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ABSTRACT 
 

Nowadays, large number of applications of graph clustering are available, with expanding the span of the 
graph the conventional methods of clustering are not appropriate to manipulate this issue which are costly 
for computation. So that, it is necessary to get a good algorithm to tackle this problem. Graph clustering 
algorithms are considered as the most effective techniques for solving various partitioning problems. Global 
graph clustering which based on the whole graph as input isn’t convenient of large graphs. Local graph 
clustering algorithms solve this problem by working on a given vertex as input seed set without looking at 
the whole graph to find a good cluster. This research explores different graph clustering techniques based on 
the input parameters, e.g., local and global, as well as illustrating appropriate applications of graph clustering. 
This paper directed to help new researchers take a summary of graph clustering techniques that can be used 
for graph partitioning. 
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1. INTRODUCTION  
 

Datasets are identified by the big data term 
according to large size and complexity. The 
traditional techniques such as data mining methods 
cannot manipulate big data. Extracting useful 
knowledge or hidden pattern from these large 
datasets based on its velocity, variety, volume, 
veracity, and value is called big data analytics, that 
is a challenge of big data [1]. Graph databases are 
increased in everywhere. Structural relationships 
between objects build a graph model. There are 
many applications for graph model such as social 
networking, biology, chemistry, image processing, 
web link analysis, computer networks, and human 
genome assembly. Graph mining is the process of 
dealing with graph data by utilizing the methods of 
machine learning and data mining to detect useful 
and unexpected patterns [2]. Big graph mining is the 
process of extracting significative information from 
huge data of graph which reaches Tera and Petabytes 
[3]. 

Clustering is the unsupervised procedure. The 
process of splitting a set of input data into two 
categories is called clustering. Based on similarity 
measurements, similar objects are contained within 
the same clusters and dissimilar objects are dispersed 

across various clusters. Graph clustering is the 
process of dividing the graph vertices into groups 
based on if there is inside the group high edge density 
and outside the group low edge density. A cluster is 
formed as a group of vertices.  

Review papers [4, 5] introduce graph clustering 
definitions, and cluster quality measures as well as 
the types of graph clustering algorithms, i.e., global 
and local. Using the whole graph as input for the 
clustering process is called global graph clustering, 
however using a certain seed vertex for the clustering 
process is called local graph clustering. There are 
many applications of graph clustering such as 
correlation clustering, graph partitioning, 
community detection, a protein-protein network, etc. 
Many algorithms of global clustering are described 
in [6,7,8, 9, 10, 11, 12]. 

There are many graph clustering algorithms for 
community discovery problem include Metis [13], 
Graclus [14] and Markov clustering [15]. Moreover, 
local graph clustering algorithms are used to deal 
with community detection such as social and web 
graphs, e.g., [16, 17, 18, 19, 20, 21, 22, 23, 24]. Many 
other local graph clustering algorithms 
with powerful guarantees are presented in [25, 26, 
27, 28]. 



Journal of Theoretical and Applied Information Technology 
15th August 2019. Vol.97. No 15 

 © 2005 – ongoing  JATIT & LLS   

 

ISSN: 1992-8645                                                                  www.jatit.org                                                      E-ISSN: 1817-3195 

 
4076 

 

Conductance is utilized to mensuration the 
connectivity among vertices in a graph. Set 
conductance is calculated through the proportion of 
edges count departuring the set to the edges count 
touched by the set of vertices. The small conductance 

value stands for many internal edges within the set 
and few edges outside it. An efficient cluster is 
chosen by a partition of vertices whose outer links 
are smaller than its inner links. 

2. GRAPH CLUSTERING TECHNIQUES 

Figure 1 overview different techniques of graph clustering. Graph clustering algorithms are divided 
into global and local techniques based on the input parameter. 

 
Figure 1: Different Techniques of Graph Clustering. 

 
3. PRELIMINARIES 

 
An undirected graph is represented by G 

(N, E), which N is the vertex and E is the edge in the 
graph that connects the graph nodes. The graph 

nodes number is n = |N|, and the edges number is m 
= |E|. The vertex degree indicated by d (x) is 
calculated by the edges count related to it. Set S is a 
parition of vertices, vol(S) is the volume of S 
calculated by ∑xs d (x), ∂ (S) is the boundary of S 
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known by edges number departure the set and 
calculated by {(x, y) E | x  S, y S}. A cluster 
conductance of S ((S)) is calculated by | ∂ (S) | / 
min(vol(S), 2m-vol(S)). The conductance is used to 
mensuration the efficiency of the cluster. When the 
conductance value is small this means that high 
efficiency of the cluster, and when the conductance 
value is large this means that low efficiency of the 
cluster. The set S connect by edges with the graph 
remainder S ̅= X \ S, cut(S) = cut(S; S ̅). The vertices 
that share an edge with S but are not belonged to S 
stand for Neigh(S) that is calculated by Neigh(S) = 
{x  S ̅: (x, s)  E for some s S}.  

 
4. GLOBAL GRAPH CLUSTERING 

TECHNIQUES 

 
This section discusses the methods of a 

global clustering for the input graph. Several 
researchers apply the global clustering of sparse 
graphs of million nodes [29, 30, 31]. In a global 
clustering, each vertex of a graph input is allocated 
to a cluster. Newman [32] previews global clustering 
methods. 
 
4.1 Complexity 

This part displays some related problems of 
clustering with reference to a distance function: 
 Minimum k-clustering: k clusters is the goal of 

data set partitioning that is dependent on 
minimizing the distance between clusters. 
Approximation of this problem within a factor 
of two. 

 Minimum k-centre: a group of centres is 
constructed and minimized the distance 
between vertex and the nearest centre. 
Approximation factor of this problem is two. 

 Minimum k-median: minimizing the sum of 
the distances between the vertex and the nearest 
centre whereas maintaining the centre set order 
to be fixed. Approximation of this problem 
within a factor near two. 

 K-means algorithm [33]: K-means is one of the 
most popular algorithms for clustering.  The 
process of clustering points set into n cluster by 
repeatedly providing the middle points of n 
clusters and everyone point is collected to group 
based on the nearest middle point. Choosing the 
middle point is based on minimizing the squares 
sum of the distances of intracluster. 
 

4.2 Iterative or online clustering 
The clustering has two cases are first whole 

data points are clustering at once, and the second is 

one object is cluster at a time to a convenient cluster. 
In iterative clustering, the group tasks that are 
performed for items when processed first can be 
considered either unchangeable or can be changed 
later to improve some computed clustering 
properties. Figure 2 displays the iterative clustering 
algorithm. 

 

 
Figure 2: the iterative clustering algorithm. 

 
The process of online clustering includes 

one datum every time for running the clustering 
algorithm, knowing only the data that has been 
processed previously and has been used the Internet 
to be running. These online clustering algorithms 
supply a fractional process of data clustering which 
is coming from an anonymous stream of data to be 
clustered. 

The online clustering allocates the clusters 
number to be utilized dynamically, usually based on 
a certain value of threshold to detect when a novel 
arriving datum have to be specified to a novel cluster 
rather than being combined into a present cluster. 
Several researches such as found in [34, 35, 36, 37] 
study the method of an online clustering for graphs. 

 
4.3 Hierarchical clustering 

Global clustering is defined by the term 
hierarchical structure, whereas each set of subsets is 
used to consist the upper level, and so on. This is 
even more useful for structuring the hierarchical 
graph to obtain more grouping or two groups are 
combined to get a more section into clusters. A 
dendrogram is the hierarchy clustering like a tree. 
Figure 3 shows the hierarchy clustering dendrogram. 

There are two groups of hierarchical 
clustering algorithms: 
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 Divisive (top-down) 
In divisive approach, it starts with all points 

in the same group, in each iteration the cluster is 
divided up into smaller groups depending on their 
properties, the process is terminated when each 
object belongs to one cluster [38, 39, 40, 41, 42, 43, 
30, 44, 45]. 
 Agglomerative (bottom-up)  

In agglomerative approach, forming an 
independent group is realized by starting with each 
point. It merges objects or groups that are adjacent 
to each other and continues until all the groups are 
combined into one [46, 47, 48, 49]. 

 

 
Figure 3: the hierarchy clustering dendrogram. 

 
4.3.1 Divisive global clustering 

Divise analysis called DIANA which is the 
inverse of agglomerative algorithm. Firstly, it starts 
with the root, whereas a lone cluster includes all 
objects. In each iteration, the different cluster is split 
into two groups. The process is repeated until all 
objects are included in their possess cluster. In this 
section, the diverse standard for defining the position 
to split the graph are described. 

 
4.3.1.1 Cuts 

The graph is partitioned into two groups by 
removing the cut. There are various types of graph 
which are used for the cut including undirected and 
directed graphs. The graphs can also be weighted or 
unweighted. The algorithm of the problem 
maximum-flow minimum-cut is described in [50, 
51, 52]. The dense graph is cut into two or more 
groups rather than partition the graph into two 
groups. The division graph criterion is a low 
conductance [53, 54, 55]. The idea of the 
conductance depends on the boundary of the cluster 
to get excellent values rather than the clusters. 

 
4.3.1.2 Maximum Flow 

A flow network structure is known as a 
directed graph which includes S standing for a 
source, T standing for a sink and many vertices 
linked with edges. Capacity is defined for each edge, 
which is the maximum value of a flow that allowed 
for the edge.  

 
The conditions of the flow network are 

described here: 
 The input flow is equivalent to the output flow 
of any vertex. 
 The flow of each is between 0 and capacity. 
 The sum of flow outside of the source vertex is 
equivalent to the aggregate of flow inside of the sink 
vertex. 
 Skew symmetry is used for edges flow network.  
 

The maximum flow is characterized as the 
maximum flow value which network could permit to 
flow from source to sink. Multiple techniques are 
used to fix the problem of maximum flow such as 
Ford-Fulkerson algorithm [56], Dinic's Algorithm 
[57], Edmond-Karp [58], and Goldberg-Tarjan [59]. 

 
4.3.1.3 Spectral 

The methods of spectral clustering are 
investigated in the survey [60, 61]. Spectral 
clustering [62] measures the matrix of similarity by 
depending on the eigenvector to split objects into 
clusters whereas the objects with high similarity are 
positioned in the same group and the objects with 
low similarity are positioned in the various clusters. 
The similarity matrix is used to build a graph, 
whereas objects represent vertices and the objects 
similarities represent the weights of the edge. 

 
By analyzing the cluster, it contains more 

various objects functions based on the theory of 
spectral graph like MNCut [63], RatioCut [64], NCut 
[63], and MinCut [65]. 

MNCut(∆)= 
cut(Ai, Aഥi)

vol(Ai)

k

i=1

 

where �̅�stands for the complement of A. 
 

The popular function of similarity is 
Gaussian kernel. The similarity is denoted by 𝑤  
between two objects, which is computed by: 

𝑤 = exp (
−𝑑ଶ(𝑠 , 𝑠)

𝜎ଶ
) 
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While the Euclidean distance is 𝑑(𝑠 , 𝑠) between 
two objects, 𝑠 and 𝑠 , the parameter 𝜎 dominances 
the neighborhood widths [66]. Figure 4 shows the 
spectral clustering algorithm. 
 

 
Figure 4: Spectral Clustering Algorithm. 

 
There are many advantages of spectral 

clustering which are simple to execute, the results of 
clustering are good. They do not provide robust 
assumption on the cluster’s statistics, and for many 
thousand points of sparse data is rapid. The spectral 
clustering disadvantages include expensive for 
computation of the large dataset and the parameters 
choice may be critical.  

 
4.3.1.4 Betweenness 

Newman and Girvan [31, 44] force weights 
on the edges which depend on features of the graph 
structure G to cluster an unweighted graph G = (N, 
E). The edge betweenness of (x, y) is the shortest 
routes number that linking any two nodes which use 
the edge to pass through. 

The steps of the algorithm for community 
detection are listed as follows: 
1. Firstly, the whole present edge betweenness in 
the network is computed. 
2. The high betweenness of the edge is deleted. 
3. Whole edges betweenness which influenced by 
the deleted is recomputed. 
4. Iterate step 2 & 3 until there is no edges rest.  

 
The betweenness of the edge e: 


𝜎௦௧(𝑒)

𝜎௦௧
௦,௧ஷ௩

 

where the shortest routes number from s to t is 
represented by 𝜎௦௧ and 𝜎௦௧(𝑒), i.e., shortest paths 
number which use the edge e to pass through.  
 
4.3.1.5 Markov chains and random walks 

Firstly, a graph G and an edge v are given, 
the vertex neighbor is selected randomly, then shift 

to this neighbor, after that this vertex neighbor is 
selected and shift to it, and so on. The way of 
selecting vertices randomly is called a graph random 
walk. 

 
A finite Markov chain with time-reversible 

is called a random walk [67, 68]. There is no big 
distinction between graph random walks theory and 
finite Markov chains theory. On a directed graph that 
have weights, each Markov chain is considered as a 
random walk. On undirected graphs, Markov chain 
with time-reversible is seen like random walks, and 
on regular symmetric graphs, symmetric Markov 
chains are seen like random walks. 

 
The process of stochastic process is 

described by a Markov chain through states set based 
on the matrix of a transition probability. 

Graph G = (N, E) is donated as input, the 
matrix of adjacency denotes by W. The transition 
probabilities matrix of this Markov chain denotes by 
M = (Pij) i, j ∈V  

𝑝 = ቐ

1

𝑑(𝑖)
,        𝑖𝑓 𝑖𝑗 ∈ 𝐸,

0,            𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.

 

 
The diagonal matrix is represented by 

Dii=1/d(i) and the initial distribution by P0. The 
stationary distribution is calculated by π (v) = d 
(v)/2m. Figure 5 presents Random Walk algorithm. 

 
The advantages of random walk are simple 

to perform, no need to know knowledge of graph, 
and the footprint of the memory is small. The 
random walk disadvantages are unexpected cover, 
infinite case is worst and time consuming. 

 

 
Figure 5: The Random Walk algorithm. 
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4.3.2 Agglomerative global clustering 
Agglomerative clustering is also called 

AGNES. This algorithm is considered bottom-up 
approach, whereas each point is treated as one 
cluster (leaf). The two similar clusters are merged 
into novel cluster at each step. This process is 
repeated till all objects are combined into one cluster 
(root). 

 
The steps of AGNES algorithm are listed as 

follows: 
1. Each object is allocated into one cluster and the 

similarities is detected between clusters to the 
same as similarities the objects they include. 

2. Clusters pair that are extreme similar is detected 
and merged then into one cluster. 

3. The novel cluster needs to calculate the 
distances between it and each older clusters. 

4. Step 2 & 3 are repeated until clustering whole 
objects into one cluster with N size. 
 

5 LOCAL GRAPH CLUSTERING 
TECHNIQUES 
 

This section discusses the methods of a 
local graph clustering usage. The local graph 
clustering algorithms take a seed node or group of 
seed nodes as input parameter. These techniques are 
divided into two groups which are spectral methods 
and Flow-based methods. 

 
5.1 Spectral Methods 

There are widespread methods in machine 
learning, applied mathematics, and data analysis 
which are spectral methods because of their best 
achievement in many application and strong theory.  
In undirected graphs, spectral methods perform a 
serious part, the graph has numerous properties 
based on quantities of spectral linked with matrices 
which demonstrate the graph. Networks are split 
large clusters by spectral methods which the edges 
number among cluster are minimized or the 
measurement of quality is maximized like 
modularity. Many techniques of spectral clustering 
are described here. 

 
5.1.1 Mahoney-Orecchia-Vishnoi (MOV) 

Mahoney, Orecchia, and Vishnoi [23] 
introduce a technique to build a locally-biased 
analogue of the second eigenvalue and its associated 
eigenvector. Theoretically and empirically, they are 
explained that this localized vector takes many of the 
perfect characteristics of the global second 
eigenvector. The basic advantage of this method is 
that the perfect solution for LocalSpectral collects a 

lot of the same structural characteristics as the global 
eigenvector, excluding in the locally biased setup. 
This method utilizes concepts from graph theory 
[69]. 

 
The LocalSpectral Optimization Program  

The standard spectral optimization program 
is augmented with the constraint that the output cut 
well-correlated with the input seed set to describe the 
LocalSpectral. The inputs of LocalSpectral are (A, s, 
k) whereas A is donated as a graph, s as a seed vector 
and k as a correlation parameter, in addition to 
working in a vector space ℝV. The LocalSpectral (A, 
s, k) is the program of locally-biased spectral that is 
characterized as 

Min    y T LAy 
                            s.t.      yT DAy = 1 
                                      (yT DA 1)2 = 0 
                                      (yT DA s)2 ≥ κ 

                                                        y ∈ ℝV 

 
LocalSpectral optimal solutions are 

described and displayed that nearly-linear time is 
used to build a solution by fixing a linear equations 
system. The LocalSpectral (A, s, k) optimal solution 
is calculated effectively. 

 
5.1.2 Nibble 

Spielman and Teng [70, 71] present the 
premier nearly linear time for detecting an 
approximate sparsest cut S of a G graph. Nibble 
algorithm starts with a seed vertex υ depending on 
using the random walk algorithm. The inputs of 
nibble algorithms are a graph G, a seed edge υ, a 
conductance  where  (0, 1), a positive integer b, 
and number of steps t. Nibble algorithm calculates a 
sweep cut on the weighted vector that calculated 
before on each step to retrieve the cluster with the 
small conductance value, if it is not obtained it 
continues running. The Nibble algorithm runs in 
time O (2b (log4m)/5) and requires Φ(C) = O (3/ 
log2m). Figure 6 describes the pseudocode of nibble 
algorithm. 

 
Nibble algorithm is based on 

approximating the random walk distributions for t 
steps. The random walk can be computed by P = 
(GD-1+I)/2, where G refers to an unweighted graph 
and D stands for the diagonal matrix. The random 
walk distribution is represented by P(υ) beginning 
with node υ. To round the random walk, the 
truncation process is calculated by 

𝑝(𝜐) = ቄ
𝑝(𝜐)   𝑖𝑓 𝑝(𝜐) ≥ 2𝜖𝑑(𝑖),
0         𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒             
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5.1.3 PageRank-Nibble Algorithm 
Andersen, et al. [72] improved the Nibble 

algorithm running time O (2b log4 m/5) and 
approximation ratio by producing PageRank-Nibble 
algorithm. The execution time of PageRank-Nibble 
is O (2b log3 m/2). To make the cuts, the PageRank-
Nibble uses personalized PageRank vectors. The 
inputs of PageRank-Nibble are a seed vertex υ, a 
teleportation constant α where α  [0, 1], and an 
integer b. The PageRank is calculated by 

pr (α, s) = αs + (1 − α) pr (α, s) W, 
where α is a teleportation a constant [0, 1], s is a 
distribution (preference vector), and W stands for a 
random walk transition. 
 

 
Figure 6: Pseudocode of Nibble algorithm. 

 
There are two distributions p and r which 

are used to approximate a PageRank vector pr (α, s). 
They have the property  

p + pr (α, r) = pr (α, s). 
Where p is an approximate PageRank vector and r is 
a residual vector. Figure 7 presents the PageRank-
Nibble algorithm. 
 
5.1.4 Evolving sets 

Andersen and Peres [73] introduce EvoCut 
algorithm that relies on evolving sets. This method 
emulates the volume-biased evolving set process to 
detect a sparse cut. Furthermore, it is local clustering 
based on random which is a Markov chain on 
vertices sets. This method includes local 
approximation guarantee O (ϕ1/2 log1/2 n) and 
expected work/volume ratio O (ϕ−1/2 polylog (n)). 

 

 
Figure 7: PageRank-Nibble algorithm. 

 
A Markov chain on a group of the vertex set 

of a graph is called evolving set process (ESP). The 
Markov chain transition rule is an easy technique 
which increases or decreases the present set. A 
Markov chain on V subsets is defined as the volume-
biased evolving set process (volume-biased ESP) 
with a transition kernel that is calculated based on 
the following equation: 

𝐾൫𝑆, 𝑆ሗ൯ =
𝜇൫𝑆ሗ൯

𝜇(𝑆)
𝐾൫𝑆, 𝑆ሗ൯ 

where 𝐾൫𝑆, 𝑆ሗ൯ refers to the ESP transition kernel. 
 

The volume-biased ESP is simulated by 
GenerateSample while reaching to a stopping time τ. 
The inputs of the GenerateSample(x, T, B) method 
are a vertex x, an integer T ≥ 0 and an integer B ≥ 0. 
The method creates (S0, . . . , 𝑆த ) as a sample path 
and makes the set 𝑆த as output. Figure 8 displays the 
GenerateSample algorithm. 

 
The input of EvoCut (v, ϕ) algorithm is a 

node v ∈ V as well as a conductance ϕ ∈ (0, 1) as 
target, and generates vertices set as output. Figure 9 
shows the EvoCut algorithm. 

 
5.1.5 HeatKernel 

The heat kernel [74] is a deterministic 
approach, it begins with seed vertices for 
recognizing a community, this is a type of graph 
diffusion. Adjacency matrix is represented by A and 
D stands for the diagonal matrix of degrees that is 
calculated by Dii = di. The random walk transition 
matrix is computed by W = (D−1A)T = AD−1. A graph 
diffusion is calculated by the equation 

df =  𝛼𝑊𝑠
ஶ

ୀ
      (1) 

where ∑i αi =1 and s is a stochastic vector. A small 
conductance community is calculated by a sweep 
procedure using a diffusion f estimate from a seed.  
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The heat kernel equation substitutes αk with 

ti / i! 

ℎ𝑘 = 𝑒ି௧(
௧

!
(𝑊)) s = exp{−𝑡(𝐼 − 𝑊)}𝑠

ஶ

ୀ
    

(2) 
 

This algorithm is called HK-relax because 
of using coordinate-relaxation method for 
approximating h to execute this first approximate 
exp {tW} with its degree N Taylor polynomial, 
TN(tW) then computes TN(tW)s. An equation that 
uses Taylor polynomial to compute an 
approximation for a matrix G is: 

exp{𝐺} = ∑
ଵ

!
𝐺ஶ

ୀ  ≈ ∑
ଵ

!

ே
ୀ 𝐺    (3) 

 

 
Figure 8: The GenerateSample Algorithm. 

 
Figure 9: The EvoCut Algorithm. 

The HK-relax algorithm 

The inputs of this algorithm are transition 
matrix W of a random walk, s as a seed vector, and 
scalar t > 0. The following steps are followed to 
solve the linear system: 
1- The vector of the solution is indicated by y and 

the start nN ×1 residual by r(0) = e1⊗s. The 
vertex i in residual block j is used to indicate 
the entry of r (i, j). 

2- All inputs from r that accept the following 
equation are removed frequently 

𝑟(𝑖, 𝑗) ≥  
ఌௗ

ଶேటೕ(௧)
     (4) 

3- Start by filling the queue Q(r) with the nonzero 
values of r(0) and replace Q(r) values with the 
updates values of r if they satisfy the previous 
equation. 

4- In each stage, pop the top entrance of Q(r), 
recall it r (i, j), and take out that entrance in r, 
doing r (i, j) = 0. 

5- Append r (i, j) to yi. 

6- Append 𝑟(𝑖, 𝑗)
௧

ାଵ
𝑊  to residual block rj+1. 

7- At each entrance of rj+1 that was upgraded, add 
that entrance to the backwards of Q(r) if it 
accepts (4). 

 
The Pseudo-code for the HK-relax 

technique is presented in figure 10. 
 

5.1.6 HeatKernel PageRank 

Heat Kernel PageRank [75] is an altered 
version of PageRank. The parameters of heat kernel 
pagerank are a seed node and heat or temperature 
constant. This algorithm is a random walk 
exponential sum from a seed vertex, measured by the 
temperature. 

 
A G = (V, E) stands for a graph, the random 

walk transition probability matrix W is a matrix 
catalogued by V and is calculated by 

𝑊(𝑢, 𝑣) = ൝

1

𝑑௨

 𝑖𝑓 {𝑢, 𝑣} ∈ 𝐸,

0    𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

Where dv stands for the vertex degree, the adjacency 
matrix is calculated by W = D−1A, and the diagonal 
degree matrix is denoted by D. A G graph includes a 
random walk with a stationary distribution ℼ if G is 
linked and non-bipartite. The stationary distribution 
ℼ is computed by ℼ (u) = du / Σ v dv. 
 

Two parameters are α and the vector of 
preference f are used for PageRank pr α, f that is 
computed by 

𝑝𝑟ఈ, = 𝛼𝑓 + (1 − 𝛼) 𝑝𝑟ఈ,𝑊. 
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The heat kernel pagerank is computed by 
using two factors which are t ≥ 0 as the temperature 
and a vector of preference f. The following equation 
presents the heat kernel pagerank: 

𝑝௧, = 𝑒ି௧ 
𝑡

𝑘!
𝑓𝑊 .

ஶ

ୀ

 

 

 
Figure 10: The Pseudo-code for HK-relax algorithm. 

 
Chung and Simpson [76] present the heat 

kernel pagerank approximation of a graph. Figure 11 
describes ApproxHKPRseed algorithm. This 
algorithm approximates pt, u by an ϵ-approximate 
vector which we denote by 𝑝ෝ௧,௨. The algorithm run 

time is 𝑂(
୪୭൫ఢషభ൯ ୪୭ 

ఢయ ୪୭ ୪୭ (ఢషభ)
).  

 

 
Figure 11: The ApproxHKPRseed Algorithm. 

 
5.2 Flow-based Methods 

A flow-based method is used for improving 
graph cuts. These algorithms use network flow 
thoughts to uncover graph bottlenecks and route as 
much flow as possible. Many flow-based methods 
are described here. 
5.2.1 Max-flow Quotient-cut Improvement 

(MQI) 
Max-flow Quotient-cut Improvement 

(MQI) algorithm [77] is the fast exact a flow-based 
algorithm. MQI improves the expansion or the cuts 
conductance of unweighted or weighted graphs. A 
heuristic partitioner of graph is get by merging MQI 
with Metis. This method detects the best advanced 
between whole cuts. The input parameters of MQI 
are undirected graph G and initial cut. The initial 
graph cut contains two sets which are X and Y = X̅ 
where is the X complement. A novel directed graph 
is constructed dependent on the following steps 
which starts with a version of graph.   
1. Whole Y-side nodes are discarded. 
2. Each edge that links a pair of Y vertices is 

discarded. 
3. Each edge that links a pair of X vertices is 

changed with a two of directed edges, everyone 
with weight a. 

4. Source S and Sink T are added. 
5. Every edge that links a Y node with an X node x 

is changed with an individual directed edge 
begin with S to x, with weight a. 

6. An individual directed edge starts from 
everyone X vertex to T is inserted, with weight 
c. 
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The overall value of a flow is merged with 

the value of flow cross everyone edge to construct 
the solution of this max flow problem. 

 
5.2.2 Flow Improve 

Andersen and Lang [78] introduce Improve 
algorithm. The input of Improve algorithm is a 
vertices subset R and the output is a novel vertices 
subset S that has a minimum quotient cut result. This 
algorithm detects this set S by building and fixing a 
series of s-t minimum cut problems. 

 
The augmented graph GR (α) is built based 

on the input graph G, the set R and a parameter α ϵ 
(0, 1). The two nodes of the minimum cut problem 
which are source s and sink t are added into a group 
of vertices of a G graph to construct a subset of GR 

(α).  The edges set of GR (α) consists of the edges set 
of R plus their weights, as well as adding edges start 
from s to any node v in R with the weight α vol (v) 
and edges begin with any node v in V\R to t with the 
weight α vol (v) f(R), where f(R) = vol (R)/ vol (R̅) ≤ 
1. The sum of edges weight linked to s is equivalent 
to the sum of edges weight linked to t. The problem 
of cut is to partition s and t in the augmented graph 
GR (α) where s  S and t  V\S. Figure 12 shows 
Flow Improve algorithm. 

 

 
Figure 12: Flow Improve algorithm. 

 
5.2.3 Local Flow Improve 

Orecchia and Zhu [79] present the initial 
algorithm that merges the methods of spectral and 
flow to get the best approximation value for local 
graph clustering. This paper introduces 
LocalImprove that is the initial local algorithm of cut 
improvement, whereas the run-time is based on the 
input set size A instead of the whole graph size. 
Orecchia and Zhu [79] introduce two local 
algorithms, LocalFlow and LocalFlowexact. The 
parameters of the algorithm are a graph G, a vertex 
subset A ⸦ V, a constant α (0, 1), and a constant εσ. 

The premier technique, LocalFlow 
combines the local and approximate value of 
maximum flows. LocalFlow is based on utilizing the 
updated release of Dinic's algorithm [80] that runs in 
local. A blocking flow algorithm is designed by 
LocalFlow algorithm that has run-time Õ (vol 
(A)/σ), and this algorithm utilizes Dinic's algorithm 
which the blocking flow algorithm is called 
repeatedly. The aim of the problem of blocking flow 
is detecting a graph s-t flow f. Dinic's algorithm is a 
simple iterative algorithm that begins with a zero-
flow f. A graph blocking flow is calculated and 
represented by BlockFlowG, f (s; t) on each iteration, 
then gather it to the present flow f. It finishes until 
the blocking flow defeats to augment. Figure 13 
describes the pseudocode of the LocalFlow 
algorithm.  

 
Figure 13: Pseudocode of the LocalFlow algorithm. 

 
The second algorithm, LocalFlowexact links 

Andersen and Lang's guarantee [78] that merge local 
and exact maximum flows. The LocalFlowexact 
algorithm is a release of Goldberg-Rao's algorithm 
[81] that runs locally. Figure 14 describes the 
pseudocode of the LocalFlowexact algorithm. 
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Figure 14: Pseudocode of the LocalFlowexact algorithm. 

 
5.2.4 SimpleLocal 

The SimpleLocal [82] uses the existing 
max-flow algorithms to introduce a new strongly-
local flow algorithm. This algorithm is flexible and 
simple to execute and solves the same optimization 
problem as LocalImprove. Firstly, the three-Stage 
Local Max Flow procedure is computed then use this 
for computing the Simplelocal algorithm. 

 
The inputs to build the augmented graph GR 

(α) are G = (N, E) stands for a graph, R ⸦ N stands 
for an initial seed set that is based on the condition 
vol(R) ≤ vol (R̅), and α  (0, 1) is a parameter. 
Firstly, append s that stands for the source node and 
t that stands for the sink node to the graph. Secondly, 
append an edge (s, r) for every each r  R with 
weight αdr. Finally, append an edge (x, t) for every x 
 R̅ with weight α f(R) dx where f(R) =vol (R) \ vol 
(R̅). Figure 15 shows the augmented graph GR (α). 

 
Updating the capacity of the edges starting 

from R̅ to t to αεdw for each vertices w  R̅ where ε 
= f(R) + δ for δ ≥ 0 to construct the modified 
augmented graph G՜R (α, δ). The process of solving a 
series of approximate max flow calculations on G՜R 
(α, δ) for many α values to detect finds a set S with 
low conductance called LocalImprove that is based 
on upgrading Dinic’s max-flow technique [79] and 
detecting blocking flows transaction on the local 
graph that refers to a subgraph of G՜R (α, δ) called the 
local graph. A local subgraph of G՜R (α, δ) is built and 
updated to compute the goal of LocalImprove. A 
three-stage method is improved for exact maximum 
flow calculations on G՜R (α, δ) instead of using 

Dinic’s method to calculate approximate maximum 
flows. 

 

 
Figure 15. The augmented graph GR (α) used by Improve. 

 
5.2.4.1 Three-Stage Local Max Flow Procedure 

3StageFlow is used to calculate of a 
modified augmented graph G՜R (α, δ) maximum s-t 
flow. Local graph L = (NL, EL) is defined as a part of 
the modified augmented graph G՜R (α, δ) that 
includes 
 Add s, t to the graph G՜. 
 Edges starting from s to the R set. 
 Edges between nodes in R. 
 Edges starting from R to Neighbor(R). 
 Edges starting from t to the Neighbor(R). 

 
F is a flow vector that starts with zero 

vector, and flow (F) is aggregated amount of all flow 
starting from s to t. Figure 16 describes the 
3StageFlow flowchart. 

 
Step 1. Expansion 

For much flow in the local graph starting 
from s to t, there is needed to expand graph at the 
start of each repetition. The expanded set of vertices 
is indicated by X. All neighbors of x  G՜ for each 
vertex x  X that are not a portion of L are included 
as well as add the edges between x and whole its 
neighbors. An edge is included between every new 
vertex addition to L and the sink t. The local graph is 
not expanded in the first step, so the set X = ɸ. 

 
Step 2. Max-Flow Computation 

After the first step is completed correctly, 
maximum flow f is calculated by using any available 
max-flow subroutine after extending the local graph 
L. F value is updated to F + f. To structure flow 
residual graph Lf, the capacity cij of an edge in EL is 
changed by cij - fij, where the edge (i, j) flow is 
indicated by fij and the value fij is used to replace the 
capacity cji of an edge in EL. 
Step 3. Updates 
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This step analyzes the flow effects and 
decide if the local graph need to expand. The residual 
graph of f is used to develop the local graph to 
discover an unsaturated edges chain of the vertices 
set that remain connected to s, these vertices set 
called the source set S. 

 
Figure 16: The 3StageFlow flowchart. 

 
5.2.4.2 SimpleLocal Algorithm 

A good conductance cut of SimpleLocal is 
computed by requesting 3StageFlow repeatedly to 
detect the very little α, like that the G՜R (α, δ) 
maximum s-t flow is less than αvol(R). Figure 17 
illustrates the SimpleLocal flowchart. 

 
6 APPLICATIONS OF GRAPH 

CLUSTERING 
 

Graph mining techniques are described in 
many applications to achieve more of enhancements 
in graph clustering. This section presents these 
applications. 

 
Figure 17: The SimpleLocal flowchart. 

 
 Community Detection in Web Applications 

and Social Networks 
Variety actual world graphs are available 

such as social networks, web graphs, and biological 
networks, the problem is detecting communities 
(clusters) of these graphs. Example of applications 
includes dividing the social networks like Facebook 
and LinkedIn into clusters of friends, scientific 
collaboration networks into research communities, 
and World Wide Web into clusters of linked 
webpages. 

 
The individuals are interacted with all other 

inside a group more repeatedly than those outside the 
group this form the community. Community 
detection [83] uses a network for detecting clusters 
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where the memberships of individuals’ group are not 
clearly given. Many algorithms for detecting 
community in graphs are studied by Newman and 
Girvan [84]. 

 
Community is divided into two types, i.e., 

overlapping communities and non-overlapping 
communities which are described in Figure 18. 
• Non-Overlapping communities: It is featured 

with dense connectivity within the community, 
sparse across communities 

• Overlapping communities: It is possible for 
each individual to have many communities 
simultaneously.  
 

The trouble of community detection is 
known as a NP-problem and it has been discussed in 
computer science for decades as the problem of 
graph partitioning.  Numerous algorithms have been 
suggested, including spectral clustering, random 
walk-based methods, modularity-based methods, 
hierarchical clustering, and user profile based 
methods.  

 

 
Figure 18: Non-Overlapping Communities and 

Overlapping communities. 
 

 Discovery of protein complexes 
The biological functions are carried out by 

proteins which reacting as complexes. The serious 
job is discovering the proteins complexes that could 
realize the link between biological network 
functions and structures as well as predicting the 
unknown proteins function.  

 
In the period of proteomics, massive data of 

protein interactions have been created from many 
experimental techniques and computational 
methods. They are used to forecast protein function 
and discover protein complexes from the networks 
of protein–protein interaction (PPI) [85].  

 
The rules of cellular organization and 

biological functions of proteins are understood to 
help the protein complexes prediction. A PPI 
network is constructed as an undirected graph, where 
proteins are illustrated by nodes and proteins 
interactions are symbolized by edges. Proteins react 
with others like a compound to implement their 
biological functions in cells, like DNA replication, 
transcription and protein degradation. Thus, in PPI 
networks, the dense subgraphs are known as protein 
complexes. 

 
PPI network has clusters that are extremely 

interconnected or heavy areas which may illustrate 
complexes.  The process of identifying protein 
complexes is like detecting the clusters of the graph. 
Protein complexes are identified by improving many 
algorithms of graph clustering by utilizing the 
information encoded in the network topology. 

 
 Image segmentation 

An image is a way of transferring 
information which includes much valuable 
information. There is a serious region in digital 
image technology application to understand and 
extract useful information from the image. The 
initial step is the image segmentation to understand 
the image. 

 
Image pixels are classified dependent on 

some criteria by using image segmentation method 
[86] that splits an image into discrete regions 
numbers, where the pixels include large similarity in 
every region and large dissimilarity among regions. 
Image segmentation is an important tool in various 
regions such as image processing, health care, 
pattern recognition, and traffic image. Image 
segmentation have various techniques such as 
cluster-based, edge-based, neural network-based, 
and threshold-based. 

 
This problem is studied by many 

researchers and different techniques are introduced 
for image segmentation. These techniques are 
partitioned into many groups which are clustering 
(fuzzy and hard), histogram thresholding, region 
splitting and merging, region growing, physical 
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model-based, edge-based, neural network and 
genetic algorithm based approaches, and fuzzy 
approaches. 

 
7 COMPERHENSIVE REVIEW 

Table 1 shows the discussed global graph 
clustering algorithms. Table 2 shows the discussed 
local graph clustering algorithms. 
 

Table 1: Comprehensive Review of Global Graph Clustering Methods.

 Global Graph Clustering  
Complexity Methods 

Algorithm Year Reference 
K-means  1979 Hartigan and Wong [33] 

Iterative or Online Methods 
Algorithm Year Reference 

Online or Iterative clustering 2011, 2007, 
2002, 2010 

Li et al. [34], Zanghi et al. [35], Toussaint [36], Seeland et 
al. [37] 

Hierarchical Methods 
Divisive Hierarchical Clustering 

Algorithm Year Reference 
Cuts 2001, 1956 Cormen et al. [50], Elias et al.[51], Ford and Fulkerson[52] 
Maximum Flow 1956,1970, 

1972, 1988 
Ford and Fulkerson [56], Dinic's [57], Edmond and Karp 
[58], and Goldberg-Tarjan [59]. 

Spectral 1992 Hagen and Kahng [62] 
Betweenness 2003, 2004 Newman and Girvan [44, 31] 
Markov Chains and Random Walks 1996, 2001 Lovász [67], Aldous and Fill [68] 

Agglomerative Hierarchical Clustering 
Algorithm Year Reference 

Agglomerative clustering (AGNES) 2003, 2004, 
2007 

Carrasco et al. [46], Donetti et al. [47], Du [48], Hopcroft 
et al. [49] 

Table 2: Comprehensive Review of Local Graph Clustering Methods.

Local Graph Clustering 
 Spectral Methods  

   
Algorithm Year Reference 

Mahoney-Orecchia-Vishnoi (MOV) 2012 Mahoney et al. [23] 
Nibble 2004, 2013 Spielman and Teng [70, 71] 
PageRank Nibble 2006 Andersen et al. [72] 
Evolving Sets 2009 Andersen and Peres [73] 
Heat Kernel 2014 Kloster and Gleich [74] 
Heat Kernel PageRank 2009 Chung [75] 

Flow-based Methods 
Algorithm Year Reference 

Max-flow Quotient-cut Improvement 
(MQI) 

2004 Lang and Rao [77] 

FlowImprove 2008 Andersen and Lang [78] 
Local FlowImprove 2014 Orecchia and Zhu [79] 
SimpleLocal 2016 Veldt et al. [82] 

 
8 CONCLUSION 

 
This paper provides an overall review of 

different graph mining methods. Firstly, it 
demonstrated the related work of graph clustering. 

Secondly, it dealt with many graph clustering 
techniques that based on the input data with more 
details. Finally, it described some of the applications 
of using these techniques to improve the clustering 
process.  
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There are many applications of graph 

clustering in computing, because of large graphs, the 
traditional clustering methods can be expensive for 
computing the real-world graphs of interest. Global 
graph clustering methods require the whole graph as 
input, so it is not appropriate for partitioning, but the 
local graph clustering methods require a given seed 
node or set of seed nodes to get the 
cluster. Scalability problems led to the development 
of local graph clustering algorithms. 
 

As discussed in this article, graph clustering 
methods are classified into groups, i.e., global and 
local. From this review, it noticed that local graph 
clustering methods resolve the problem of 
partitioning which based on a given node as input 
seed set to get a good cluster without looking at the 
whole. This review assists the researchers in a graph 
clustering to select the appropriate method from 
these different methods to partition the graph 
efficiently. 

 
Besides previous algorithms, the 

investigations on the algorithms are still being done 
and new algorithms are being developed continually. 
Local graph clustering can be easily understood, 
faster than traditional algorithms that touch the entire 
graph and find good clusters in a graph with work 
proportional to the size of the cluster rather than that 
of the entire graph. For future works, we suggest 
developing local graph clustering algorithm. 
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