
Journal of Theoretical and Applied Information Technology
15th August 2019. Vol.97. No 15

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

4061

AN EMPIRICAL EVALUATION OF THE SUBTLETY OF THE
DATA-FLOW BASED HIGHER-ORDER MUTANTS

AHMED S. GHIDUK1,2, AHMOUD ROKAYA1,3
1College of Computers and Information Technology, Taif University, Saudi Arabia

2Department of Mathematics and Computer Science, Faculty of Science, Beni-Suef University, Egypt
3Department of Mathematics (Computer Science), Faculty of Science, Tanta University, Egypt

E-mail:{1,2asaghiduk, 1,3mahmoudrokaya}@tu.edu.sa

ABSTRACT

Mutants are erroneous forms of the source code generated by deliberately inserting one fault (first-order
mutant) or more (higher-order mutant) into the source code. Smart mutants that require numerous numbers
of test cases to be killed are called Subtle Mutants (SMs). These mutants are required in order to increase
the efficiency and effectiveness of test cases. Creation of these mutants is an expensive step especially in
higher-order mutation testing. Data-flow analysis has been effectively applied to create higher-order
mutants and overcome the explosion problem. To the best of our knowledge, subtle mutant generation with
the aid of data-flow concepts and identifying them among all mutants have not been studied adequately. In
this paper, an empirical study to evaluate the impact of data-flow analysis on the subtlety of higher-order
mutants is introduced. Therefore, this study discusses two research questions: which mutants are more
subtle data-flow based second order mutants (DFSOMs) or their constitute FOMs mutants? And which
mutants are harder to be killed or covered DFSOMs or all du-pairs criterion? The results of the conducted
experiments showed that the subtlety of data-flow based second order mutants (DFSOM) is higher than
their constitute first-order mutants by 6% in average. In addition, DFSOM criterion dominates all du-pairs
criterion and covering (killing) DFSOM criterion is harder than covering all du-pairs criterion by 14.6% in
average.

Keywords: Mutation Testing, Higher-Order Mutants, Subtlety Mutants, Data-flow analysis.

1. INTRODUCTION

Mutation testing concept has been initialized by

DeMillo et al. [1] and Hamlet [2]. Techniques of
mutation testing can be applied for measuring the
effectiveness of any test suite, simulating any test
criterion, and finding the required test inputs [3],
[4]. To measure the quality of a test suite, mutants
are run against the test suite. Then, the quality of
the test suite can be estimated by the mutation score
which is the ratio of mutants recognized by this test
suite. For simulating a test criterion, mutants can be
created by seeding faults at specific positions. For
generating test data, inputs can be created for
killing the mutants.

Recently, mutation testing has been classified
into two major methodologies. The first
methodology is the traditional or the original one
suggested by DeMillo et al. [1] and Hamlet [2].
This methodology concentrates on applying
mutation testing concepts on first-order mutants
(FOMs) which are constructed by placing single
fault in the source code [5], [6], [7]. The second

methodology is higher-order mutation testing
advocated by Jia and Harman [8]. This
methodology is generalization of the traditional one
and concentrates on higher-order mutants (HOMs)
which are created by injecting the source code by
two or more faults [8], [9]. Smart mutants that
require numerous numbers of test cases to be killed
are called Subtle Mutants (SMs) [10]. These
mutants are required to increase the efficiency and
effectiveness of test cases. Creation of these
mutants is an expensive phase especially in higher-
order mutation testing.

Although, there are a lot of techniques to
construct the FOMs and HOMs and reduce their
number, a very few number of techniques have
been presented to construct SMs.

Acree [5] and Budd [6] applied mutant sampling
method to decrease the number of mutants.
Agrawal et al. [11] and Mathur [12] reduced the
number of mutants by reducing the number of
mutation operators. Offutt et al. [7] and [13] used
selective mutation approach which elects a small
set of operators to produce a subset of all potential

Journal of Theoretical and Applied Information Technology
15th August 2019. Vol.97. No 15

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

4062

mutants without losing test effectiveness. Husain
[14] employed clustering algorithms to pick out a
subset of mutants. Second-order mutation testing
[15], [16], [17], [18], [19], [20] and [21] in
particular, and higher-order mutation testing [8],
[22], [3], and [10] in general, have been
successfully applied to reduce the number of
mutants [9].

Jia and Harman [8] and [10] presented the
conceptions of subsuming higher-order mutants.
They claimed that the subtle higher-order mutants
can be considered as the subsuming higher-order
mutants, which are harder to be killed than the first-
order mutants from which they are composed [10].
In addition, they presented the conceptions of
strong subsuming higher-order mutants, which can
only be killed using a subgroup of the overlapped
test cases that kill each first-order mutants from
which they are composed [10]. They presented a
search based methodology for identifying the
subsuming higher-order mutants [10]. Jia and
Harman introduced a measure in terms of the
number of test cases for the subtlety of both first
and higher-order mutants. By definition, this
measure is the quotient of the ratio of number of
test cases that kill HOMs out of the total number of
test cases and the ratio of the number of test cases
that kill FOMs out of the total number of test cases
[10]. If this measure is greater than 1, this means
that the higher-order mutant is weaker than the
first-order mutants from which it is composed. If
this measure is 0, this means that the HOM is a
potential equivalent HOM. From 1 to 0, the higher-
order mutant turns out gradually to be stronger than
the first-order mutants from which it is composed.
Langodn et al. [3] employed genetic programing for
finding set of hard to kill higher-order mutants.
They proposed a multi-objective fitness function
based on the semantic and syntactic distances. The
semantic distance is defined as the number of test
cases which cause a mutant and original program
act in a diverse manner. The syntactic distance is
defined as total number of changes in the logical
control structure. In addition, Harman et al. [23]
studied the potential enhancement in the efficiency
and effectiveness of the test due to using the
strongly subsuming higher-order mutants.

Omar and Ghosh [24] suggested four approaches
for generating higher-order mutants in AspectJ
applications. They assessed the proposed
approaches in terms of their power to improve test
effectiveness by generating hard to kill mutants and
their power to reduce test effort by reducing the
number of mutants compared to first-order mutants.
Omar et al. [25], [26] and [27] proposed set of

search guided approaches to create subtle higher-
order mutants. They proposed a new fitness
function to evaluate the subtlety of the mutants.
This function uses two metrics: fault detection
difference between the higher-order mutant and its
constitute first-order mutants, and difficulty of
killing this higher-order mutant.

Nguyen and Madeyski [28] discussed some
mutation testing problems and reviewed the
approaches for constructing the good higher-order
mutants. They continued their work and proposed
in [29], [30], [31], [32], [33] a multi-objective
optimization algorithm to create valuable higher-
order mutants. Nguyen [34] compared the subtlety
of higher-order and first-order mutants. They
demonstrated that half of all generated higher-order
mutants are harder to kill than its constituent first-
order mutants.

Abuljadayel and Wedyan [35] proposed an
approach for generating higher-order mutants and
reducing the number of equivalent mutants. The
proposed approach employed genetic algorithm to
find the hard to kill higher-order mutants.

In earlier work, Ghiduk [21] employed the
concepts of data flow analysis to reduce the number
of higher-order mutants by electing specific
locations in the tested program to be mutated.
Ghiduk's approach mutates only the locations of def
points and use points to construct the mutants
leading to reduce their number. In this method, a
second-order mutant can be constructed by seeding
two mutations one at the def point and the second
mutation at the use point of the same def-use pairs.
Besides, Kintis and Malevris [36] employed these
concepts to detect equivalent mutants. Recently,
Ghiduk et al. [37] introduced a systematic literature
review for higher-order mutation testing techniques.
All higher-order mutation testing issues and all
approaches which handled these issues are
discussed by that work. To the best of our
knowledge, data flow analysis concepts [38], [39]
have been effectively used in many software testing
aspects specially test data generation [40], [41].
Although Ghiduk [21] introduced an approach
based on data flow for generating the higher-order
mutants and reducing their number, the data flow
concepts have never been applied for finding the
subtle higher-order mutants.

The main contribution of this paper is conducting
an empirical evaluation of the subtlety of the class
of higher-order mutants which are generated by the
aid of data flow. This empirical study considers the
following research questions:

RQ1: Which mutants are more subtle DFSOMs or
their constitute FOMs mutants?

Journal of Theoretical and Applied Information Technology
15th August 2019. Vol.97. No 15

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

4063

RQ2: Which mutants are harder to be killed or
covered DFSOMs or all du-pairs?

The remainder of this paper is structured as
follows. Some important basic concepts and
definitions are given in Section 2. Section 3
presents brief description for generating data flow
based higher-order mutants. The details of this
empirical study and its results are presented in
Section 4. The previously published research and
the related work are presented in Section 5. Section
6 introduces the conclusion of this paper and the
future work.

2. BACKGROUND

In this section, some basic concepts that will be
used throughout this work are presented.

2.1 Mutation testing

Mutation testing [1], [2], [5] and [6] needs three
necessary inputs: the tested program, the mutation
operators, and test suite. Mutation testing is
performed according to the following procedure.
Firstly, the tested program is executed against the
test suite to verify its correctness. If it holds faults,
it must be corrected in advance before continuing
the mutation testing procedure. Secondly, a class of
mutants is created by seeding faults into the tested
program using the mutation operators. A mutant is
formed by creating one or more minor change into
the source program. Thirdly, all mutants and the
tested program will be executed against the test
suite. If the outputs of executing a mutant are not
the same outputs of executing the tested program
for any test case in the test suite, this mutant is
called "killed mutant" otherwise it is called "alive
mutant". Alive mutant can be killable mutant or
equivalent one which has similar behavior as the
tested program and needs extra human work to kill
it [16]. The quality of the test suite can be evaluated
by the mutation score (MS) formula [42].

𝑴𝑺 ୀ
𝒐𝒇 𝒌𝒊𝒍𝒍𝒆𝒅 𝑴𝒖𝒕𝒂𝒏𝒕𝒔

𝑻𝒐𝒕𝒂𝒍 𝒏𝒐. 𝒐𝒇 𝑴𝒖𝒕𝒂𝒏𝒕𝒔ି 𝒏𝒐.𝒐𝒇 𝑬𝒒𝒖𝒊𝒗𝒂𝒍𝒆𝒏𝒕 𝑴𝒖𝒕𝒂𝒏𝒕𝒔
 (𝑬𝒒. 1)

For instance, Table 1 presents a source code
segment p, two first-order mutants FOM1 and
FOM2 and a second-order mutant SOM formed by
merging FOM1 and FOM2. FOM1 is constructed by
replacing the "!=" operator in the source code p
with the "<" operator in the mutated code p'. FOM2
is constructed by replacing the "= =" operator in the
source code p with the ">" operator in the mutated
code p'. In addition, Table 1 presents a test input
which kills FOM2 and SOM but it cannot kill FOM1.

Despite of the effectiveness of mutation testing
in assessing the quality of the test suite, it has three
main weaknesses. These weaknesses are the
massive number of mutants, equivalent mutant, and
realism problem [9]. A great number of mutants can
be formed during the mutant generation stage even
for trivial programs. The code segment p can be
mutated into at least 12 first-order mutants by
applying only the six relational operators (=
=, !=, >, >=, <, and <=) and the three conditional
operators (&&, || and ^). Therefore, the execution
of mutants (third step of mutation testing) is very
costly. For example, if the segment code p has 100
test cases, it needs (1+12)*100 = 1300 executions
[9]. To minimize the execution cost, Howden [43]
suggested weak mutation [44] in which result of
mutant is checked immediately after executing the
mutated component to see if the mutant is killed or
not. Besides, mutants don't represent realistic faults
due to they are formed by simple syntactic changes
but 90% of real faults are complex [3]. Subtle
mutants can help in overcoming this problem [3].
Furthermore, many mutation operators can produce
equivalent mutants [16].

Table 1: An Example of Mutation Operation

Tested Code p
Mutated Code p'

FOM1 FOM2 SOM
if (m != 0 &&

n = = 0)
if (m < 0

&& n = = 0)
if (m != 0

&& n > 0)
if (m < 0

&& n > 0)
Test input:

m = -5, n = 0
Output of p is:

true

Output of p'
is: true

alive mutant

Output of p'
is: false
killed
mutant

 Output of p'
is: false

killed mutant

2.2 Higher-Order Mutation Testing

Higher-order mutation testing (HOMT) is
considered an expansion of classical mutation
testing. Therefore, HOMT is performed using the
same procedure of the classical mutation testing
given in subsection 2.1. Higher-order mutants are
built by inserting two or more mutations into the
source code or by merging two or more first-order
mutants [8].

Recently, higher-order mutants are divided into
two main categories: subtle mutants and naive
mutants. Subtle mutants are those hard to kill (i.e.
those mutants that need wide range of test cases to
be killed). Naive mutants are those easy to kill (i.e.
those mutants that can be killed by most of the test
cases). Jia and Harman [8] categorized higher-order
mutants to six types based on the way that they are
coupled or subsuming. Coupled higher-order
mutants are those mutants that are coupled to first-

Journal of Theoretical and Applied Information Technology
15th August 2019. Vol.97. No 15

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

4064

order mutants. Subsuming higher-order mutants are
those mutants that their constituent mutants partly
mask one another. In formal, these six types are
defined as follows. Suppose that h is a higher-order
mutant formed from n first-order mutants (fi, i = 1...
n) and T is the current test suite. Let T୦ ⊂ T is the
set of test cases which kills h and T୧ ⊂ T is the set
of test cases that kills the constituent first-order
mutant fi . The mutant h is: strongly subsuming and
coupled if T୦ ⊂ ⋂ T୧୧ and T୦ ≠ ∅ ; weakly
subsuming and coupled if |T୦| < |⋃ T୧୧ |, T୦ ≠ ∅
and T୦ ∩ ⋃ T୧ ≠ ∅୧ ; weakly subsuming and
decoupled if |T୦| < |⋃ T୧୧ |, T୦ ≠ ∅ and T୦ ∩
⋃ T୧ = ∅୧ ; non-subsuming and decoupled if |T୦| ≥
|⋃ T୧୧ |, T୦ ≠ ∅ and T୦ ∩ ⋃ T୧ ≠ ∅୧ ; non-
subsuming and decoupled if T୦ = ϕ (equivalent);
non-subsuming and coupled if |T୦| ≥
|⋃ T୧୧ |(useless).

2.3 Data Flow Analysis

The structure of any program can be modeled
graphically by the control flow graph. A control
flow graph comprises of a group of nodes and a
group of edges. Each node represents a statement of
the program code and each edge is an ordered pair
of two adjacent nodes. A path is a series of nodes,
from the entry node to the exit one, connected by
edges [45] and [46].

Instead of the logic or control structure of the
program data flow testing is centered on the role of
variables (data) in the code [38]. Therefore, data
flow analysis focuses on finding all “Definition-
Use Associations (dua)” for each variable x in the
tested program. Each dua consists of a triple (x, d,
u) in which d is a statement holding a definition of x
and u is a statement holding a use of x that can be
reached by d through some paths [39], [40]. If the
value of a variable x is assigned or changed in a
statement, this operation is called a definition (def)
of x. In addition, if the value of the variable x is
used in a statement and not changed, this operation
is called a use of x. If the use is located in a
predicate, it is called p-use. Besides, if the use is
located in a computation statement, it is called c-
use.

3. DATA FLOW BASED HIGHER-ORDER
MUTANT

This section describes briefly our early work
[21] for constructing higher-order mutants. In this
work, using the data flow concepts we presented a
technique [47] for constructing higher-order
mutants and decreasing their number through
decreasing the number of mutated positions in the
tested program. Figure 1 presents the algorithm of

this technique. This technique has two main phases
which can be summarized as follows.

Data flow analysis phase: This phase applied
the method presented by Allen and Cocke [47] on
the tested Java program to find all dua in it.

Second-order mutant generation phase: This
phase uses all dua to create the higher-order
mutants. It considers the locations of def points and
the locations of use points as locations to be
mutated. For producing a second-order mutant, two
mutation operators are seeded into the tested
program such that the first mutation is seeded at the
def site and the second mutation is seeded at the use
site and the two sites belong to the same dua.
Therefore, this technique requires three main inputs
(dua positions, mutation operators, and the tested
program) to create higher-order mutants without
requiring the first-order mutants. To perform its
task, this technique uses two main functions. The
first function is Operator.select() which applies
various methods to choice two mutation operators
to seed them into the original code. The used
operator selection methods are: 1) not selected yet
which selects two operators that were not selected
so far; 2) different operator which selects two
different operators; and 3) different category which
selects each operator from one category such as
arithmetic, relational, conditional, and logical
categories. The second function is
allDefUsePairs.select() which selects one def-use
pairs to be mutated. For creating mutants of order
greater than the second order, the algorithm given
in Figure 1 is applied number of times more than
one time with exchanging the input program to be
the output program of the preceding cycle.

Algorithm DataFolwBasedSOM(program,
allDefUsePairs[], operators[])
let secondOrderMutants =Ø
while allDefUsePairs.size() > 0 do
 while !(oprators.empty()) do
 op1 = oprators.select();
 op2 = oprators.select();
 du= allDefUsePairs.select();
 newMutant=program.mutate(op1, op2, du);
 secondOrderMutants.update(newMutant);
 end while
end while
return secondOrderMutants;

Figure 1: Algorithm for generating second-order mutants.

Journal of Theoretical and Applied Information Technology
15th August 2019. Vol.97. No 15

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

4065

4. THE EMPIRICAL EVALUATION
PROCEDURE

4.1 Empirical Studies Guidelines

Scholars introduced a preliminary set of
research guidelines for designing, conducting and
evaluating empirical studies [48], [49]. Kitchenham
et al. [49] introduced guidelines for the key areas:
“experimental context”, “experimental design”,
“conduct of the experiment and data collection”,
“analysis”, “presentation of results”, and
“interpretation of results”. In this empirical
evaluation research, the procedure proposed by
Kitchenham et al. [49] and the guidelines which are
applicable for this empirical study are followed.
These guidelines are collected and summarized in
Table 8.

The following sections present how our study is
performed according to these guidelines.

4.2 Experimental Context

Although standard contextual information aids
in comparing the related studies or replicating them
and understanding tools and techniques,
unfortunately software engineering doesn’t have
definite standards for deciding which contextual
information would be involved in the “study
design”, gathered throughout the study, and
reported in the results [49].

According to Table 8, our empirical study
discussed the similar studies in section 2. In
addition, the hypotheses of this study are:
H1: Higher-order mutants can be generated by

aiding of data flow analysis concepts.
H2: Data flow analysis concepts have the ability

to reduce the number of higher-order
mutants.

The addressed research questions of this study are:
RQ1: Which mutants are more subtle DFSOMs or
their constitute FOMs mutants?;
RQ2: Which mutants are harder to be killed or
covered DFSOMs or all du-pairs?
4.3 Experimental design

The population from which the subjects are
selected is Java programs which have been used in
the previous similar researches. To conduct our
empirical study, set of Java programs from the
earlier researches has been selected. These
programs include benchmarks such as Mid,
Remainder, Triangle, and Power, and some
artificial programs of diverse configurations and
structures. Table 2 presents the specifications of
these subjects: the column title of subject program
provides code and title for each subject; the column
reference presents some of the earlier researches

which utilized these subjects; and the column scale
introduces the specifications of subject.

This study considered only the programs
which contains only on class and any number
of methods of any size. Each subject program
is treated separately of the other subjects.
Therefore, the procedure of the study is
applied on each subject program and the
selected metric is computed for each subject.

Table 2: The specifications subjects.

Title of subject
program

Reference
Scale (#LOC,

#Classes, #Methods

SP#1. Triangle
[3], [50],
[19], [41]

73 LOC. 1 C, 6 M

SP#2. Mid
[19], [41],

[51]
61 LOC, 1 C, 6 M

SP#3. Power
[41], [52],

[51]
49 LOC, 1 C, 5 M

SP#4. Remainder
[41], [52],

[51]
60 LOC, 1 C, 5 M

SP#5. Synthetic1 [41] 65 LOC, 1 C, 5 M
SP#6. Synthetic2 [41] 60 LOC, 1 C, 5 M
SP#7. Synthetic3 [41] 62 LOC, 1 C, 5 M

4.4 Conduct of the Experiment and Data
Collection

A Java based tool has implemented to
automatically perform the empirical studies. The
stages of the tool and the procedure of the empirical
studies are as follows.
1. Input step: Get the subject (Java program).
2. Data flow analysis: Apply the data flow analysis
procedure to find the set of all dua.
3. Mutant construction: Get the set of mutation
operators. The study used the set of method-
level operators proposed by Y. Ma and J. Offutt
[53]. The study applied the arithmetic (AORB,
AORU, AORS, AOIS, AOIU, AODS, AODU),
relational (ROR), conditional (COR, COI, and
COD), and logical (LOR, LOI, and LOD)
operators. The study selected these operators
because they are the most repeated in the subject
programs. Then, generate second-order mutants as
much as possible using the algorithm given in
Figure 1. After that, discard any redundancy or
equivalent mutants.
4. Test suite generation: Create a suitable test suite.
The study generates this test suite using a GA-
based tool developed by the first author
(STDGenGA) [54]. GA has been used successfully
to generate test data [55] [56] [54] [41].
5. Test suite execution: Execute the subject and its
mutants against the test suite. Then, compute the

Journal of Theoretical and Applied Information Technology
15th August 2019. Vol.97. No 15

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

4066

subtlety of the mutants for the subject using the
metrics discussed in section 2.3.

4.5 Results Presentation, Analysis and
Interpretation

In this section, the results of applying each step
of the procedure of this study are presented and
then these results are discussed in details. The Java
function Midnum (given in Error! Reference
source not found.) is selected from the subject
program Mid to illustrate the steps of the procedure.

In the second step of the procedure, data flow
analysis step, the tool applies the data flow analysis
concepts to find for the tested program (which input
in first step) all data actions (defs and uses) for each
variable. Then, by coupling these defs and uses the
tool finds all dua for each variable. For instance, in
this step of the procedure 20 dua were generated for
the Java function presented in Error! Reference
source not found.. Error! Reference source not
found. presents the data flow actions for the
variables: x, y, z, mid and 20 dua for these
variables. In this stage, a set of dua is created for
each subject. Table 3 presents for each subject the
number of dua. The tool created 222 dua for all
subjects.

Table 3: No. of dua for each subject.

Subject

Prog
SP#1 SP#2 SP#3 SP#4 SP#5 SP#6 SP#7 Total

Dua 52 20 19 39 30 36 26 222

In the third step of the procedure, mutant

construction step, the tool applies the algorithm
given in Figure 1 to construct set of second-order
mutants for each subject. In this step, the algorithm
gets as inputs the tested program and its dua and
the set of operators illustrated in Table 9. Then
according to the type of the statements that are
assigned by the def and use in the current dua, it
generates all possible second-order mutants. For the
Java function presented in Error! Reference
source not found., the tool reads this function, the
20 dua and the operators and their possible
operations. For instance, suppose the current dua is
(x, 3, 8). Subsequently, the def statement is an
assignment statement and the use statement is an if
statement. This assignment statement number 3 (x
= num1;) can be mutated only by the insertion of
one of arithmetic unary (+, -) or short-cut (op++,
++op, op --, -- op) operators. Similarly, the if
statement number 8 (if (x < Y) ;) can be mutated
by replacing the relational operator '<' by one of the
relational operators (>, >=, <=, = =, !=).
Consequently, the mutation of these two statements

individually can construct 11 first-order mutants
such as x = ++ num1; x = - num1; if (x > y); ... etc.
In addition, the mutation of these two statements
can construct from 5 to 30 second-order mutants
according to the selection approach of the
operators. The "not selected yet" approach can
construct 5 second-order mutants but the "all
permutations" can construct 30 second-order
mutants. In all cases the set of the 11 first-order
mutant is the constituent of these second-order
mutants. The "not selected yet" approach can
construct 110 second-order mutants constructed of
70 constituents first-order mutants but the "all
permutations" can construct 660 second-order
mutants of 230 constituents first-order mutants.
Table 4 presents the number of second-order
mutants and their constituents of the example Java
function presented in Error! Reference source not
found. according to dua of each variable in this
function. Table 10 presents the number of second-
order mutants for each subject programs and the
number of constituents. There are 13265 second-
order mutants construed by "all permutations" for
all subjects of 1250 constituents first-order mutants
and 1315 second-order mutants construed by "not
selected yet" of 775 constituents first-order mutants.
The set of mutants generated by the tool using "not
selected yet" method will be used throughout the
empirical study to evaluate its subtlety. All
equivalent mutants and stillborn ones are discarded
from consideration in the next step.

Table 4: No. of second-order mutants for the example

Java function and their constituent.

Dua
No.

mutation
at def

No.
mutatio
n at use

All permutations Not selected yet
SO
M

Constituent
s

SO
M

Constituent
s

dua of x 36 32 192 68 32 64
dua of y 30 27 162 57 27 54
dua of z 24 21 126 45 21 42
dua of

mid
30 30 180 60 30 60

Total 120 110 660 230 110 220*
* There is duplication in this number because the constituents are

counted according to the dua. This number is 70 without
duplication.

In the fourth step of the procedure, test

suite generation step, a genetic algorithm
technique (STDGenGA) [54] was used by the
tool to generate a test suite to cover all dua for
each subject program. Table 5 presents the
number of the generated test cases for each
subject program.

Table 5: Number of test cases.

Subject SP#1 SP#2 SP#3 SP#4 SP#5 SP#6 SP#7 Total

Journal of Theoretical and Applied Information Technology
15th August 2019. Vol.97. No 15

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

4067

program
No. of test

cases
14 10 6 9 5 8 9 61

In the last step (step 5) of the procedure, test
suite execution, each subject program and its non-
equivalent and non-stillborn FOMs and SOMs
mutants are executed against the generated test
suite. For each program the number of killed and
alive FOMs and SOMs mutants are counted and the
coverage ratio of data flow criterion (all du-pairs)
as well.

Table 6: Subtlety of DFSOM and Data flow criteria

against the same test suite for each subject program.

Subject
program

DFSOM criterion Data flow criterion

Killed Alive
Covered
(killed)

Not
Covered
(alive)

SP#1 65% 35% 100% 0%
SP#2 90% 10% 100% 0%
SP#3 64% 36% 93% 7%
SP#4 80% 20% 83% 17%
SP#5 70% 30% 90% 10%
SP#6 90% 10% 96% 4%
SP#7 100% 0% 100% 0%

Average 79.9% 20.1% 94.6% 5.4%

Table 6 presents for each subject program the
ratios of killed and alive data-flow based second
order mutants (DFSOM) and the ratios of covered
and not-covered du-pairs. The results given in
Table 6 showed that data-flow based second order
mutants (DFSOM) criterion is subtle than all du-
pairs criterion where the ratio of alive DFSOM for
all subject programs is 20.1% in average and the
ratio of not covered du-pairs is 5.4% in average
although the test suite is generated to cover all du-
pairs. Form the results given in Table 6 and Figure
2, we concluded that killing all DFSOM guarantee
covering all du-pairs (i.e., DFSOM criterion
dominates Data flow criterion). Therefore,
DFSOMs is harder to be killed or covered than all
du-pairs (this answers RQ2).

Table 7 presents for each subject program
the ratios of killed and alive data-flow based
second order mutants (DFSOM) and the ratios
of killed and alive of their constitute FOMs.
The results presented in Table 7 showed that
data-flow based second order mutants
(DFSOM) criterion is subtle than their
constitute FOMs where the ratio of alive
DFSOM for all subject programs is 20% in
average and the ratio of alive FOMs is 14% in

average. Form the results given in Table 7 and
Figure 3, we concluded that DFSOMs mutants
is more subtle than their constitute FOMs (this
answers RQ1).

4.4 Threats to Validity

4.4.1 External validity

The main external threat to validity is the
set of subject programs. Although the subject
programs have been utilized in many previous
studies, we cannot claim the programs are a
random collection of the population of
programs as a whole which may influence
results.

4.4.2 Internal validity

The main internal threats to validity is the
generation of equivalent mutants and stillborn
ones, although we didn't consider these
mutants through the test execution step by
discarded these kind of mutants manually but
this process is time consuming process and
may be inaccurate.

Table 7: Subtlety of DFSOM and their Constitute
FOM against the same test suite for each subject

program.
Subject
program

DFSOM Constitute FOM
Killed Alive Killed Alive

SP#1 65% 35% 79% 21%
SP#2 90% 10% 100% 0%
SP#3 64% 36% 80% 20%
SP#4 80% 20% 80% 20%
SP#5 70% 30% 70% 30%
SP#6 90% 10% 90% 10%
SP#7 100% 0% 100% 0%

Average 80% 20% 86% 14%

5. RELATED WORK

Up to now, the researchers [8], [27], [29], [35]
employed only some search based techniques such
as genetic algorithm, local search, greedy algorithm,
and hill climbing algorithm to construct higher-
order subtle mutants. Therefore, there are many
metrics to evaluate the subtlety of higher-order
mutants.

Jia and Harman [8] presented a measure to find
the fragility of each of the first and higher-order
mutants. They defined the fragility of mutants as
the ratio between the number of test cases which
kill these mutants and the total number of test cases

Journal of Theoretical and Applied Information Technology
15th August 2019. Vol.97. No 15

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

4068

in the test suite. Therefore, the value of fragility
changes gradually from zero to one, while the
mutant changes from equivalent to the weakest.
Then, they introduced a metric for measuring the
hardness of the mutants as the ratio between the set
of higher-order mutants and their constituent first-
order mutants. The value of this metric is greater
than or equal zero. The zero-valued mutants are
potential equivalent higher-order mutants. As the
value of this metric decreases from one to zero, the
hardness of the higher-order mutants increases
gradually than their constituent first-order mutants.
If the value of this metric is greater than one, the
higher-order mutants are weaker than their
constituent first-order mutants.

Nguyen and Madeyski [29] suggested three
objective functions (Ф1, Ф2, and Ф3) and one fitness
function (F), which are used together to assess the
higher-order mutants and identify the subtle ones.
These four functions can be described as follows.
Suppose that T is the set of all test cases, TF1⊂ T is
the set of test cases which kill the first-order mutant
FOM1, TF2⊂ T is the set of test cases which kill the
first-order mutant FOM2, TH⊂ T is the set of test
cases which kill the higher-order mutant HOM
created from FOM1 and FOM2. By definition Фଵ =
|்ಹ∩்ಷభ∩்ಷమ|

|்ಹ|
, Фଶ =

|்ಹି(்ಷభ∪்ಷమ)|

|்ಹ|
, Фଷ =

|(்ಹ∩(்ಷభ∪்ಷమ))ି(்ಷభ∩்ಷమ)|

|்ಹ|
 , and F(H) =

|்ಹ|

|்ಷభ∪்ಷమ|
 .

The values of Ф1, Ф2, Ф3, and F lie between 0 and 1.
According to these definitions, Nguyen and
Madeyski showed that the subtle higher-order
mutants are those mutants with 0 < Фଵ ≤ 1, Ф2 =
0, Ф3 = 0, and 𝐹 ≤ 1.

Omar and Ghosh [27] combined two metrics to
evaluate the subtlety of higher-order mutants. The
first metric, µ1, compares between the fault
detection effectiveness of the higher-order mutant
and its constituent first-order mutants. The metric
(µ1) is the ratio of the difference between the
cardinal number of the union set (U) of all test cases
which kill the higher-order mutant or its constituent
first-order mutants and the cardinal number of their
intersection set (∩) out of the cardinal number of

the union set (U) (i.e., µଵ =
||ି|∩|

||
). The second

metric, µ2, measures the hardness of killing the
higher-order mutant. The metric (µ2) is the ratio of
the difference between the cardinal number of the
union set (U) and the cardinal number of the set (T)
of test cases which kill the higher-order mutant out
of the cardinal number of the union set (U) (i.e.,

µଶ =
||ି||

||
). Then, they combined µଵ and µଶ into a

single metric Ғ to find the fitness value of higher-
order mutant using the formula Ғ = α µଵ + (1 −

α) µଶ where α ∈ [0, 1] and experimental based
constant that is adapted to find the highest number
of subtle higher-order mutants.

Abuljadayel and Wedyan [35] measured the
subtlety of a mutant m using the ratio between the
number of test cases that kill m and the total
number of test cases in the test suite. This metric
range is between 0 and 1. According to this metric
the subtle mutants are located close to 0 and the
easy killed mutants exist close to 1.

6. CONCLUSION AND FUTURE WORK

In this paper, an empirical study to evaluate the
impact of data-flow analysis on the subtlety of the
higher-order mutants was introduced. The empirical
study compared the data-flow based second order
mutants and their constitute FOMs regarding the
subtlety of each of them. In addition, it compared
the data-flow based second order mutants and all
du-pairs criterion regarding the subtlety of each of
them. Therefore, it studies two research questions:
which mutants are more subtle DFSOMs or their
constitute FOMs mutants? And which mutants are
harder to be killed or covered DFSOMs or all du-
pairs criterion? The results of the conducted
experiments showed that the subtlety of DFSOMs
is higher than their FOMs by 6% in average. In
addition, DFSOM criterion dominates all du-pairs
criterion and covering DFSOM criterion is harder
than covering all du-pairs criterion by 14.6% in
average. The future work will focus on comparing
the quality of test suite which covers all du-pairs
against the quality of test suite which covers
DFSOM.

ACKNOWLEDGMENT

This study was funded by the Deanship of
Scientific Research, Taif University, KSA [1-438-
5741].

REFERENCES

[1] R. A. DeMillo, R. J. Lipton, and F. G.
Sayward, "Hints on Test Data Selection:
Help for the Practicing Programmer," IEEE
Computer, vol. 11, no. 4, pp. 34–41, 1978.

[2] R. G. Hamlet, "Testing programs with the
aid of a compiler," IEEE Transactions on
Software Engineering SE-3, vol. 4, pp.
279–290, 1977.

[3] W. B. Langdon, M. Harman, and Y. Jia,
"Efficient multi-objective higher order
mutation testing with genetic
programming," Journal of Systems and

Journal of Theoretical and Applied Information Technology
15th August 2019. Vol.97. No 15

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

4069

Software, vol. 83, pp. 2416–2430, 2010.

[4] K. Ayari, S. Bouktif, and G. Antoniol,
"Automatic mutation test input data
generation via ant colony," Proceedings of
the 9th annual conference on Genetic and
evolutionary computation, GECCO ’07,
ACM, pp. 1074–1081, 2007.

[5] A.T. Acree, "On Mutation," PhD thesis,
Georgia Inst. of Technology, 1980.

[6] T. A. Budd, "Mutation Analysis of
Program Test Data," PhD thesis, Yale
Univ, 1980.

[7] A. J. Offutt and K. N. King, "A Fortran
Language System for Mutation-Based
Software Testing," Software Practice and
Experience, vol. 21, no. 7, pp. 685–718,
1991.

[8] Y. Jia and M. Harman, "Higher Order
Mutation Testing," Journal of Information
and Software Technology, vol. 51, no. 10,
pp. 1379–1393, 2009.

[9] Q. V. Nguyen and L. Madeyski, "Problems
of Mutation Testing and Higher Order
Mutation Testing," Advances in Intelligent
Systems and Computing, vol. 282, pp. 157-
172, 2014.

[10] Y. Jia and M. Harman, "Constructing
Subtle Faults Using Higher Order Mutation
Testing," in Eighth IEEE International
Working Conference on Source Code
Analysis and Manipulation, 2008, pp. 249-
258.

[11] E. Spafford et al., "Design of Mutant
Operators for the C Programming
Language," Purdue Univ., Technical
Report SERC-TR-41-P 1989.

[12] A. P. Mathur, "Performance, Effectiveness,
and Reliability Issues in Software Testing,"
In Proc. Fifth Int’l Computer Software and
Applications Conf., pp. 604–605, 1991.

[13] G. Rotherme, A. J. Offutt, and C. Zapf,
"An Experimental Evaluation of Selective
Mutation.," In Proc. 15th Int’l Conf.
Software Eng., pp. 100–107, 1993.

[14] S. Hussain, "Mutation Clustering,"
Master’s thesis, King’s College London,
2008.

[15] A. S. Ghiduk, M. R. Girgis, and M. H.
Shehata, "Reducing the Cost of Higher-
Order Mutation Testing," Arabian Journal
for Science and Engineering, pp. 1-14,
2018.

[16] L. Madeyski, W. Orzeszyna, R. Torkar, and
M. Józala, "Overcoming the Equivalent
Mutant Problem: A Systematic Literature
Review and a Comparative Experiment of
Second Order Mutation," IEEE
Transactions on Software Engineering, vol.
40, no. 1, 2014.

[17] A. J. Offutt, "Investigations of the software
testing coupling effect," ACM Transactions
on Software Engineering Methodology, vol.
1, pp. 5–20, 1992.

[18] M. Malevris, M. Kintis, and N. Papadakis,
"Evaluating mutation testing alternatives: A
collateral experiment," In Proc. 17th Asia
Pacific Soft. Eng. Conf. (APSEC), 2010.

[19] M. Garcia-Rodriguez, M. Polo, and I.
Piattini, "Decreasing the Cost of Mutation
Testing with Second-Order Mutants,"
Software Testing, Verification, and
Reliability, vol. 19, no. 2, pp. 111-131,
2009.

[20] A. S. Ghiduk, "Using Evolutionary
Algorithms for Higher-Order Mutation
Testing," International Journal of
Computer Science, vol. 11, no. 2, pp. 93-
104, 2014.

[21] A. S. Ghiduk, "Reducing the Number of
Higher-Order Mutants with the Aid of Data
Flow," e-Informatica Software Engineering
Journal, vol. 10, pp. 31-49, 2016.

[22] M. Harman, Y. Jia, and W. B. Langdon, "A
Manifesto for Higher Order Mutation
Testing," Third International Conference
on Software Testing, Verification, and
Validation Workshops (ICSTW), pp. 80–89,
2010.

[23] M. Harman, Y. Jia, P. R. Mateo, and M.
Polo, "Angels and monsters: an empirical
investigation of potential test effectiveness
and efficiency improvement from strongly
subsuming higher order mutation," in 29th
ACM/IEEE international conference on
automated software engineering (ASE'14),
2014, pp. 397-408.

[24] E. Omar and S. Ghosh, "An Exploratory
Study of Higher Order Mutation Testing in
Aspect-Oriented Programming," in 2012
IEEE 23rd International Symposium on
Software Reliability Engineering (ISSRE),
2012, pp. 1-9.

[25] E. Omar, S. Ghosh, and D. Whitley,
"Constructing Subtle Higher Order Mutants
for Java and AspectJ Programs," in 2013

Journal of Theoretical and Applied Information Technology
15th August 2019. Vol.97. No 15

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

4070

IEEE 24th International Symposium on
Software Reliability Engineering (ISSRE),
2013, pp. 340 - 349.

[26] E. Omar, S. Ghosh, and D. Whitley,
"Comparing Search Techniques for Finding
Subtle Higher Order Mutants," in
Proceedings of the 2014 Annual
Conference on Genetic and Evolutionary
Computation (GECCO '14), 2014, pp.
1271-1278.

[27] E. Omar, S. Ghosh, and D. Whitley,
"Subtle Higher Order Mutants,"
Information and Software Technology, vol.
81, pp. 3-18, 2017.

[28] Q. V. Nguyen and L. Madeyski, "Problems
of Mutation Testing and Higher Order
Mutation Testing," Advanced
Computational Methods for Knowledge
Engineering, vol. 282, pp. 157-172, 2014.

[29] Q. V. Nguyen and L. Madeyski, "Searching
for Strongly Subsuming Higher Order
Mutants by Applying Multi-objective
Optimization Algorithm," Advanced
Computational Methods for Knowledge
Engineering, vol. 358, pp. 391–402, 2015.

[30] Q. V. Nguyen and L. Madeyski, "Empirical
Evaluation of Multi-Objective
Optimization Algorithms Searching for
Higher Order Mutants," Cybernetics and
Systems, vol. 47, pp. 48-68, 2016.

[31] Q. V. Nguyen and L. Madeyski, "On the
Relationship Between the Order of
Mutation Testing and the Properties of
Generated Higher Order Mutants," in Asian
Conference on Intelligent Information and
Database Systems, 2016, pp. 245-254.

[32] Q. V. Nguyen and L. Madeyski, "Higher
Order Mutation Testing to Drive
Development of New Test Cases: An
Empirical Comparison of Three
Strategies," in Asian Conference on
Intelligent Information and Database
Systems, 2016, pp. 235-244.

[33] Q. V. Nguyen and L. Madeyski,
"Addressing Mutation Testing Problems by
Applying Multi-Objective Optimization
Algorithms and Higher Order Mutation,"
Journal of Intelligent & Fuzzy Systems, vol.
32, pp. 1173–1182, 2017.

[34] Q. V. Nguyen, "Is Higher Order Mutant
Harder to Kill Than First Order Mutant?
An Experimental Study," in Asian
Conference on Intelligent Information and

Database Systems, 2018, pp. 664-673.

[35] A. Abuljadayel and F. Wedyan, "An
Approach for the Generation of Higher
Order Mutants Using Genetic Algorithms,"
International Journal of Intelligent Systems
and Applications, vol. 1, pp. 34-45, 2018.

[36] M. Kintis and N. Malevris, "Using Data
Flow Patterns for Equivalent Mutant
Detection," in 2014 IEEE Seventh
International Conference on Software
Testing, Verification and Validation
Workshops (ICSTW), 2014, pp. 196-205.

[37] A. S. Ghiduk, M. R. Girgis, and M. H.
Shehata, "Higher order mutation testing: A
Systematic Literature Review," Computer
Science Review, vol. 25, pp. 29-48, 2017.

[38] P. G. Frankl and E. J. Weyuker, "An
applicable family of data flow testing
criteria," IEEE Transactions of Software
Engineering, vol. 14, no. 10, pp. 1483–
1498, 1988.

[39] P. M. Herman, "A data flow analysis
approach to program testing," Australian
Computer Journal, vol. 8, no. 3, pp. 92–96,
1976.

[40] S. Rapps and E. J. Weyuker, "Selecting
software test data using data flow
information," IEEE Transactions on
Software Engineering, vol. 11, pp. 367–
375, 1985.

[41] A. S. Ghiduk, M. J. Harrold, and M. R.
Girgis, "Using Genetic Algorithms to Aid
Test-Data Generation for Data-Flow
Coverage," 14th Asia-Pacific Software
Engineering Conference, 2007.

[42] I. Burnstein, Practical Software Testing: A
Process-Oriented Approach. Springer.,
2003.

[43] W. Howden, "Weak mutation testing and
completeness of test sets," IEEE
Transactions on Software Engineering, vol.
8, no. 4, pp. 371–379, 1982.

[44] M. Papadakis and N Malevris,
"Automatically performing weak mutation
with the aid of symbolic execution,
concolic testing and search-based testing,"
Journal of Software Quality, vol. 19, pp.
691–723, 2011.

[45] M. S. Hecht, Flow Analysis of Computer
Programs.: Elsevier North Holland, New
York, 1977.

[46] S. Rapps and E. J. Weyuker, "Data Flow

Journal of Theoretical and Applied Information Technology
15th August 2019. Vol.97. No 15

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

4071

Analysis Techniques for Test Data
Selection," in 6th international conference
of software engineering, 1982, pp. 272-
278.

[47] F. E. Cocke and J. Allen, "A program data
flow analysis procedure," Communications
of the ACM, vol. 19, no. 3, pp. 137-147,
1976.

[48] R. Malhotra, Empirical Research in
Software Engineering: Concepts, Analysis,
and Applications.: Chapman & Hall/CRC,
Taylor and Francis, 2015.

[49] B. A. Kitchenham et al., "Preliminary
Guidelines for Empirical Research in
Software Engineering," IEEE Transactions
on Software Engineering, vol. 28, no. 8, pp.
721-734, 2002.

[50] P. May, J. Timmis, and K. Mander,
"Immune and Evolutionary Approaches to
Software Mutation Testing," LNCS 4628,
pp. 336–347, 2007.

[51] C. C. Michael, G. E. McGraw, and M. A.
Schatz, "Generating software test data by
evolution," IEEE Transactions on
Software, vol. 27, no. no.12, pp. 1085-
1110, 2001.

[52] R. P. Pargas, M. J. Harrold, and R. R. Peck,
"Test data generation using genetic
algorithms," Journal of Software Testing,
Verifications, and Reliability, vol. 9, pp.
263-282, 1999.

[53] Y. Ma and J. Offutt, "Description of
Method-level Mutation Operators for
Java,"
https://cs.gmu.edu/~offutt/mujava/mutopsM
ethod.pdf, 2011.

[54] A. S. Ghiduk, Software Test Data
Generation Using Genetic Algorithms, 1st
ed.: LAP Lambert Academic Publishing,
2012.

[55] A. S. Ghiduk, "Automatic Generation of
Object-Oriented Tests with a Multistage-
Based Genetic Algorithm," Journal of
Computers, vol. 5, no. 10, pp. 1560-1569,
2010.

[56] A. S. Ghiduk and M. R. Girgis, "Using
Genetic Algorithms and Dominance

Concepts for Generating Reduced Test
Data," Informatica Journal, vol. 34, no. 3,
pp. 377-385, 2010.

Journal of Theoretical and Applied Information Technology
15th August 2019. Vol.97. No 15

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

4072

Table 8: The application of the guidelines for our empirical study.

Empirical area Applicable guidelines

Experimental
context

C1: In industrial case, describe entities, attributes, and measures for gathering contextual information.
C2: Introduce the tested hypothesis and its theoretical background.
C3: Describe the investigated questions and how these questions are addressed.
C4: Describe the similar researches and how the current work relates to those researches.

Experimental
design

D1: Define the population from which the subjects and objects are selected.
D2: Describe the process used for selecting the subjects and objects.
D3: Explain the process applied to assign the subjects and objects for treatments.
D4: Control the design of the study to be close to designs analyzed in the statistical literature.
D5: Describe the experimental unit.
D6: Calculate the size of the required sample by carrying out a pre-experiment or pre-calculation.
D7: Apply a proper level of blinding.
D8: Avoid the self-evaluation of your work. If not, report what have implemented to minimize bias.
D9: Use controls only when the control situation can be clearly well-defined.
D10: Completely describe all treatments or actions and interventions.
D11: Justify the use of specific metrics to measure the outcomes by showing the relevance between
these metrics and the objectives of the empirical study.

Conduct of the
experiment and
data collection

DC1: For software, describe fully their all measures such as the entity, attribute, unit and counting
rules.
DC2: In subjective measures, describe the approaches applied to verify that the measurement is
correct and consistent.
DC3: Explain any quality control procedure which is used to prove the accuracy and completeness of
data collection.
DC4: In surveys, observe and report the rate of responses and explore their representativeness and the
impact of non-responses.
DC5: In observational empirical study, report the subjects that are dropped out from the study.
DC6: In observational empirical study, retain data on the measures of performance which could be
affected by the used treatment, even if they aren't the central issue of the study.

Analysis

A1: Identify clearly and definitely any procedure that is used to control the multiple testing.
A2: Use blind analysis.
A3: Carry out sensitivity analyses.
A4: Verify that the data don't violate the hypotheses of the tests which are used on these data.
A5: Verify the results by applying a proper quality control procedure.

Presentation of
results

P1: Cite or give the details of all the statistical procedures which are used in the study.
P2: Mention the statistical package which is used throughout the study.
P3: Report the quantitative results and the significance levels.
P4: If it is possible, present any raw data or confirm its availability to check by the reviewers.
P5: Supply the reader by a proper descriptive statistics.
P6: Use the graphics in an appropriate manner.

Interpretation of
results

I1: Describe the population to which the inferential statistics and the predictive models are applied.
I2: Distinguish the statistical significance against the practical importance.
I3: Describe the type or category of the study.
I4: Identify the limitations or drawbacks of the study.

Table 9: Method-level operators

Category
Operators

B: Binary, U: Unary, S: Short-Cut
 Possible Operation

R: Replacement, I: Insertion, D: Deletion
Permutations Total

Arithmetic
B (+, -, *, /, %)

U (+, -)
S (op++, ++op, op --, -- op)

R
R, I, D
R, I, D

5×4=20
2×1+2×1+2×1=6

4×3+4×1+4×1=20
46

Relational B (>, >=, <, <=, ==, ! =) R 6×5=30 30

Conditional
B (&&, ||, &, |, ^)

U(!)
R

I, D
5×4=20
1×2=2

22

Logical
B (&, |, ^)

U(~)
R

I, D
3×2=6
1×2=2

8

Assignment S(+=, -=, *=, /=, %=, &=, | =, ^=) R 8×7=56 56
Total of Possibilities 162

Journal of Theoretical and Applied Information Technology
15th August 2019. Vol.97. No 15

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

4073

Table 10: No. of second-order mutants for each subject and their constituent.

Subject
program

No.
mutation

at def

No.
mutation
at c-use

No.
mutation
at p-use

All permutations Not selected yet
Second-order

mutants
Constituent without

duplication
Second-order

mutants
Constituent without

duplication
SP#1 65 50 46 2020 131 260 115
SP#2 120 60 50 660 230 110 70
SP#3 73 35 15 580 93 95 65
SP#4 100 93 31 2539 224 260 161
SP#5 118 104 29 2666 180 195 122
SP#6 91 91 25 2250 131 216 126
SP#7 85 121 25 2550 231 179 112
Total 652 554 221 13265 1220 1315 771

Table 11: Java example program and its data flow analysis.

Java function Midnum Data flow actions dua (variable, def, use)
0. public void Midnum(num1, num2, num3) {
1. int x, y, z;
2. int mid;
3. x = num1;
4. y = num2;
5. z = num3;
6. mid = z;
7. if(y < z) {
8. if(x < y) {
9. mid = y;
10. }
11. else {
12. if(x < z) {
13. mid = x;
14. }
15. }
16. }
17. else {
18. if(x > = y) {
19. mid = y;
20. }
21. else {
22. if(x > z) {
23. mid = x;
24. }
25. }
26. }
27. System.out.println(mid);
28. }

-
1. -
2. -
3. x:def ; num1: c-use
4. y:def ; num2: c-use
5. z:def ; num3: c-use
6. mid:def ; z: c-use
7. y: p-use; z: p-use
8. x: p-use; y: p-use
9. mid: def; y: c-use
10. -
11. -
12. x: p-use; z: p-use
13. mid: def; x: c-use
14. -
15. -
16. -
17. –
18. x: p-use; y: p-use
19. mid: def; y: c-use
20. –
21.-
22. x: p-use; z: p-use
23. mid: def; x: c-use
24. –
25.-
26.-
27. mid: c-use
28.-

 # dua
1. (x, 3, 8)
2. (x, 3,12)
3. (x, 3, 13)
4. (x, 3, 18)
5. (x, 3, 22)
6. (x, 3, 23)

7. (y, 4, 7)
8. (y, 4, 8)
9. (y, 4, 9)
10. (y, 4, 18)
11. (y, 4, 19)

12. (z, 5, 6)
13. (z, 5, 7)
14. (z, 5, 12)
15. (z, 5, 22)

16. (mid, 6, 9)
17. (mid, 6, 13)
18. (mid, 6, 19)
19. (mid, 6, 23)
20. (mid, 6, 27)

Total = 20 dua

Journal of Theoretical and Applied Information Technology
15th August 2019. Vol.97. No 15

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

4074

Figure 2: : Subtlety of DFSOM and Data flow criteria against the same test suite.

Figure 3: Subtlety of DFSOM and their Constitute FOM against the same test suite.

35%

10%

36%

20%

30%

10%

0%

20.1%

0.0%

36.0%

0% 0%

7%

17%

10%

4%

0%

5.4%

0.0%

17.0%

0%

5%

10%

15%

20%

25%

30%

35%

40%

SP#1 SP#2 SP#3 SP#4 SP#5 SP#6 SP#7 Average min max

DFSOM critrion

Data flow critrion

35%

10%

36%

20%

30%

10%

0%

20%

0%

36%

21%

0%

20% 20%

30%

10%

0%

14%

0%

30%

0%

5%

10%

15%

20%

25%

30%

35%

40%

SP#1 SP#2 SP#3 SP#4 SP#5 SP#6 SP#7 Average min max

DFSOM

Constitute
FOM

