph
is strongly connected if there exists a path from
every vertex to every other vertex in the digraph
[4].

Definition 2. A Trivial SCC is a SCC that
contains only one vertex [5].

Based on Definition 2, the smallest-allowed
SCC size is 1. In other words, a vertex by itself is
considered a SCC.

Robert Tarjan was the first to solve the problem
in linear time using a depth-first search technique
[6]. Actually, his main contribution was to provide
a solution to the problem in O(𝑉 + 𝐸) time.

Journal of Theoretical and Applied Information Technology
31st August 2019. Vol.97. No 16

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

4440

Although there were some previous methods used
to find SCCs in digraphs, but none of them was
linear. However, despite its linearity, several
algorithms followed the Tarjan’s algorithm trying
to solve the problem using different techniques that
can be easily parallelized, due to the P-Complete
nature of depth-first search, which is the basis of
the Tarjan’s algorithm, which means that depth-
first search is inherently sequential and is hard to
parallelize [7].

The common feature between all the
algorithms that tried to find the SCCs in digraphs
is that they all tried to find parallel solutions.
Despite the efficiency of the solutions in terms of
parallel run time, their sequential run time was
rather higher than that of the Tarjan’s algorithm.

1.1 Problem Statement

In this paper, we introduce a new approach for
finding the SCCs in digraphs by expressing the
problems as an optimization problem and using
optimization techniques to find solution to that
problem. Basically, optimization techniques are
used to solve NP-Complete problems [8].
Nevertheless, we look at finding the SCCs in a
digraph as a maximization problem, as follows:

𝑚𝑎𝑥𝑖𝑚𝑧𝑒 𝑆𝐶𝐶, 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 𝑆𝐶𝐶 ⊆ 𝑉

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 ∀𝑢, 𝑣 ∈ 𝑆𝐶𝐶(∃𝑢
∗

⇒ 𝑣 ∧ 𝑣
∗

⇒ 𝑢)

The objective is to maximize the SCC
iteratively. This maximization is controlled by the
constraint that each two vertices in the same SCC
are mutually reachable by each other.

We use Grey Wolf Optimizer (GWO) [9] for
the first time to find the SCCs in a digraph. Then,
we compare it with FW-BW [2], a well-known
algorithm for finding SCCs in digraphs.

Like all other metaheuristics, GWO is used to
solve optimization problems by trying to find local
optimal solutions rather than global optimal
solutions [10]. By global optimal solutions we
refer to exact solutions, while local optimal refers
to satisfactory solutions that are not exact. The
compromise between local and global optimal
solutions is in favor of reducing the time required
to find the solution.

In fact, there are several factors that motivate
us for using metaheuristic algorithms, such as
GWO, to find SCCs in digraphs, such as:

 Metaheuristic algorithms are very fast in
returning solutions, albeit solutions are local

optimal, but still they are satisfactory and do
not require too much time, and thus the time
in which a metaheuristic algorithm returns a
solution is much lower than that required by
the search techniques such as Depth-Fist
Search (DFS) or Breadth-First Search (BFS).

 Metaheuristic algorithms are easy to design,
implement, and understand. On the other
hand, the exact algorithms used to find SCCs
in digraphs, they are very difficult to
understand, trace, and implement.

 Metaheuristic algorithms do not require too
much resources. Consider DFS which requires
a large amount of stack and intensive use of
memory locations, in addition to great deal of
backtracking and computation.

 Metaheuristic algorithms are easy to
parallelize. On the other hand, DFS and BFS
are P-Complete and thus there are extremely
hard to parallelize.

The remainder of this paper is organized as
follows: in Section 2, we provide some literature
review related to SCC, metaheuristics, and GWO.
In Section 3, we present the methodology used to
conduct this research, in which we discuss both
FW-BW and GWO algorithms including the
algorithm design and asymptotic run time
complexities. Section 4 presents the experimental
results and their discussion. Finally, conclusions
are made in Section 5 in addition to suggesting
some future work.

2. RELATED WORK

Robert Tarjan [6] was the first to introduce a
linear time solution for finding SCCs using DFS.
Despite its linear time, the Tarjan’s method is
criticized because of the difficulty to parallelize it,
especially that it is based on the P-Complete DFS.

Later, a divide-and-conquer algorithm was
introduced by Lisa K. Fleischer et al [2]. The run
time complexity of the later-referred-to algorithm
as Forward-Backward (FW-BW) [11] is
logarithmic in digraphs where degrees of vertices
are bounded by constant. Nevertheless, FW-BW is
a time-consuming algorithm as long finding a
single SCC in the graph is O(𝑉 + 𝐸).

In 2005, W. McLendon III et al. [12]
introduced an enhancement to the FW-BW by
adding an initial trimming step in order to reduce
the processing time. They implemented they work
in parallel using C and MPI.

Journal of Theoretical and Applied Information Technology
31st August 2019. Vol.97. No 16

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

4441

The FW-BW algorithm was then reconsidered
by S. Hong et al [11] and introduced a solution to
parallelize it by adding some extensions to it. Their
results achieved more than 29x parallel speedup
over the sequential algorithm.

Most enhancement efforts to the problem of
finding SCCs in digraphs were concentrated
around finding parallel solutions that speedup the
processing. Unlike our metaheuristic approach, we
concentrate on finding a speed-efficient sequential
algorithm. Afterwards, parallelization to the
metaheuristic approach can be introduced, so as we
can get a reasonable sequential run time as well as
parallel speedup.

David J. Pearce introduced a space-efficient
algorithm to find SCCs [13]. The author noticed
that the space requirement of the Tarjan’s
algorithm is too high especially when dealing with
real world application where graph sizes are very
large. He introduced a solution to the Tarjan’s
algorithm that reduces the memory requirements.

SCCs were also used in social network analysis
by S. Dhingra et al [1]. They observed that
advertising companies on social networks target
everybody but that causes them losing some users
who feel uncomfortable being targeted in an
unobjective manner. They claim a 15% loss of
audience in response to 10% increase in the
advertising behavior. This is considered a huge
amount of loss provided that the number of social
networks users exceeds billions [14]. They
proposed to apply the detection of SCC in social
network graph (SNG) to group users of a certain
social network based on some criteria in order to
target the intended groups only.

Almost all current methods of finding SCCs in
digraphs use one of two approaches: DFS (or
BFS), or divide-and-conquer, or a combination of
the two. However, these two approaches depend
heavily on the capabilities of the machines on
which the algorithms will run and the
programming language in which the algorithms are
written. Because of the recursive nature of the two
approaches, they incorporate an extensive use of
the machine’s stack memory, which might lead to
stack overflow problems. Furthermore, it also
limits the type of programming languages that can
be used to implement those algorithms. For
instance, not all languages support Tail-Call
Optimization (TCO), such as Java, C#, PHP,
Python, etc. Consequently, programmers are

forced to write their codes in loops to avoid the
stack overflow problem.

Metaheuristics are high-level frameworks that
are used as guidelines for algorithmic designs [10].
Unlike heuristic algorithms, metaheuristics are
problem independent and used to express how to
find a heuristic solution to an optimization problem
[15]. Examples of well-known heuristic search
algorithms are: Local search [16], A* algorithm
[17], and IDA* [18].

 Metaheuristics are classified into single-
solution based and population-based [19]. Single-
solution-based metaheuristics are only concerned
with one solution and keeps on enhancing that
solution by making more and more iterations until
the algorithm stops. On the other hand, population-
based metaheuristics start with a population that
comprises a number of individuals (or initial
solutions) and the operators of the algorithm are
applied to all, or selected, individuals of the
populations which results in better solutions.

Unlike the current approaches, our approach is
based on using a metaheuristic approach rather
than the DFS (or BFS), or divide-and-conquer
approach. All metaheuristic algorithms consist of
three phases: (1) initialization, (2) iteration, and (3)
finalization [9]. Accordingly, a metaheuristic
algorithm uses a simple loop statement that iterates
several times before it stops upon meeting a
predetermined stopping criterion. Thus, there is no
more recursion and dependence on the
specifications of both the machine and
programming language, and there are no more
hardware problems, such as stack overflow, also
the expected run time of the algorithm is faster.

Undoubtedly, parallelizing metaheuristic
algorithms does not incur a huge overhead
compared to DFS-based methods. Also, it does not
require a special type of parallel architecture as in
the divide-and-conquer approach. Metaheuristic
algorithms can run sequentially on one machine or
in parallel on shared-memory or distributed
memory machines.

Metaheuristics gained a massive momentum
due to their tight correlation with optimization
problems. Most optimization problems are NP-
Complete problems that are not proved to have a
polynomial-time solution [8]. However,
optimization is used to find near-optimal (or local
optimal) solutions to this kind of problems in a
reasonable time [10].

Journal of Theoretical and Applied Information Technology
31st August 2019. Vol.97. No 16

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

4442

Optimization is used to solve many problems
in computer science, artificial intelligence, control
systems [20], meteorology [21], Internet and cloud
computing [8] [22].

Metaheuristics were also used in software
engineering discipline. M. Alshraideh et al. used
Genetic Algorithm (GA) to generate test data to
execute branches in programs [23]. They
outperformed other approaches that use single
population in terms of search effectiveness,
execution time, and number of executions.
Moreover, in the field of databases, M. Alshraideh
et al. used GA to test exception codes in Jordan
University Hospital database [24]. In another
work, M. Alshraideh et al. used GA to test oracle
stored program units written in PL/SQL [25].

Grey Wolf Optimizer (GWO) is a population-
based metaheuristic inspired by the living style and
hunting behaviors of grey wolves (or Canis lupus)
and was introduced by Mirjalili et al [26]. GWO is
used extensively in research to solve too many
optimization problems.

Naturally, a pack of grey wolves can be divided
into four types [9]:

1. Alpha (𝛼): wolves that are dominants of the
pack. These are the wolves of highest rank in
the pack and they are responsible of the
decision making.

2. Beta (𝛽): the subordinate wolves that are in the
second level of hierarchy and help alpha
wolves in decision making.

3. Delta (𝛿): wolves that are subordinate to both
alpha and beta wolves, but they are dominant
to the omega wolves.

4. Omega (𝜔): the wolves in the lowest level of
hierarchy. They obey all dominant wolves in
the pack.

Practically, the four types of wolves represent
the GWO solutions. Alpha wolves (𝛼) represent
the best solution, beta (𝛽) represent the second-
best solution, delta (𝛿) is the third best solution,
and finally omega (𝜔) are the remaining solutions
[26].

GWO was used in research to find solution to
different optimization problems and finding
solutions to real-world applications. A. Shaheen et
al. [9] used GWO to solve the travelling salesman
problem (TSP) and it is compared with solutions
based on chemical reaction optimization (CRO)
and GA. They also introduced a parallelization

approach for their GWO solution in a later work
[27] over a hypercube interconnection network.

A hybrid approach between GWO and Whale
Optimization (WO) was introduced by A. Hudaib
et el [28]. The approach was named as WGW and
was used to prioritize software requirements.
Accuracy of the proposed approach recorded 91%.

MAXFLOW-GWO is a solution to the
maximum flow problem using GWO which is
introduced by R. Masadeh et al [29]. They tested
their work on datasets with 50 to 1000 vertices.
They compared their results with results of the
Ford-Fulkerson’s approach to solve this problem.
Results showed that MAXFLOW-GWO
outperformed Ford-Fulkerson’s in terms of run
time.

Furthermore, GWO has also found a foothold
in networking, especially in wireless sensor
networks (WSN) area. Because sensor nodes show
continuous power dissipation through their
lifetime [30], a huge amount of work has been
established around eliminating the power
dissipation, in which optimization played an
important role. In this context, GWO was used to
offer a solution to the node localization problem in
WSNs [31] in order to position unknown nodes in
correct geographical locations. GWO was also
used to design power-efficient protocols for WSNs
[32], enhance the area coverage of the sensor nodes
[33], cluster formation [34], cluster head selection
[35], and many more.

3. METHODOLOGY

We start by discussing the FW-BW algorithm
by presenting its algorithm and run time
complexity in addition to some mathematical
lemmas that FW-BW is based on. Afterwards, we
design a metaheuristic algorithm using GWO to
find SCCs in digraphs. The metaheuristic
algorithm is asymptotically analyzed in order to
compute its run time complexity. Then, both FW-
BW and GWO are implemented, and both
algorithms are set to run on the designated
machine. Results of the two algorithms are
compared together in terms of run time. Moreover,
the correctness of the GWO algorithm is verified
by computing the solution quality of the GWO, or
accuracy, as well as the error rate with respect to
the FW-BW algorithm. Finally, we made our
discussions, draw conclusions and suggest future
work.

Journal of Theoretical and Applied Information Technology
31st August 2019. Vol.97. No 16

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

4443

3.1 FW-BW Algorithm
The FW-BW algorithm is based on both

Lemma 1 and Lemma 2 [2].

Let 𝐺(𝑉, 𝐸) be a digraph, such that 𝑉 is the set
of vertices in 𝐺 and 𝐸 is the set of edges in 𝐺, then
Lemma 1 withstands [12].

Lemma 1. With respect to a given vertex 𝑣 in the
digraph 𝐺, such that 𝑣 ∈ 𝑉, there exists three sets:

1. 𝑃𝑟𝑒𝑑(𝐺, 𝑣): the set of predecessors of vertex 𝑣
in the digraph 𝐺, such that 𝑃𝑟𝑒𝑑(𝐺, 𝑣) = {𝑢 ∈

𝑉|𝑢
∗

⇒ 𝑣}.
2. 𝐷𝑒𝑠𝑐(𝐺, 𝑣): the set of descendants from vertex

𝑣 in the digraph 𝐺, such that 𝐷𝑒𝑠𝑐(𝐺, 𝑣) =

{𝑤 ∈ 𝑉|𝑣
∗

⇒ 𝑤}.
3. 𝑅𝑒𝑚(𝐺, 𝑣): the remainder set that contains all

the vertices that are not predecessors or
descendants of 𝑣 in the digraph 𝐺, such that

𝑅𝑒𝑚(𝐺, 𝑣) = {𝑥 ∈ 𝑉|𝑥 ⇏
∗

𝑣⋁𝑣 ⇏
∗

𝑥} ∎

Based on these three sets, a SCC can be formed
according to Lemma 2 [2].

Lemma 2. A SCC in the digraph 𝐺 that contains
the vertex 𝑣, denoted 𝑆𝐶𝐶(𝐺, 𝑣) is formed by the
intersection between 𝑃𝑟𝑒𝑑(𝐺, 𝑣) and 𝐷𝑒𝑠𝑐(𝐺, 𝑣).
i.e. 𝑆𝐶𝐶(𝐺, 𝑣) = 𝑃𝑟𝑒𝑑(𝐺, 𝑣) ∩ 𝐷𝑒𝑠𝑐(𝐺, 𝑣) ∎

The FW-BW algorithm is presented in
Algorithm 1. The algorithm starts in line 2 by
setting the stopping criteria which stops splitting
the digraph and returns in order for the
backtracking to start. In line 3, a vertex is selected
randomly from the digraph. In line 4, we create a
set of all vertices that can reach vertex 𝑣, i.e.
predecessors of 𝑣, which was randomly selected in
the previous line. All the vertices that are reachable
from vertex 𝑣, i.e. descendants from 𝑣, are
assigned to the set BW in line 5.

According to Lemma 2, line 6 of Algorithm 1
performs an intersection between the forward
component (FW) and backward component (BW).
In lines 8-10, the digraph is split into three distinct
parts, the first contains all vertices that are in FW
but not in the SCC just found (S), expressed as
𝐹𝑊 ∖ 𝑆. The second contains all vertices in BW
but not in S, i.e. 𝐵𝑊 ∖ 𝑆. Finally, the last part
contains all vertices that are in the graph but
neither in FW nor in BW, i.e. the remaining
vertices, expressed 𝑑𝑖𝑔𝑟𝑎𝑝ℎ ∖ (𝐹𝑊 ∪ 𝐵𝑊). The
run time complexity of Algorithm 1 is O(𝑉𝑙𝑜𝑔𝑉)
such that 𝑉 is the number of vertices in the digraph

𝐺 in which all digraph degrees are bounded by a
constant [2].

Algorithm 1 FW-BW(digraph)
Input: digraph – input digraph
Output: SCC
1: begin
2: if empty(digraph) then return;
3: v = random(digraph);
4: FW = Pred(digraph, v);
5: BW = Desc(digraph, v);
6: S = FW ∩ BW;
7: SCC = SCC ∩ S;
8: FW-BW(FW\S);
9: FW-BW(BW\S);
10: FW-BW(digraph\(FW ∪ BW));
11: end;

3.2 Grey Wolf Optimizer (GWO)

In the following subsections we introduce our
algorithmic design for using GWO to find SCCs in
digraphs as well as introducing an analytical
analysis of the run time complexity of the GWO
algorithm.
3.2.1 Algorithm Design

Algorithm 2 lists the steps followed to find the
SCCs using GWO. The algorithm starts by
generating an initial population in line 2. The size
of the population is determined by the parameter
𝑎𝑔𝑒𝑛𝑡𝑠. Each item in the population is called an
agent and has a fitness value. Thus, according to
our problem, an agent is a SCC, and therefore the
fitness of the agent is the number of vertices
contained in that agent.

Initially, each agent is assigned a random
vertex. In other words, initial population contains
trivial SCCs (or trivial agents). This ensures that
all agents contain feasible initial solutions and
eliminates the need to perform a feasibility check
whenever an agent is generated, which in turn
reduces that time required by the algorithm’s
initialization phase.

The initial population is then sorted in a non-
increasing order based on the fitness values of
agents. This is a necessary step so as we can select
the best three agents in the population and assign
them to 𝛼, 𝛽, and 𝛿 respectively, as shown in lines
3-6.

In lines 8-12, each agent of the population tries
to improve its own solution. To do so, the
following steps are incurred by each agent: (1) a
random vertex 𝑣௦௧ௗ from the corresponding
agent is selected, (2) according to Lemma 1, find
the set FW which contains all vertices that are

Journal of Theoretical and Applied Information Technology
31st August 2019. Vol.97. No 16

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

4444

descendent from the selected vertex 𝑣௦௧ௗ , i.e.
that is vertex 𝑣௦௧ௗ can be reached, (3) find the
set BW that contains all vertices that are
predecessors of the selected vertex 𝑣௦௧ௗ
according to Lemma 1, i.e. that is vertex 𝑣௦௧ௗ
is reachable from, and (4) based on Lemma 2,
create a component S as a results of intersecting

both FW and BW sets, such that 𝑆 = 𝐹𝑊 ∩ 𝐵𝑊.
These steps are summarized in the
find_solution_by_agent() function and they
are investigated in details in Algorithm 3.

Algorithm 2 GWO(digraph, maxIterations, agents)
Input: digraph - directed graph, maxIterations - maximum iterations,
 agents – number of agents
Output: Strongly Connected Components (SCCs)
1: begin
2: generate_population(agents);
3: sort_population(DESC);
4: alpha = population[0];
5: beta = population[1];
6: delta = population[2];
7: for i = 1 to maxIterations
8: for j = 1 to agents
9: current_agent = population[j];
10: new_agent = find_solution_by_agent(current_agent); //call Algorithm3
11: population[j] = new_agent ∪ current_agent;
12: end for;
13: sort_population(DESC);
14: alpha = population[0];
15: beta = population[1];
16: delta = population[2];
17: end for;
18: output_best_solution();
19: end;

In line 11, the solution of the new agent is then
joined with the solution of the original agent using
a union operator and the result of the union
operation is set to replace the original agent that
was used to generate this new agent.

Again, in lines 13-16, the population is sorted
in a non-increasing order in terms of the fitness
values of the agents, and the first three agents are
selected as 𝛼, 𝛽, and 𝛿, respectively.

The steps in lines 7-16 of Algorithm 2 are
repeated 𝑚𝑎𝑥𝐼𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠 times in order for the
whole algorithm to complete and a solution is
returned (line 18).

Algorithm 3 lists the steps required by the
function find_solution_by_agent(). The
algorithm creates two partial solutions FW and BW
according to Lemma 1 and Lemma 2 in lines 3 and
4, respectively. It is noteworthy, that we use the
digraph 𝐺 in line 3 to create a forward component
by finding all vertices that are descendant from the
vertex 𝑣. Similarly, we use the transpose graph 𝐺்
to find all components that are descendant from the
vertex 𝑣 in 𝐺் , i.e. the predecessors of 𝑣.

The function create_component() is used
to create a component starting from the vertex
𝑣௦௧௧ passed to the function as a parameter.
Initially, an empty component is created in line 14.
In line 17, the selected vertex is added to the
component. In lines 18-20, we enumerate all
vertices that are reachable from the selected vertex,
and they are added to the component one by one if
they are not already included. In line 21, another
random vertex is selected, and further iterations are
made until there are no more vertices to be
selected. The two partial components are then
intersected using an intersection operator in line 5.
In line 6, a new SCC is returned.

3.2.2 Run Time Complexity
Before we compute the run time complexity of

the GWO algorithm shown in Algorithm 2, we
need to compute the run time complexity of the
function find_solution_by_agent() which is
shown in Algorithm 3 and called by the GWO
algorithm. Thus, the run time complexity of
Algorithm 3 is shown in Lemma 3.

Journal of Theoretical and Applied Information Technology
31st August 2019. Vol.97. No 16

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

4445

Algorithm 3 find_solution_by_agent(agent, G, GT)
Input: agent – the selected agent, G – input digraph,
 GT – transpose of the input digraph
Output: agent – an output agent that represents a SCC
1: begin
2: vstart = select_random_vertex(agent);
3: FW = create_component(G, vstart);
4: BW = create_component(GT, vstart);
5: newAgent = FW ∩ BW;
6: return newAgent;
7: end;
8:
9: Function create_component(G, vstart)
10: begin
11: // G – input digraph, vstart – starting vertex
12: // component – a partial solution
13: v = vstart;
14: component = null;
15: while (v <> null)
16: begin
17: component.add(v);
18: for each adj_vertex ∈ adj[vertex] and adj_vertex ∉ component
19: component.add(adj_vertex);
20: end for;
21: v = random(adj[vertex]);
22: end while;
23: return component;
24: end function;

Lemma 3. The run time complexity of Algorithm
3 is 𝑂(𝑉 + 𝐸).

Proof. We start by finding the complexity of
create_component() function. In the worst-
case scenario, there exists a path from every vertex
to every other vertex in the digraph. This means
that all the vertices of the digraph will be explored,
and thus the body of the while loop will execute 𝑉
times. Consequently, the loop at lines 18-20 will
make 𝐸 iterations. Eventually, there will be 𝑉 + 𝐸
iterations made between the lines 15-22. We
designed the union and intersection operators to
use Boolean arrays, which resulted in a linear run
time complexity. Since the intersection operator in
line 5 of Algorithm 3 is used to intersect two partial
components together, and as long each component
may have all the vertices of the digraph in the worst
case, i.e. if the digraph is strongly connected, then
the complexity of the intersection operator in line
5 is O(𝑉). Now, let 𝐸(𝐿ଶ) be the effort of selecting
a random vertex from the agent which is constant
and is given by O(1), 𝐸(𝐹𝑊) and 𝐸(𝐵𝑊) the
effort of finding the first and second partial
solutions respectively which equals O(𝑉 + 𝐸)
each, 𝐸(∩) the effort of the intersection operator
which equals (𝑉), and 𝐸(𝐿) is the effort of the
return statement at line 6 of Algorithm 3 which is

constant and equals O(1). Then, the run time
complexity (effort) of Algorithm 3, denoted 𝐸(𝐴ଷ)
is computed as follows:

𝐸(𝐴ଷ) = 𝐸(𝐿ଶ) + 𝐸(𝐹𝑊) + 𝐸(𝐵𝑊) +
𝐸(∩) + 𝐸(𝐿)

 = O(1) + O(𝑉 + 𝐸) + O(𝑉 + 𝐸) +
O(𝑉) + O(1)

 = 2O(1) + 2O(𝑉 + 𝐸) + O(𝑉)
 = O(3𝑉 + 2𝐸)
 = O(𝑉 + 𝐸)∎

Based on the above, the run time complexity of
the GWO algorithm given in Algorithm 2 is given
by Theorem 1.

Theorem 1. The run time complexity of finding
the strongly connected components (SCCs) using
the Grey Wolf Optimizer (GWO) is O(𝑉 + 𝐸).

Proof. Line 2 of Algorithm 2 starts by generating
the population by creating a predefined number of
agents, such that the fitness value of each agent is
initially 1, since each agent is assigned a random-
selected vertex. Let the number of agents be 𝑁,
then the effort of generating 𝑁 initial trivial agents,
denoted 𝐸(𝑃), is 𝐸(𝑃) = O(𝑁). In line 3, the
population is sorted in a non-increasing order, its
effort 𝐸(𝑠𝑜𝑟𝑡𝑖𝑛𝑔) is done in O(𝑁𝐿𝑜𝑔𝑁). Finally,
the effort of each statement in lines 4-6 is constant,

Journal of Theoretical and Applied Information Technology
31st August 2019. Vol.97. No 16

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

4446

i.e. O(1). Accordingly, the effort of lines 4-6,
𝐸(𝐿ସି) = O(𝑁𝐿𝑜𝑔𝑁) + 3 × O(1) = O(𝑁𝐿𝑜𝑔𝑁).
Lines 7-17 are dominating Algorithm 2 in terms of
run time complexity. The outer loop will make a
number of iterations 𝑥 that is equal to
𝑚𝑎𝑥𝐼𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠, while the inner loop will make a
number of iterations that is equal to the number of
agents 𝑁. Thus, we need to find the complexity of
these lines prior to finding the complexity of the
whole algorithm given in Algorithm 2. The
complexity of the inner loop (lines 8-12) is denoted
𝐸(𝐿଼ିଵଶ) and is calculated as the sum of selecting
an agent from the population 𝐸(𝐿ଽ) which is
constant, the effort of finding a solution by the
agent 𝐸(𝐴ଷ) as proved in Lemma 3, and the effort
of the union operation between the current agent
and the new agent that is returned by
find_solution_by_agent() function, which
is similar to the intersection operator is also a linear
operator with run time complexity 𝐸(∪) = O(𝑉).
Furthermore, lines 8-12 are repeated several times
that are equal to the number of agents 𝑁. Thus,
𝐸൫𝐿଼ିଵଶ,൯ is computed as follows:

𝐸(𝐿଼ିଵଶ) = 𝑁 × (𝐸(𝐿ଽ) + 𝐸(𝐴ଷ) + 𝐸(∪))
 = 𝑁 × (O(1) + O(𝑉 + 𝐸) + O(𝑉))
 = 𝑁 × O(𝑉 + 𝐸)

∵ 𝑁 ≪ 𝑉 + 𝐸
∴ 𝐸(𝐿଼ିଵଶ) = O(𝑉 + 𝐸)

The effort of lines 13-16 is the same as the effort
of lines 3-6, i.e. 𝐸(𝐿ଵଷିଵ) = 𝐸(𝐿ଷି). Thus, the
effort of Algorithm 2 denoted 𝐸(𝐺𝑊𝑂) is
computed as follows:

𝐸(𝐺𝑊𝑂) = 𝐸(𝑃) + 𝐸(𝐿ସି) + 𝑥 ×
(𝐸(𝐿଼ିଵଶ) + 𝐸(𝐿ଵଷିଵ))

 = O(𝑁) + O(𝑁𝐿𝑜𝑔𝑁) + 𝑥 ×
(O(𝑉 + 𝐸) + O(𝑁𝐿𝑜𝑔𝑁))

 = O(𝑁𝐿𝑜𝑔𝑁) + 𝑥 × ൫O(𝑉 + 𝐸)൯
 = 𝑥 × ൫O(𝑉 + 𝐸)൯

∵ 𝑥 ≪ O(𝑉 + 𝐸)
∴ 𝐸(𝐺𝑊𝑂) = O(𝑉 + 𝐸) ∎

4. EXPERIMENTAL RESULTS

In the following subsections, we introduce our
computing environment which consists of the
machines used as well as the datasets used. We
then present our results and discuss them in detail.

4.1 Environment and Tools
We used a server machine with a dual Intel®

Xeon® CPUs E5-2620 v4 processors each with 2.1
GHz. Each CPU is an 8-core CPU with Hyper-
Threading (HT) support. Totally, we have a

machine with 32 logical processors with 64 GB
RAM. L1 cache is 1 MB, L2 cache is 4 MB, and
L3 cache is 40 MB. The operating system is
Windows Server 2012 R2 Datacenter. We
implement both algorithms, GWO and FW-BW, in
Java 8 using NetBeans IDE 8.2.

We run our experiments on a number of
datasets that are collected from different
benchmarks, these are namely: (1) Koblenz
Networks Collection [36], (2) SNAP database
[37], (3) Any Beat Dataset [38], and (4) the Social
Computing Data Repository at Arizona State
University [39].

The datasets we used in our experiments have
different sizes. The size of the dataset, according
to our implementation, controls the
𝑚𝑎𝑥𝐼𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠 parameter of the GWO algorithm.
Thus, we divide the datasets into four groups with
respect to their sizes.

Table 1 lists the datasets in Group 1 (G1). Sizes
of the datasets in this group ranges between 17 and
219 vertices.

Table 1: Group 1 (G1) Datasets

Dataset name Size LSCC Size
Rhesus 17 16
Bison 28 26
Hens 34 31
Florida ecosystem dry 130 103
Residence hall 219 214

Group 2 (G2) datasets are listed in Table 2.

This group comprises 4 datasets with sizes
between 1,006 and 2,941 vertices.

Table 2: Group 2 (G2) Datasets

Dataset name Size LSCC Size
email-Eu-core 1,006 803
Blogs 1,226 793
UC Irvine messages 1,901 1,294
OpenFlights 2,941 2,868

The third group is Group 3 (G3) and contains

6 datasets with sizes between 12,647 and 220,972
vertices. G3 datasets are listed in Table 3.

Table 3: Group 3 (G3) Datasets

Dataset name Size LSCC Size
Any Beat Dataset 12,647 8,518
FOLDOC 13,358 13,274
Edinburgh Associative
Thesaurus 23,134 7,751
BlogCatalog 88,786 88,784
Buzznet 101,170 95,470
Libimseti.cz 220,972 81,145

Journal of Theoretical and Applied Information Technology
31st August 2019. Vol.97. No 16

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

4447

The last group is Group 4 (G4) with sizes

between 863,846 and 2,523,390 vertices. The
datasets of G4 are listed in Table 4.

Table 4: Group 4 (G4) Datasets

Dataset name Size LSCC Size
Wikipedia talk, Italian 863,846 36,356
Wikipedia talk, Arabic 1,095,799 8,797
Wikipedia talk, Chinese 1,219,243 10,831
Wikipedia talk, French 1,420,367 56,011
Hudong internal links 1,984,484 365,558
Flixster 2,523,390 99,803

The parameters settings for GWO are as

follows:
 𝑎𝑔𝑒𝑛𝑡𝑠: we set this value to 5.
 𝑚𝑎𝑥𝐼𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠: we set the value of this

parameter with respect to the group G1, G2,
G3, and G4 to 2, 10, 32, and 128 respectively.

We set to run each algorithm 30 times. Each
time, we record the run time and solution, and
calculate the solution quality and error rate. Then,
the average run time, average solution quality, and
average error rate are computed for each
algorithm, they are listed in tables and figures for
the purpose of comparisons.

4.2 Results and Discussions
In Table 5, we record the run times and

solutions obtained by both GWO and FW-BW.

Then, we use the values in Table 5 to draw the run
time curves shown in Figure 1.

In Figure 1, we show the run time comparison
between GWO and FW-BW algorithms for all
dataset groups (G1, G2, G3, and G4). Results show
that GWO outperforms FW-BW in terms of run
time for all groups.

As expected, GWO outperforms FW-BW due
to the algorithm design of GWO. The heuristic
nature of the GWO algorithm is the reason of the
fast run times GWO algorithm achieved.
According to the create_component() shown
in Algorithm 3, random vertices are selected at
each iteration of the function rather than all
vertices that are descendent from the selected
vertex as in the case of FW-BW algorithm. This
reduces the run time dramatically especially as the
size of the digraph grows.

On the other hand, when using the function
create_component() to create components,
the selection of random vertices that are
descendant from a given vertex rather than
selecting all descending vertices causes some
degradation to the solution quality, or accuracy, of
the metaheuristic algorithm. Thus, solution quality
(𝑠𝑞) is given in Definition 3.

Table 5: GWO vs FW-BW Solutions and Run Times (Seconds)

Group
Dataset

Size
GWO FW-BW

Solution Run Time Solution Run Time

G1

17 16 3.400x10-04 16 1.826x10-04
28 26 4.682x10-04 26 3.521x10-04
34 31 4.612x10-04 31 4.693x10-04

130 103 5.814x10-04 103 0.003
219 214 0.001 214 0.005

G2

1,006 784 0.014 803 0.027
1,226 733 0.016 793 0.022
1,901 1,262 0.061 1,294 0.065
2,941 2,659 0.048 2,868 0.060

G3

12,647 7,903 0.200 8,518 0.228
13,358 12,752 0.302 13,274 0.327
23,134 7,751 0.427 7,751 0.620
88,786 88,784 9.651 88,784 16.295

101,170 95,470 11.773 95,470 19.802
220,972 81,145 14.632 81,145 24.187

G4

863,846 34,741 42.298 36,356 142.375
1,095,799 8,312 67.920 8,797 265.196
1,219,243 10,249 97.456 10,831 281.280
1,420,367 53,261 147.254 56,011 414.677
1,984,486 365,558 199.812 365,558 729.756
2,523,390 99,803 497.642 99,803 992.472

Journal of Theoretical and Applied Information Technology
31st August 2019. Vol.97. No 16

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

4448

Figure 1: Run Time Comparisons between GWO and FW-BW Algorithms Applied to Four Dataset Groups

Definition 3. Solution Quality (𝒔𝒒) is a measure
of the correctness of the metaheuristic algorithm,
and is measured as a ratio between the fitness value
of the optimized solution (𝑓) and the value of the
exact solution (𝑓௫) as shown in Equation (1).

 𝑠𝑞 =
𝑓

𝑓௫

 (1)

We need also to compare the two algorithms,
the metaheuristic and the exact one in terms of
solution quality. In this context, let 𝑓 ௐை be the
fitness value of the solution generated by GWO
and 𝑓ிௐିௐ be the fitness value of the solution
generated by the FW-BW algorithms, then 𝑠𝑞ீௐை
is the GWO solution quality which is given by
Equation (2).

 𝑠𝑞ீௐை =
𝑓 ௐை

𝑓ிௐିௐ

 (2)

The compliment of the solution quality is
referred to as the error rate and is defined in
Definition 4.

Definition 4. Error Rate (𝜼) is a measure of how
far the solution given by the metaheuristic
algorithm from that given by the exact algorithm,
and is it computed as shown in Equation (3) as a
compliment of the solution quality (𝑠𝑞).

 𝜂 = 1 − 𝑠𝑞 (3)
According to Equations (2) and (3) we

calculate both the solution quality (𝑠𝑞) and the
error rate (𝜂) and list them in Table 6. Then, in
Figure 2 we depict the solution qualities for all
datasets.

According to Table 6 and Figure 2, we can
easily figure out that the minimum solution quality
obtained by running the GWO algorithm on all
datasets is more than 92%. On the other hand, the
maximum error rate obtained is less than 8%.

Also, in Table 6, we calculated the average
solution quality for the GWO algorithm. It is
97.57%, and thus the average error rate is below
2.5%.

Journal of Theoretical and Applied Information Technology
31st August 2019. Vol.97. No 16

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

4449

Table 6: GWO Accuracy and Error Rates

Group Dataset Size Solution Quality (𝒔𝒒) Error Rate (𝜼)

G1

17 100% 0
28 100% 0
34 100% 0

130 100% 0
219 100% 0

G2

1,006 97.63% 2.37%
1,226 92.43% 7.57%
1,901 97.53% 2.47%
2,941 92.71% 7.29%

G3

12,647 92.78% 7.22%
13,358 96.07% 3.93%
23,134 100% 0
88,786 100% 0

101,170 100% 0
220,972 100% 0

G4

863,846 95.56% 4.44%
1,095,799 94.49% 5.51%
1,219,243 94.63% 5.37%
1,420,367 95.09% 4.91%
1,984,486 100% 0
2,523,390 100% 0

Average 97.57% 2.43%

Figure 2: GWO Solution Quality Compared to FW-BW

Our last assessment measure is the
improvement factor which is give in Definition 5.

Definition 5. Run Time Improvement Factor
(𝑰𝑭) is the percentage by which an algorithm has
achieved enhancement over another algorithm. Let
algorithms A and B be two algorithms with run
times 𝑇 and 𝑇 respectively. The 𝐼𝐹 of Algorithm
A over Algorithm B is given by equation (4).

 𝐼𝐹(𝐴, 𝐵) = 1 −
𝑇

𝑇

 (4)

 In Table 7, we calculate the average run time
of each group of datasets for both GWO (𝑇തீௐை)
and FW-BW (𝑇തிௐௐ). Then, we find the
improvement factor for GWO over FW-BW
(𝐼𝐹(𝐺𝑊𝑂, 𝐹𝑊𝐵𝑊)).

80%

85%

90%

95%

100%

So
lu

tio
n

Q
ua

lit
y

Dataset Size (vertices)

Solution Quality of GWO compared to FW-BW

Journal of Theoretical and Applied Information Technology
31st August 2019. Vol.97. No 16

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

4450

Table 7: Improvement Factors

Group 𝑻ഥ𝑮𝑾𝑶 𝑻ഥ𝑭𝑾𝑩𝑾 𝑰𝑭(𝑮𝑾𝑶, 𝑭𝑾𝑩𝑾)

G1 0.00057 0.0018008 68.34%

G2 0.035 0.044 20.11%

G3 6.164 10.243 39.82%

G4 175.397 470.959 62.76%

Average 45.399 120.312 62.27%

According to the results shown in Table 7,
GWO achieved best improvement over FW-BW
by more than 68% for G1 datasets.

In summary, the validity of research is proved
internally and externally. Internal validity is
proved by having results that comply to our
asymptotic analysis which proved GWO to have a
O(𝑉 + 𝐸) run time complexity which is less than
the FW-BW O(𝑉𝐿𝑜𝑔𝑉) run time complexity.
According to our experimental results, we were
able to provide a metaheuristic solution to find the
SCCs in digraphs using GWO in a reasonable time
and solution quality compared to the FW-BW
exact method. On average, GWO achieves 62.27%
improvement over FW-BW. On the other hand,
external validity of the research is proved by
applying the GWO algorithms to different datasets
from different sources which represent different
real-world graphs.

5. CONCLUSIONS AND FUTURE WORK

In this paper, we introduced a metaheuristic
algorithm to find SCCs in digraphs using the Grey
Wolf Optimizer (GWO). First, the worst-case run
time complexity of the GWO algorithm is shown
and proved asymptotically to be O(𝑉 + 𝐸). Then,
we set the GWO algorithm to run against a number
of datasets downloaded from different benchmarks
used frequently in research. We also implemented
a well-known algorithm, which is the FW-BW
algorithm. Experimental results show that GWO
outperformed FW-BW in terms of run time. This
conforms to the asymptotic run time complexity
which is proved to be linear for GWO and
O(𝑉𝐿𝑜𝑔𝑉) for the FW-BW algorithm. It is also
related to the algorithmic design of both
algorithms. Since FW-BW uses the divide-and-
conquer approach to find exact solutions, GWO
uses metaheuristics to find near-optimal solutions
attempting to compromise solution accuracy in
favor of run time. In this context, results also show
that the average solution quality for the GWO

algorithm was 97.57%. Also, GWO achieved
62.27% average run time improvement over FW-
BW.

As a future work, more metaheuristic
algorithms can be designed to find SCCs in
digraphs and compare to GWO or FW-BW. Also,
GWO can also be parallelized and compared to the
sequential GWO. In this context, the problem can
be implemented in parallel using different
interconnection networks such as: the hypercube,
mesh, Chained-Cubic Tree (CCT) [40], as well as
optoelectronic interconnection networks such as:
the OTIS-Hypercube, OTIS-Mesh, OTIS Hyper
Hexa-Cell, or Optical Chained-Cubic Tree
(OCCT) interconnection networks [16] [41] [42].

REFERENCES:

[1] S. Dhingra, P. S. Dodwad and M. Madan,

"Finding Strongly Connected Components
in a Social Network Graph," International
Journal of Computer Applications, vol. 136,
no. 7, pp. 1-5, 2016.

[2] L. K. Fleischer, B. Hendrickson and A.
Pınar, "On Identifying Strongly Connected
Components in Parallel," in International
Parallel and Distributed Processing
Symposium. IPDPS 2000. Parallel and
Distributed Processing, vol. 1800, J. Rolim,
Ed., Berlin, Heidelberg, Springer, 2000, pp.
505-511.

[3] K. H. Rosen, Discrete Mathematics and Its
Applications, 7th ed., McGraw-Hill
Education, 2011.

[4] Y. L. Traon, T. Jéron, J.-M. Jézéquel and P.
Morel, "Efficient Object-Oriented
Integration and Regression Testing," IEEE
Transactions on Reliability, vol. 49, no. 1,
pp. 12-25, 2000.

[5] J. Jeong and P. Berman, "On cycles in the
transcription network of Saccharomyces
cerevisiae," BMC Systems Biology, vol. 2,
no. 1, p. 12, 2008.

[6] R. Tarjan, "Depth-First Search and Linear
Graph Algorithms," SIAM Journal on
Computing, vol. 1, no. 2, p. 146–160, 1972.

[7] J. H. Reif, "Depth-first search is inherently
sequential," Information Processing Letters,
vol. 20, no. 5, pp. 229-234, 1985.

[8] A. Al-Shaikh, H. Khattab, A. Sharieh and A.
Sleit, "Resource Utilization in Cloud
Computing as an Optimization Problem,"

Journal of Theoretical and Applied Information Technology
31st August 2019. Vol.97. No 16

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

4451

International Journal of Advanced
Computer Science and Applications
(IJACSA), vol. 7, no. 6, pp. 336-342, 2016.

[9] A. Shaheen, A. Sleit and S. Al-Sharaeh, "A
Solution for Traveling Salesman Problem
using Grey Wolf Optimizer Algorithm,"
Journal of Theoretical and Applied
Information Technology, vol. 96, no. 18, pp.
6256-6266, 2018.

[10] E.-G. Talbi, Metaheuristics from Design to
Implementation, Wiley, 2009.

[11] S. Hong, N. C. Rodia and K. Olukotun, "On
fast parallel detection of strongly connected
components (SCC) in small-world graphs,"
in SC '13 Proceedings of the International
Conference on High Performance
Computing, Networking, Storage and
Analysis, Denver, Colorado, 2013.

[12] W. McLendon III, B. Hendrickson, S. J.
Plimpton and L. Rauchwerger, "Finding
strongly connected components in
distributed graphs," Journal of Parallel and
Distributed Computing, vol. 65, no. 8, pp.
901-910, 2005.

[13] D. J. Pearce, "A space-efficient algorithm for
finding strongly connected components,"
Information Processing Letters, vol. 116, no.
1, pp. 47-52, 2016.

[14] A. Al-Shaikh, R. Al-Sayyed and A. Sleit, "A
Case Study for Evaluating Facebook Pages
with Respect to Arab Mainstream News
Media," Jordanian Journal of Computers
and Information Technology, vol. 3, no. 3,
pp. 142-156, 2017.

[15] K. Sörensen and F. W. Glover,
"Metaheuristics," in Encyclopedia of
Operations Research and Management
Science, S. I. Gass and M. C. Fu, Eds.,
Springer US, 2013, pp. 960-970.

[16] A. Al-Adwan, A. Sharieh and B. A.
Mahafzah, "Parallel heuristic local search
algorithm on OTIS hyper hexa-cell and
OTIS mesh of trees optoelectronic
architectures," Applied Intelligence, 2018.

[17] B. A. Mahafzah, "Performance Evaluation
of Parallel Multithreaded A* Heuristic
Search Algorithm," Journal of Information
Science, vol. 40, no. 3, pp. 363-375, 2014.

[18] B. A. Mahafzah, "Parallel Multithreaded
IDA* Heuristic Search: Algorithm Design
and Performance Evaluation," International

Journal of Parallel, Emergent and
Distributed Systems, vol. 26, no. 1, p. 61–82,
2011.

[19] I. Boussaïd, J. Lepagnot and P. Siarry, "A
survey on optimization metaheuristics,"
Information Sciences, vol. 237, pp. 82-117,
2012.

[20] L. Pigatto, M. Baruzzo, P. Bettini, T.
Bolzonella, G. Manduchi, G. Marchiori and
F. Villone, "Control System Optimization
Techniques for Real-Time Applications in
Fusion Plasmas: The RFX-mod
Experience," IEEE Transactions on Nuclear
Science, vol. 64, no. 6, pp. 1420-1425, 2017.

[21] Z. Wang, K. Droegemeier and L. White,
"The Adjoint Newton Algorithm for Large-
Scale Unconstrained Optimization in
Meteorology Applications," Computational
Optimization and Applications, vol. 10, no.
3, pp. 283-320, 1998.

[22] A. Al-Shaikh and A. Sleit, "Evaluating
IndexedDB performance on web browsers,"
in 2017 8th International Conference on
Information Technology (ICIT), Amman,
Jordan , 2017.

[23] M. Alshraideh, B. A. Mahafzah and S. Al-
Sharaeh, "A multiple-population genetic
algorithm for branch coverage test data
generation," Software Quality Journal, vol.
19, no. 3, pp. 489-513, 2011.

[24] M. Alshraideh, E. Jawabreh, B. A. Mahafzah
and H. M. A. Harahsheh, "Applying Genetic
Algorithms to Test JUH DBs Exceptions,"
International Journal of Advanced
Computer Science and Applications, vol. 4,
no. 7, pp. 8-20, 2013.

[25] M. A. Alshraideh, B. A. Mahafzah, H. S. E.
Salman and I. Salah, "Using genetic
algorithm as test data generator for stored
PL/SQL program units," Journal of Software
Engineering and Applications, vol. 6, no. 2,
pp. 65-73, 2013.

[26] S. Mirjalili, S. M. Mirjalili and A. Lewis,
"Grey Wolf Optimizer," Advances in
Engineering Software, vol. 69, pp. 46-61,
2014.

[27] A. Shaheen, A. Sleit and S. Al-Sharaeh,
"Travelling Salesman Problem Solution
Based-on Grey Wolf Algorithm over
Hypercube Interconnection Network,"
Modern Applied Science, vol. 12, no. 8, pp.
142-159, 2018.

Journal of Theoretical and Applied Information Technology
31st August 2019. Vol.97. No 16

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

4452

[28] A. Hudaib, R. Masadeh and A. Alzaqebah,
"WGW: A Hybrid Approach Based on
Whale and Grey Wolf Optimization
Algorithms for Requirements
Prioritization," Advances in Systems Science
and Applications, vol. 18, no. 2, pp. 63-83,
2018.

[29] R. Masadeh, A. Sharieh and A. Sleit, "Grey
wolf optimization applied to the maximum
flow problem," International Journal of
Advanced and Applied Sciences, vol. 4, no.
7, pp. 95-100, 2017.

[30] A. Al-Shaikh, H. Khattab and S. Al-Sharaeh,
"Performance Comparison of LEACH and
LEACH-C Protocols in Wireless Sensor
Networks," Journal of ICT Research and
Applications, vol. 12, no. 3, pp. 219-236,
2018.

[31] R. Rajakumar, J. Amudhavel, P.
Dhavachelvan and T. Vengattaraman,
"GWO-LPWSN: Grey Wolf Optimization
Algorithm for Node Localization Problem in
Wireless Sensor Networks," Journal of
Computer Networks and Communications,
vol. 2017, p. 10, 2017.

[32] N. A. Al-Aboody and H. S. Al-Raweshidy,
"Grey wolf optimization-based energy-
efficient routing protocol for heterogeneous
wireless sensor networks," in 2016 4th
International Symposium on Computational
and Business Intelligence (ISCBI), Olten,
Switzerland, 2016.

[33] C. S. Shieh, T. T. Nguyen, H. Y. Wang and
T. K. Dao, "Enhanced Diversity Herds Grey
Wolf Optimizer for Optimal Area Coverage
in Wireless Sensor Networks," in Genetic
and Evolutionary Computing, J. Pan, J. C.
Lin, C. Wang and X. H. Jiang, Eds., Springer
International Publishing, 2017, pp. 174-182.

[34] M. Sharawi and E. Emary, "Impact of grey
wolf optimization on WSN cluster formation
and lifetime expansion," in 2017 Ninth
International Conference on Advanced
Computational Intelligence (ICACI), Doha,
Qatar, 2017.

[35] T. S. Murugan and A. Sarkar, "Optimal
cluster head selection by hybridisation of
firefly and grey wolf optimisation,"
International Journal of Wireless and
Mobile Computing, vol. 14, no. 3, pp. 296-
305, 2018.

[36] J. Kunegis, " KONECT - The Koblenz
Network Collection," in Int. Web
Observatory Workshop, 2013.

[37] J. Leskovec and R. Sosic, "SNAP: A
General-Purpose Network Analysis and
Graph-Mining Library," ACM Transactions
on Intelligent Systems and Technology
(TIST), vol. 8, no. 1, p. 1, 2016.

[38] M. Fire, R. Puzis and Y. Elovici, "Link
Prediction in Highly Fractional Data Sets,"
Handbook of Computational Approaches to
Counterterrorism, 2012.

[39] R. Zafarani and H. Liu, "Social Computing
Data Repository at {ASU}," 2009.

[40] M. Abdullah, E. Abuelrub and B. A.
Mahafzah, "The chained-cubic tree
interconnection network," International
Arab Journal of Information Technology,
vol. 8, no. 3, pp. 334-343, 2011.

[41] B. A. Mahafzah, M. Alshraideh, T. M. Abu-
Kabeer, E. F. Ahmad and N. A. Hamad,
"The optical chained-cubic tree
interconnection network: Topological
structure and properties," Computers &
Electrical Engineering, vol. 38, no. 2, pp.
330-345, 2012.

[42] A. Al-Adwan, B. A. Mahafzah and A.
Sharieh, "Solving traveling salesman
problem using parallel repetitive nearest
neighbor algorithm on OTIS-Hypercube and
OTIS-Mesh optoelectronic architectures,"
Journal of Supercomputing, vol. 74, no. 1,
pp. 1-36, 2018.

