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ABSTRACT 
 

Mutants are erroneous forms of the source code generated by deliberately inserting one fault (first-order 
mutant) or more (higher-order mutant) into the source code. Smart mutants that require numerous numbers 
of test cases to be killed are called Subtle Mutants (SMs). These mutants are required in order to increase 
the efficiency and effectiveness of test cases. Creation of these mutants is an expensive step especially in 
higher-order mutation testing. Data-flow analysis has been effectively applied to create higher-order 
mutants and overcome the explosion problem. To the best of our knowledge, subtle mutant generation with 
the aid of data-flow concepts and identifying them among all mutants have not been studied adequately. In 
this paper, an empirical study to evaluate the impact of data-flow analysis on the subtlety of higher-order 
mutants is introduced. Therefore, this study discusses two research questions: which mutants are more 
subtle data-flow based second order mutants (DFSOMs) or their constitute FOMs mutants? And which 
mutants are harder to be killed or covered DFSOMs or all du-pairs criterion? The results of the conducted 
experiments showed that the subtlety of data-flow based second order mutants (DFSOM) is higher than 
their constitute first-order mutants by 6% in average. In addition, DFSOM criterion dominates all du-pairs 
criterion and covering (killing) DFSOM criterion is harder than covering all du-pairs criterion by 14.6% in 
average.  

Keywords: Mutation Testing, Higher-Order Mutants, Subtlety Mutants, Data-flow analysis. 
 
1. INTRODUCTION 

 
Mutation testing concept has been initialized by 

DeMillo et al. [1] and Hamlet [2]. Techniques of 
mutation testing can be applied for measuring the 
effectiveness of any test suite, simulating any test 
criterion, and finding the required test inputs [3], 
[4]. To measure the quality of a test suite, mutants 
are run against the test suite. Then, the quality of 
the test suite can be estimated by the mutation score 
which is the ratio of mutants recognized by this test 
suite. For simulating a test criterion, mutants can be 
created by seeding faults at specific positions. For 
generating test data, inputs can be created for 
killing the mutants. 

Recently, mutation testing has been classified 
into two major methodologies. The first 
methodology is the traditional or the original one 
suggested by DeMillo et al. [1] and Hamlet [2]. 
This methodology concentrates on applying 
mutation testing concepts on first-order mutants 
(FOMs) which are constructed by placing single 
fault in the source code [5], [6], [7]. The second 

methodology is higher-order mutation testing 
advocated by Jia and Harman [8]. This 
methodology is generalization of the traditional one 
and concentrates on higher-order mutants (HOMs) 
which are created by injecting the source code by 
two or more faults [8], [9]. Smart mutants that 
require numerous numbers of test cases to be killed 
are called Subtle Mutants (SMs) [10]. These 
mutants are required to increase the efficiency and 
effectiveness of test cases. Creation of these 
mutants is an expensive phase especially in higher-
order mutation testing.  

Although, there are a lot of techniques to 
construct the FOMs and HOMs and reduce their 
number, a very few number of techniques have 
been presented to construct SMs.  

Acree [5] and Budd [6] applied mutant sampling 
method to decrease the number of mutants. 
Agrawal et al. [11] and Mathur [12] reduced the 
number of mutants by reducing the number of 
mutation operators. Offutt et al. [7] and [13] used 
selective mutation approach which elects a small 
set of operators to produce a subset of all potential 
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mutants without losing test effectiveness. Husain 
[14] employed clustering algorithms to pick out a 
subset of mutants. Second-order mutation testing 
[15], [16], [17], [18], [19], [20] and [21] in 
particular, and higher-order mutation testing [8], 
[22], [3], and [10] in general, have been 
successfully applied to reduce the number of 
mutants [9].  

Jia and Harman [8] and [10] presented the 
conceptions of subsuming higher-order mutants. 
They claimed that the subtle higher-order mutants 
can be considered as the subsuming higher-order 
mutants, which are harder to be killed than the first-
order mutants from which they are composed [10]. 
In addition, they presented the conceptions of 
strong subsuming higher-order mutants, which can 
only be killed using a subgroup of the overlapped 
test cases that kill each first-order mutants from 
which they are composed [10]. They presented a 
search based methodology for identifying the 
subsuming higher-order mutants [10]. Jia and 
Harman introduced a measure in terms of the 
number of test cases for the subtlety of both first 
and higher-order mutants. By definition, this 
measure is the quotient of the ratio of number of 
test cases that kill HOMs out of the total number of 
test cases and the ratio of the number of test cases 
that kill FOMs out of the total number of test cases 
[10]. If this measure is greater than 1, this means 
that the higher-order mutant is weaker than the 
first-order mutants from which it is composed. If 
this measure is 0, this means that the HOM is a 
potential equivalent HOM. From 1 to 0, the higher-
order mutant turns out gradually to be stronger than 
the first-order mutants from which it is composed. 
Langodn et al. [3] employed genetic programing for 
finding set of hard to kill higher-order mutants. 
They proposed a multi-objective fitness function 
based on the semantic and syntactic distances. The 
semantic distance is defined as the number of test 
cases which cause a mutant and original program 
act in a diverse manner. The syntactic distance is 
defined as total number of changes in the logical 
control structure. In addition, Harman et al. [23] 
studied the potential enhancement in the efficiency 
and effectiveness of the test due to using the 
strongly subsuming higher-order mutants. 

Omar and Ghosh [24] suggested four approaches 
for generating higher-order mutants in AspectJ 
applications. They assessed the proposed 
approaches in terms of their power to improve test 
effectiveness by generating hard to kill mutants and 
their power to reduce test effort by reducing the 
number of mutants compared to first-order mutants. 
Omar et al. [25], [26] and [27] proposed set of 

search guided approaches to create subtle higher-
order mutants. They proposed a new fitness 
function to evaluate the subtlety of the mutants. 
This function uses two metrics: fault detection 
difference between the higher-order mutant and its 
constitute first-order mutants, and difficulty of 
killing this higher-order mutant.  

Nguyen and Madeyski [28] discussed some 
mutation testing problems and reviewed the 
approaches for constructing the good higher-order 
mutants. They continued their work and proposed 
in [29], [30], [31], [32], [33] a multi-objective 
optimization algorithm to create valuable higher-
order mutants. Nguyen [34] compared the subtlety 
of higher-order and first-order mutants. They 
demonstrated that half of all generated higher-order 
mutants are harder to kill than its constituent first-
order mutants. 

Abuljadayel and Wedyan [35] proposed an 
approach for generating higher-order mutants and 
reducing the number of equivalent mutants. The 
proposed approach employed genetic algorithm to 
find the hard to kill higher-order mutants.  

In earlier work, Ghiduk [21] employed the 
concepts of data flow analysis to reduce the number 
of higher-order mutants by electing specific 
locations in the tested program to be mutated. 
Ghiduk's approach mutates only the locations of def 
points and use points to construct the mutants 
leading to reduce their number. In this method, a 
second-order mutant can be constructed by seeding 
two mutations one at the def point and the second 
mutation at the use point of the same def-use pairs. 
Besides, Kintis and Malevris [36] employed these 
concepts to detect equivalent mutants. Recently, 
Ghiduk et al. [37] introduced a systematic literature 
review for higher-order mutation testing techniques. 
All higher-order mutation testing issues and all 
approaches which handled these issues are 
discussed by that work. To the best of our 
knowledge, data flow analysis concepts [38], [39] 
have been effectively used in many software testing 
aspects specially test data generation [40], [41]. 
Although Ghiduk [21] introduced an approach 
based on data flow for generating the higher-order 
mutants and reducing their number, the data flow 
concepts have never been applied for finding the 
subtle higher-order mutants.  

The main contribution of this paper is conducting 
an empirical evaluation of the subtlety of the class 
of higher-order mutants which are generated by the 
aid of data flow. This empirical study considers the 
following research questions: 

RQ1: Which mutants are more subtle DFSOMs or 
their constitute FOMs mutants? 
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RQ2: Which mutants are harder to be killed or 
covered DFSOMs or all du-pairs? 

The remainder of this paper is structured as 
follows. Some important basic concepts and 
definitions are given in Section 2. Section 3 
presents brief description for generating data flow 
based higher-order mutants. The details of this 
empirical study and its results are presented in 
Section 4. The previously published research and 
the related work are presented in Section 5. Section 
6 introduces the conclusion of this paper and the 
future work. 

 
2. BACKGROUND 
 

In this section, some basic concepts that will be 
used throughout this work are presented. 

2.1 Mutation testing  

Mutation testing [1], [2], [5] and [6] needs three 
necessary inputs: the tested program, the mutation 
operators, and test suite. Mutation testing is 
performed according to the following procedure. 
Firstly, the tested program is executed against the 
test suite to verify its correctness. If it holds faults, 
it must be corrected in advance before continuing 
the mutation testing procedure. Secondly, a class of 
mutants is created by seeding faults into the tested 
program using the mutation operators. A mutant is 
formed by creating one or more minor change into 
the source program. Thirdly, all mutants and the 
tested program will be executed against the test 
suite. If the outputs of executing a mutant are not 
the same outputs of executing the tested program 
for any test case in the test suite, this mutant is 
called "killed mutant" otherwise it is called "alive 
mutant". Alive mutant can be killable mutant or 
equivalent one which has similar behavior as the 
tested program and needs extra human work to kill 
it [16]. The quality of the test suite can be evaluated 
by the mutation score (MS) formula [42].  

𝑴𝑺 ୀ
# 𝒐𝒇 𝒌𝒊𝒍𝒍𝒆𝒅 𝑴𝒖𝒕𝒂𝒏𝒕𝒔

𝑻𝒐𝒕𝒂𝒍 𝒏𝒐.  𝒐𝒇 𝑴𝒖𝒕𝒂𝒏𝒕𝒔ି 𝒏𝒐.𝒐𝒇 𝑬𝒒𝒖𝒊𝒗𝒂𝒍𝒆𝒏𝒕 𝑴𝒖𝒕𝒂𝒏𝒕𝒔
 (𝑬𝒒. 1) 

For instance, Table 1 presents a source code 
segment p, two first-order mutants FOM1 and 
FOM2 and a second-order mutant SOM formed by 
merging FOM1 and FOM2. FOM1 is constructed by 
replacing the "!=" operator in the source code p 
with the "<" operator in the mutated code p'. FOM2 
is constructed by replacing the "= =" operator in the 
source code p with the ">" operator in the mutated 
code p'. In addition, Table 1 presents a test input 
which kills FOM2 and SOM but it cannot kill FOM1.   

Despite of the effectiveness of mutation testing 
in assessing the quality of the test suite, it has three 
main weaknesses. These weaknesses are the 
massive number of mutants, equivalent mutant, and 
realism problem [9]. A great number of mutants can 
be formed during the mutant generation stage even 
for trivial programs. The code segment p can be 
mutated into at least 12 first-order mutants by 
applying only the six relational operators (= 
=, !=, >, >=, <, and <=) and the three conditional 
operators (&&, || and ^). Therefore, the execution 
of mutants (third step of mutation testing) is very 
costly. For example, if the segment code p has 100 
test cases, it needs (1+12)*100 = 1300 executions 
[9]. To minimize the execution cost, Howden [43] 
suggested weak mutation [44] in which result of 
mutant is checked immediately after executing the 
mutated component to see if the mutant is killed or 
not. Besides, mutants don't represent realistic faults 
due to they are formed by simple syntactic changes 
but 90% of real faults are complex [3]. Subtle 
mutants can help in overcoming this problem [3]. 
Furthermore, many mutation operators can produce 
equivalent mutants [16].  

Table 1: An Example of Mutation Operation 

Tested Code p 
Mutated Code p' 

FOM1 FOM2 SOM 
if (m != 0 && 

n  = = 0 ) 
if (m < 0 

&& n = = 0 ) 
if (m != 0 

&& n > 0 ) 
if ( m < 0 

&& n > 0 ) 
Test input:  

m = -5, n = 0 
Output of p is:  

true 

Output of p' 
is: true 

alive mutant 

Output of p' 
is: false 
killed 
mutant 

 Output of p' 
is: false 

killed mutant 

 

2.2 Higher-Order Mutation Testing 

Higher-order mutation testing (HOMT) is 
considered an expansion of classical mutation 
testing. Therefore, HOMT is performed using the 
same procedure of the classical mutation testing 
given in subsection 2.1. Higher-order mutants are 
built by inserting two or more mutations into the 
source code or by merging two or more first-order 
mutants [8].  

Recently, higher-order mutants are divided into 
two main categories: subtle mutants and naive 
mutants. Subtle mutants are those hard to kill (i.e. 
those mutants that need wide range of test cases to 
be killed). Naive mutants are those easy to kill (i.e. 
those mutants that can be killed by most of the test 
cases). Jia and Harman [8] categorized higher-order 
mutants to six types based on the way that they are 
coupled or subsuming. Coupled higher-order 
mutants are those mutants that are coupled to first-
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order mutants. Subsuming higher-order mutants are 
those mutants that their constituent mutants partly 
mask one another. In formal, these six types are 
defined as follows. Suppose that h is a higher-order 
mutant formed from n first-order mutants (fi, i = 1... 
n) and T is the current test suite. Let T୦ ⊂ T is the 
set of test cases which kills h and T୧ ⊂ T is the set 
of test cases that kills the constituent first-order 
mutant fi . The mutant h is: strongly subsuming and 
coupled if T୦ ⊂ ⋂ T୧୧  and T୦ ≠ ∅ ; weakly 
subsuming and coupled if  |T୦| < |⋃ T୧୧ |, T୦ ≠ ∅ 
and T୦ ∩ ⋃ T୧ ≠ ∅୧ ; weakly subsuming and 
decoupled if |T୦| < |⋃ T୧୧ |, T୦ ≠ ∅  and T୦ ∩
⋃ T୧ =  ∅୧ ; non-subsuming and decoupled if |T୦| ≥
|⋃ T୧୧ |, T୦ ≠ ∅  and T୦ ∩ ⋃ T୧ ≠  ∅୧ ; non-
subsuming and decoupled if T୦ =  ϕ  (equivalent); 
non-subsuming and coupled if |T୦| ≥
|⋃ T୧୧ |(useless). 

2.3 Data Flow Analysis 

The structure of any program can be modeled 
graphically by the control flow graph. A control 
flow graph comprises of a group of nodes and a 
group of edges. Each node represents a statement of 
the program code and each edge is an ordered pair 
of two adjacent nodes. A path is a series of nodes, 
from the entry node to the exit one, connected by 
edges [45] and [46]. 

Instead of the logic or control structure of the 
program data flow testing is centered on the role of 
variables (data) in the code [38]. Therefore, data 
flow analysis focuses on finding all “Definition-
Use Associations (dua)” for each variable x in the 
tested program. Each dua consists of a triple (x, d, 
u) in which d is a statement holding a definition of x 
and u is a statement holding a use of x that can be 
reached by d through some paths [39], [40]. If the 
value of a variable x is assigned or changed in a 
statement, this operation is called a definition (def) 
of x. In addition, if the value of the variable x is 
used in a statement and not changed, this operation 
is called a use of x. If the use is located in a 
predicate, it is called p-use. Besides, if the use is 
located in a computation statement, it is called c-
use.  

3. DATA FLOW BASED HIGHER-ORDER 
MUTANT 

This section describes briefly our early work 
[21] for constructing higher-order mutants. In this 
work, using the data flow concepts we presented a 
technique [47] for constructing higher-order 
mutants and decreasing their number through 
decreasing the number of mutated positions in the 
tested program. Figure 1 presents the algorithm of 

this technique. This technique has two main phases 
which can be summarized as follows.  

Data flow analysis phase: This phase applied 
the method presented by Allen and Cocke [47] on 
the tested Java program to find all dua in it. 

Second-order mutant generation phase: This 
phase uses all dua to create the higher-order 
mutants. It considers the locations of def points and 
the locations of use points as locations to be 
mutated. For producing a second-order mutant, two 
mutation operators are seeded into the tested 
program such that the first mutation is seeded at the 
def site and the second mutation is seeded at the use 
site and the two sites belong to the same dua. 
Therefore, this technique requires three main inputs 
(dua positions, mutation operators, and the tested 
program) to create higher-order mutants without 
requiring the first-order mutants. To perform its 
task, this technique uses two main functions. The 
first function is Operator.select() which applies 
various methods to choice two mutation operators 
to seed them into the original code. The used 
operator selection methods are: 1) not selected yet 
which selects two operators that were not selected 
so far; 2) different operator which selects two 
different operators; and 3) different category which 
selects each operator from one category such as 
arithmetic, relational, conditional, and logical 
categories. The second function is 
allDefUsePairs.select() which selects one def-use 
pairs to be mutated. For creating mutants of order 
greater than the second order, the algorithm given 
in Figure 1 is applied number of times more than 
one time with exchanging the input program to be 
the output program of the preceding cycle.  

 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 

 

Algorithm DataFolwBasedSOM(program, 
allDefUsePairs[], operators[])  
let secondOrderMutants =Ø 
while allDefUsePairs.size() > 0 do 
        while !(oprators.empty()) do 
 op1 = oprators.select(); 
 op2 = oprators.select(); 
 du= allDefUsePairs.select(); 
 newMutant=program.mutate(op1, op2, du); 
 secondOrderMutants.update(newMutant); 
       end while 
end while 
return secondOrderMutants; 

Figure 1: Algorithm for generating second-order mutants. 
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4. THE EMPIRICAL EVALUATION 
PROCEDURE 

4.1 Empirical Studies Guidelines 

Scholars introduced a preliminary set of 
research guidelines for designing, conducting and 
evaluating empirical studies [48], [49]. Kitchenham 
et al. [49] introduced guidelines for the key areas: 
“experimental context”, “experimental design”, 
“conduct of the experiment and data collection”, 
“analysis”, “presentation of results”, and 
“interpretation of results”. In this empirical 
evaluation research, the procedure proposed by 
Kitchenham et al. [49] and the guidelines which are 
applicable for this empirical study are followed. 
These guidelines are collected and summarized in 
Table 8. 

The following sections present how our study is 
performed according to these guidelines. 

4.2 Experimental Context 

Although standard contextual information aids 
in comparing the related studies or replicating them 
and understanding tools and techniques, 
unfortunately software engineering doesn’t have 
definite standards for deciding which contextual 
information would be involved in the “study 
design”, gathered throughout the study, and 
reported in the results [49].  

According to Table 8, our empirical study 
discussed the similar studies in section 2. In 
addition, the hypotheses of this study are: 
H1: Higher-order mutants can be generated by 

aiding of data flow analysis concepts. 
H2: Data flow analysis concepts have the ability 

to reduce the number of higher-order 
mutants.  

The addressed research questions of this study are: 
RQ1: Which mutants are more subtle DFSOMs or 
their constitute FOMs mutants?; 
RQ2: Which mutants are harder to be killed or 
covered DFSOMs or all du-pairs? 
4.3 Experimental design 

The population from which the subjects are 
selected is Java programs which have been used in 
the previous similar researches. To conduct our 
empirical study, set of Java programs from the 
earlier researches has been selected. These 
programs include benchmarks such as Mid, 
Remainder, Triangle, and Power, and some 
artificial programs of diverse configurations and 
structures. Table 2 presents the specifications of 
these subjects: the column title of subject program 
provides code and title for each subject; the column 
reference presents some of the earlier researches 

which utilized these subjects; and the column scale 
introduces the specifications of subject.  

This study considered only the programs 
which contains only on class and any number 
of methods of any size. Each subject program 
is treated separately of the other subjects. 
Therefore, the procedure of the study is 
applied on each subject program and the 
selected metric is computed for each subject. 

Table 2: The specifications subjects. 

# Title of subject 
program 

Reference 
Scale (#LOC, 

#Classes, #Methods 

SP#1. Triangle 
[3], [50], 
[19], [41] 

73 LOC. 1 C, 6 M 

SP#2. Mid 
[19], [41], 

[51] 
61 LOC, 1 C, 6 M 

SP#3. Power 
[41], [52], 

[51] 
49 LOC, 1 C, 5 M 

SP#4. Remainder 
[41], [52], 

[51] 
60 LOC, 1 C, 5 M 

SP#5. Synthetic1 [41] 65 LOC, 1 C, 5 M 
SP#6. Synthetic2 [41] 60 LOC, 1 C, 5 M 
SP#7. Synthetic3 [41] 62 LOC, 1 C, 5 M 

4.4 Conduct of the Experiment and Data 
Collection 

A Java based tool has implemented to 
automatically perform the empirical studies. The 
stages of the tool and the procedure of the empirical 
studies are as follows. 
1. Input step: Get the subject (Java program). 
2. Data flow analysis: Apply the data flow analysis 
procedure to find the set of all dua. 
3. Mutant construction: Get the set of mutation 
operators. The study used the set of method-
level operators proposed by Y. Ma and J. Offutt 
[53]. The study applied the arithmetic (AORB, 
AORU, AORS, AOIS, AOIU, AODS, AODU), 
relational (ROR), conditional (COR, COI, and 
COD), and logical (LOR, LOI, and LOD) 
operators. The study selected these operators 
because they are the most repeated in the subject 
programs. Then, generate second-order mutants as 
much as possible using the algorithm given in 
Figure 1. After that, discard any redundancy or 
equivalent mutants. 
4. Test suite generation: Create a suitable test suite. 
The study generates this test suite using a GA-
based tool developed by the first author 
(STDGenGA) [54]. GA has been used successfully 
to generate test data [55] [56] [54] [41]. 
5. Test suite execution: Execute the subject and its 
mutants against the test suite. Then, compute the 
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subtlety of the mutants for the subject using the 
metrics discussed in section 2.3. 

4.5 Results Presentation, Analysis and 
Interpretation 

In this section, the results of applying each step 
of the procedure of this study are presented and 
then these results are discussed in details. The Java 
function Midnum (given in Error! Reference 
source not found.) is selected from the subject 
program Mid to illustrate the steps of the procedure.  

In the second step of the procedure, data flow 
analysis step, the tool applies the data flow analysis 
concepts to find for the tested program (which input 
in first step) all data actions (defs and uses) for each 
variable. Then, by coupling these defs and uses the 
tool finds all dua for each variable. For instance, in 
this step of the procedure 20 dua were generated for 
the Java function presented in Error! Reference 
source not found.. Error! Reference source not 
found. presents the data flow actions for the 
variables: x, y, z, mid and 20 dua for these 
variables. In this stage, a set of dua is created for 
each subject. Table 3 presents for each subject the 
number of dua. The tool created 222 dua for all 
subjects. 

Table 3: No. of dua for each subject. 

# 
Subject 

Prog 
SP#1 SP#2 SP#3 SP#4 SP#5 SP#6 SP#7 Total 

Dua 52 20 19 39 30 36 26 222 

 
In the third step of the procedure, mutant 

construction step, the tool applies the algorithm 
given in Figure 1 to construct set of second-order 
mutants for each subject. In this step, the algorithm 
gets as inputs the tested program and its dua and 
the set of operators illustrated in Table 9. Then 
according to the type of the statements that are 
assigned by the def and use in the current dua, it 
generates all possible second-order mutants. For the 
Java function presented in Error! Reference 
source not found., the tool reads this function, the 
20 dua and the operators and their possible 
operations. For instance, suppose the current dua is 
(x, 3, 8). Subsequently, the def statement is an 
assignment statement and the use statement is an if 
statement. This assignment statement number 3 (x 
= num1;) can be mutated only by the insertion of 
one of arithmetic unary (+, -) or short-cut (op++, 
++op, op --, -- op) operators. Similarly, the if 
statement number 8 (if ( x < Y ) ;) can be mutated 
by replacing the relational operator '<' by one of the 
relational operators (>, >=, <=, = =, !=). 
Consequently, the mutation of these two statements 

individually can construct 11 first-order mutants 
such as x = ++ num1; x = - num1; if (x > y); ... etc. 
In addition, the mutation of these two statements 
can construct from 5 to 30 second-order mutants 
according to the selection approach of the 
operators. The "not selected yet" approach can 
construct 5 second-order mutants but the "all 
permutations" can construct 30 second-order 
mutants. In all cases the set of the 11 first-order 
mutant is the constituent of these second-order 
mutants. The "not selected yet" approach can 
construct 110 second-order mutants constructed of 
70 constituents first-order mutants but the "all 
permutations" can construct 660 second-order 
mutants of 230 constituents first-order mutants. 
Table 4 presents the number of second-order 
mutants and their constituents of the example Java 
function presented in Error! Reference source not 
found. according to dua of each variable in this 
function. Table 10 presents the number of second-
order mutants for each subject programs and the 
number of constituents. There are 13265 second-
order mutants construed by "all permutations" for 
all subjects of 1250 constituents first-order mutants 
and 1315 second-order mutants construed by "not 
selected yet" of 775 constituents first-order mutants. 
The set of mutants generated by the tool using "not 
selected yet" method will be used throughout the 
empirical study to evaluate its subtlety. All 
equivalent mutants and stillborn ones are discarded 
from consideration in the next step. 

 
Table 4: No. of second-order mutants for the example 

Java function and their constituent. 

Dua 
No. 

mutation 
at def 

No. 
mutatio
n at use 

All permutations Not selected yet 
SO
M 

Constituent
s 

SO
M 

Constituent
s 

dua of x 36 32 192 68 32 64 
dua of y 30 27 162 57 27 54 
dua of z 24 21 126 45 21 42 
dua of 

mid 
30 30 180 60 30 60 

Total 120 110 660 230 110 220* 
* There is duplication in this number because the constituents are 

counted according to the dua. This number is 70 without 
duplication. 

 
In the fourth step of the procedure, test 

suite generation step, a genetic algorithm 
technique (STDGenGA) [54] was used by the 
tool to generate a test suite to cover all dua for 
each subject program. Table 5 presents the 
number of the generated test cases for each 
subject program.  

Table 5: Number of test cases. 

Subject SP#1 SP#2 SP#3 SP#4 SP#5 SP#6 SP#7 Total 
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program 
No. of test 

cases 
14 10 6 9 5 8 9 61 

In the last step (step 5) of the procedure, test 
suite execution, each subject program and its non-
equivalent and non-stillborn FOMs and SOMs 
mutants are executed against the generated test 
suite. For each program the number of killed and 
alive FOMs and SOMs mutants are counted and the 
coverage ratio of data flow criterion (all du-pairs) 
as well. 

 
Table 6: Subtlety of DFSOM and Data flow criteria 

against the same test suite for each subject program. 

Subject 
program 

DFSOM criterion Data flow criterion 

Killed Alive 
Covered 
(killed) 

Not 
Covered 
(alive) 

SP#1 65% 35% 100% 0% 
SP#2 90% 10% 100% 0% 
SP#3 64% 36% 93% 7% 
SP#4 80% 20% 83% 17% 
SP#5 70% 30% 90% 10% 
SP#6 90% 10% 96% 4% 
SP#7 100% 0% 100% 0% 

Average 79.9% 20.1% 94.6% 5.4% 
 

Table 6 presents for each subject program the 
ratios of killed and alive data-flow based second 
order mutants (DFSOM) and the ratios of covered 
and not-covered du-pairs. The results given in 
Table 6 showed that data-flow based second order 
mutants (DFSOM) criterion is subtle than all du-
pairs criterion where the ratio of alive DFSOM for 
all subject programs is 20.1% in average and the 
ratio of not covered du-pairs is 5.4% in average 
although the test suite is generated to cover all du-
pairs. Form the results given in Table 6 and Figure 
2, we concluded that killing all DFSOM guarantee 
covering all du-pairs (i.e.,  DFSOM criterion 
dominates Data flow criterion). Therefore, 
DFSOMs is harder to be killed or covered than all 
du-pairs (this answers RQ2). 

Table 7 presents for each subject program 
the ratios of killed and alive data-flow based 
second order mutants (DFSOM) and the ratios 
of killed and alive of their constitute FOMs. 
The results presented in Table 7 showed that 
data-flow based second order mutants 
(DFSOM) criterion is subtle than their 
constitute FOMs where the ratio of alive 
DFSOM for all subject programs is 20% in 
average and the ratio of alive FOMs is 14% in 

average. Form the results given in Table 7 and 
Figure 3, we concluded that DFSOMs mutants 
is more subtle than their constitute FOMs (this 
answers RQ1). 

4.4 Threats to Validity 

4.4.1 External validity 

The main external threat to validity is the 
set of subject programs. Although the subject 
programs have been utilized in many previous 
studies, we cannot claim the programs are a 
random collection of the population of 
programs as a whole which may influence 
results.  

4.4.2 Internal validity 

The main internal threats to validity is the 
generation of equivalent mutants and stillborn 
ones, although we didn't consider these 
mutants through the test execution step by 
discarded these kind of mutants manually but 
this process is time consuming process and 
may be inaccurate. 

 

Table 7: Subtlety of DFSOM and their Constitute 
FOM against the same test suite for each subject 

program. 
Subject 
program 

DFSOM Constitute FOM 
Killed Alive Killed Alive 

SP#1 65% 35% 79% 21% 
SP#2 90% 10% 100% 0% 
SP#3 64% 36% 80% 20% 
SP#4 80% 20% 80% 20% 
SP#5 70% 30% 70% 30% 
SP#6 90% 10% 90% 10% 
SP#7 100% 0% 100% 0% 

Average 80% 20% 86% 14% 

 

5. RELATED WORK 

Up to now, the researchers [8], [27], [29], [35] 
employed only some search based techniques such 
as genetic algorithm, local search, greedy algorithm, 
and hill climbing algorithm to construct higher-
order subtle mutants. Therefore, there are many 
metrics to evaluate the subtlety of higher-order 
mutants.  

Jia and Harman [8] presented a measure to find 
the fragility of each of the first and higher-order 
mutants. They defined the fragility of mutants as 
the ratio between the number of test cases which 
kill these mutants and the total number of test cases 
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in the test suite. Therefore, the value of fragility 
changes gradually from zero to one, while the 
mutant changes from equivalent to the weakest. 
Then, they introduced a metric for measuring the 
hardness of the mutants as the ratio between the set 
of higher-order mutants and their constituent first-
order mutants. The value of this metric is greater 
than or equal zero. The zero-valued mutants are 
potential equivalent higher-order mutants. As the 
value of this metric decreases from one to zero, the 
hardness of the higher-order mutants increases 
gradually than their constituent first-order mutants. 
If the value of this metric is greater than one, the 
higher-order mutants are weaker than their 
constituent first-order mutants. 

Nguyen and Madeyski [29] suggested three 
objective functions (Ф1, Ф2, and Ф3) and one fitness 
function (F), which are used together to assess the 
higher-order mutants and identify the subtle ones. 
These four functions can be described as follows. 
Suppose that T is the set of all test cases, TF1⊂ T is 
the set of test cases which kill the first-order mutant 
FOM1,  TF2⊂ T is the set of test cases which kill the 
first-order mutant FOM2,  TH⊂ T is the set of test 
cases which kill the higher-order mutant HOM 
created from FOM1 and FOM2. By definition Фଵ =
|்ಹ∩்ಷభ∩்ಷమ|

|்ಹ|
, Фଶ =

|்ಹି(்ಷభ∪்ಷమ)|

|்ಹ|
, Фଷ =

|(்ಹ∩(்ಷభ∪்ಷమ))ି(்ಷభ∩்ಷమ)|

|்ಹ|
 , and F(H) =

|்ಹ|

|்ಷభ∪்ಷమ|
 . 

The values of Ф1, Ф2, Ф3, and F lie between 0 and 1. 
According to these definitions, Nguyen and 
Madeyski showed that the subtle higher-order 
mutants are those mutants with  0 < Фଵ ≤ 1, Ф2 = 
0, Ф3 = 0, and 𝐹 ≤ 1. 

Omar and Ghosh [27] combined two metrics to 
evaluate the subtlety of higher-order mutants. The 
first metric, µ1, compares between the fault 
detection effectiveness of the higher-order mutant 
and its constituent first-order mutants. The metric 
(µ1) is the ratio of the difference between the 
cardinal number of the union set (U) of all test cases 
which kill the higher-order mutant or its constituent 
first-order mutants and the cardinal number of their 
intersection set (∩) out of the cardinal number of 

the union set (U) (i.e., µଵ =
||ି|∩|

||
 ). The second 

metric, µ2, measures the hardness of killing the 
higher-order mutant. The metric (µ2) is the ratio of 
the difference between the cardinal number of the 
union set (U) and the cardinal number of the set ( T ) 
of test cases which kill the higher-order mutant out 
of the cardinal number of the union set (U) (i.e., 

µଶ =
||ି||

||
). Then, they combined µଵ and µଶ into a 

single metric Ғ to find the fitness value of  higher-
order mutant using the formula Ғ =  α µଵ +  (1 −

α) µଶ  where α ∈ [0, 1]  and experimental based 
constant that is adapted to find the highest number 
of subtle higher-order mutants.  

Abuljadayel and Wedyan [35] measured the 
subtlety of a mutant m using the ratio between the 
number of test cases that kill m and the total 
number of test cases in the test suite. This metric 
range is between 0 and 1. According to this metric 
the subtle mutants are located close to 0 and the 
easy killed mutants exist close to 1. 

 

6. CONCLUSION AND FUTURE WORK 

In this paper, an empirical study to evaluate the 
impact of data-flow analysis on the subtlety of the 
higher-order mutants was introduced. The empirical 
study compared the data-flow based second order 
mutants and their constitute FOMs regarding the 
subtlety of each of them. In addition, it compared 
the data-flow based second order mutants and all 
du-pairs criterion regarding the subtlety of each of 
them. Therefore, it studies two research questions: 
which mutants are more subtle DFSOMs or their 
constitute FOMs mutants? And which mutants are 
harder to be killed or covered DFSOMs or all du-
pairs criterion? The results of the conducted 
experiments showed that the subtlety of DFSOMs 
is higher than their FOMs by 6% in average. In 
addition, DFSOM criterion dominates all du-pairs 
criterion and covering DFSOM criterion is harder 
than covering all du-pairs criterion by 14.6% in 
average. The future work will focus on comparing 
the quality of test suite which covers all du-pairs 
against the quality of test suite which covers 
DFSOM. 
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Table 8: The application of the guidelines for our empirical study. 

Empirical  area Applicable guidelines 

Experimental 
context 

C1: In industrial case, describe entities, attributes, and measures for gathering contextual information. 
C2: Introduce the tested hypothesis and its theoretical background.  
C3: Describe the investigated questions and how these questions are addressed.  
C4: Describe the similar researches and how the current work relates to those researches. 

Experimental 
design 

D1: Define the population from which the subjects and objects are selected.  
D2: Describe the process used for selecting the subjects and objects.  
D3: Explain the process applied to assign the subjects and objects for treatments.  
D4: Control the design of the study to be close to designs analyzed in the statistical literature. 
D5: Describe the experimental unit.  
D6: Calculate the size of the required sample by carrying out a pre-experiment or pre-calculation.  
D7: Apply a proper level of blinding.  
D8: Avoid the self-evaluation of your work. If not, report what have implemented to minimize bias.  
D9: Use controls only when the control situation can be clearly well-defined.  
D10: Completely describe all treatments or actions and interventions.  
D11: Justify the use of specific metrics to measure the outcomes by showing the relevance between 
these metrics and the objectives of the empirical study.  

Conduct of the 
experiment and 
data collection 

DC1: For software, describe fully their all measures such as the entity, attribute, unit and counting 
rules. 
DC2: In subjective measures, describe the approaches applied to verify that the measurement is 
correct and consistent. 
DC3: Explain any quality control procedure which is used to prove the accuracy and completeness of 
data collection. 
DC4: In surveys, observe and report the rate of responses and explore their representativeness and the 
impact of non-responses. 
DC5: In observational empirical study, report the subjects that are dropped out from the study. 
DC6: In observational empirical study, retain data on the measures of performance which could be 
affected by the used treatment, even if they aren't the central issue of the study. 

Analysis 

A1: Identify clearly and definitely any procedure that is used to control the multiple testing. 
A2: Use blind analysis. 
A3: Carry out sensitivity analyses. 
A4: Verify that the data don't violate the hypotheses of the tests which are used on these data. 
A5: Verify the results by applying a proper quality control procedure. 

Presentation of 
results 

P1: Cite or give the details of all the statistical procedures which are used in the study.  
P2: Mention the statistical package which is used throughout the study.  
P3: Report the quantitative results and the significance levels. 
P4: If it is possible, present any raw data or confirm its availability to check by the reviewers. 
P5: Supply the reader by a proper descriptive statistics. 
P6: Use the graphics in an appropriate manner. 

Interpretation of 
results 

I1: Describe the population to which the inferential statistics and the predictive models are applied. 
I2: Distinguish the statistical significance against the practical importance. 
I3: Describe the type or category of the study. 
I4: Identify the limitations or drawbacks of the study. 

 

Table 9: Method-level operators 

Category 
Operators 

B: Binary, U: Unary, S: Short-Cut 
 Possible Operation 

R: Replacement, I: Insertion, D: Deletion 
Permutations Total 

Arithmetic 
B (+, -, *, /, %) 

U (+, -) 
S (op++, ++op, op --,   -- op) 

R 
R, I, D 
R, I, D 

5×4=20 
2×1+2×1+2×1=6 

4×3+4×1+4×1=20 
46 

Relational B (>,  >=, <, <=, ==, ! =) R 6×5=30 30 

Conditional 
B (&&, ||, &, |, ^) 

U(!) 
R 

I, D 
5×4=20 
1×2=2 

22 

Logical 
B (&, |, ^) 

U(~) 
R 

I, D 
3×2=6 
1×2=2 

8 

Assignment S(+=, -=, *=, /=, %=, &=, | =, ^=) R 8×7=56 56 
Total of Possibilities 162 
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Table 10: No. of second-order mutants for each subject and their constituent. 

Subject 
program 

No. 
mutation 

at def 

No. 
mutation 
at c-use 

No. 
mutation 
at p-use 

All permutations Not selected yet 
Second-order 

mutants 
Constituent without 

duplication 
Second-order 

mutants 
Constituent without 

duplication 
SP#1 65 50 46 2020 131 260 115 
SP#2 120 60 50 660 230 110 70 
SP#3 73 35 15 580 93 95 65 
SP#4 100 93 31 2539 224 260 161 
SP#5 118 104 29 2666 180 195 122 
SP#6 91 91 25 2250 131 216 126 
SP#7 85 121 25 2550 231 179 112 
Total 652 554 221 13265 1220 1315 771 

 

 

 
Table 11: Java example program and its data flow analysis. 

Java function Midnum Data flow actions dua (variable, def, use) 
0. public void Midnum(num1, num2, num3)  { 
1.       int x, y, z;  
2.       int mid; 
3.       x = num1; 
4.       y = num2; 
5.       z = num3; 
6.       mid = z; 
7.       if( y < z )   { 
8.         if( x < y )  { 
9.             mid = y; 
10.         } 
11.         else  { 
12.             if( x < z )  { 
13.                mid = x; 
14.             } 
15.         } 
16.    } 
17.    else { 
18.      if( x > = y ) { 
19.        mid = y; 
20.       } 
21.      else { 
22.             if( x > z ) { 
23.               mid = x; 
24.             } 
25.         } 
26.      } 
27.      System.out.println(mid); 
28.    } 

- 
1. - 
2. - 
3. x:def ;       num1: c-use 
4. y:def ;       num2: c-use 
5. z:def ;       num3: c-use 
6. mid:def ;   z: c-use 
7. y: p-use;   z: p-use 
8. x: p-use;   y: p-use 
9. mid: def;   y: c-use 
10. - 
11. - 
12. x: p-use;   z: p-use 
13. mid: def;   x: c-use 
14. - 
15. - 
16. - 
17. – 
18. x: p-use;   y: p-use 
19. mid: def;   y: c-use 
20. – 
21.- 
22. x: p-use;   z: p-use 
23. mid: def;   x: c-use 
24. – 
25.- 
26.- 
27. mid: c-use 
28.- 

        #          dua 
1.  (x, 3, 8) 
2. (x, 3,12) 
3. (x, 3, 13) 
4. (x, 3, 18) 
5. (x, 3, 22) 
6. (x, 3, 23) 

 
7. (y, 4, 7) 
8. (y, 4, 8) 
9. (y, 4, 9) 
10. (y, 4, 18) 
11. (y, 4, 19) 

 
12. (z, 5, 6) 
13. (z, 5, 7) 
14. (z, 5, 12) 
15. (z, 5, 22) 

 
16. (mid, 6, 9) 
17. (mid, 6, 13) 
18. (mid, 6, 19) 
19. (mid, 6, 23) 
20. (mid, 6, 27) 

 

Total = 20 dua 
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Figure 2: : Subtlety of DFSOM and Data flow criteria against the same test suite. 

 

 
Figure 3: Subtlety of DFSOM and their Constitute FOM against the same test suite. 
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