
Journal of Theoretical and Applied Information Technology
15th August 2019. Vol.97. No 15

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

4021

 REVIEW OF IOS ARCHITECTURAL PATTERN FOR
TESTABILITY, MODIFIABILITY, AND PERFORMANCE

QUALITY

1FAUZI SHOLICHIN, 2MOHD ADHAM BIN ISA, 3SHAHLIZA ABD HALIM, 4MUHAMMAD
FIRDAUS BIN HARUN

1,2,3Software Engineering Research Group, Faculty of Engineering, Universiti Teknologi Malaysia,

Malaysia

4Software Construction Research Group, RWTH Aachen University, Germany.

E-mail: 1sholichin.fauzi@graduate.utm.my, 2mohdadham@utm.my, 3shahliza@utm.my
4firdaus.harun@swc.rwth-aachen.de

ABSTRACT

In the mobile development especially in iOS, a correct selection of architecture patterns is crucial. Many
architectural patterns used by developers such as Model View Controller (MVC), Model View Presenter
(MVP), Model View ViewModel (MVVM), and View Interactor Presenter Entity Router (VIPER) have
promised stability of the product. Nowadays, most developers tend to use MVC architectural pattern as this
pattern is easy to use and separate the logic between model, view and controller. However, this architecture
has common problems which are hard to test and manage the code because all the codes for business
application are placed in controller components. Therefore, this paper reviewed some of the existing
architectural patterns qualities specifically in testability, modifiability and performance quality in order to
investigate the mentioned problems. By using Contact mobile apps as a case study, the results show the
MVVM architecture is good for testability, modifiability (cohesion level procedural), and performance
(memory consumption). In addition, VIPER is the best in modifiability (coupling level data and coupling
level message) and performance of CPU.

Keywords: Architecture Pattern; Design Pattern; Software Architecture; Quality attributes; Software
Professionals

1. INTRODUCTION

 Mobile phones are increasingly expanding
universality among clients. Ios and Android devices
are generally accessible, while the market rivalry
between various gadgets has been severe. Based on a
survey in free web intelligence report in August 2018,
iOS made steady headway in the US, France, Canada,
Japan, and South Africa [1]. Hence, the market for
iOS is broad and has the opportunity for a startup to
develop their business to consumers through the iOS
application.

To date, most of the company has developed
a product in the iOS and Android platform. Usually,
the development takes 18 weeks to produce a first
version or minimum viable product. The result based
on 100 mobile architects realizes how long they
expected to develop it [2]. The success of the
development of the app not only depending on the
programmer skills but also from the selected

architectural patterns. Thus, the selection of the
architecture pattern is crucial in a software design
phase.

In recent years, most of the iOS apps are
designed using MVC, that splits the application into
three layers: model, view, and controller, and where
the default role of the controller is to link the two
other layers [3][4]. The controller layer in MVC for
iOS offer explicit responsibilities other than just a
connection between model and view layer. All these
added responsibilities make the controllers massive
and complicated and also thighly coupled between
view and controller layer. The problem is getting
even more serious in a medium and large scale project
where this scenario will have a huge impact to the
software quality [3].

Previous work, are looking for the relation
of architecture that is actually giving an impact to a
software quality indirectly. Other works stated that

Journal of Theoretical and Applied Information Technology
15th August 2019. Vol.97. No 15

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

4022

MVVM / MVP is better than MVC based on a variety
of qualities on Android OS environment settings
specifically for modifiability, testability, and
performance [5].

Differences of this research compared to
other similar work in this area of research is twofold:
first, we are focusing on iOS platform, supported by
a third party library such as Alamofire and
SwiftyJson. Second, we investigate the VIPER
architecture where it is claimed to be the best of
architecture in testability and distribution [4].
Furthermore, there is no observational data report
similar to what have been done in this paper to
support VIPER as a new architecture with qualities
such as modifiability, performance, maintainability
[6].

The primary challenge to the problem is to
choose a suitable architecture pattern for product
development that promises a good software quality.
In addition, a various software company faces a
problem when they have a bottleneck; even a few has
to rewrite code even from scratch. Rewrite a code
from scratch contribute a significant impact to the
effort for the company and developers. Thus, to avoid
this problem, a process to choose the right
architecture pattern is crucial.

 The study was conducted in the area of
software architecture on iOS native development by
the problems arising from an industrial based
problem. Problems such as lack of MVC for large-
scale project consequently influence the quality of
modifiability, testability and performance of an
application. In this sense, MVC architecture is
becoming irrelevant when a Massive View Controller
syndrome appears in a controller. As a consequences,
the product is difficult to test in display controller,
which will influence testability and modifiability
quality. In this study, the problem of choosing the
right iOS architecture for a large-scale project is our
main focus, where the suitable architecture will
improve the modifiability in an iOS project which
already complex, thus improving the performance of
an iOS application.

2. CURRENT WORKS

 In this section, we investigate a current
works in architectural patterns for mobile apps
development on IOS platform. In attempting to
understand the landscape of the leading research area,
literature has previously focused on architecture
pattern in mobile development, namely: model view
controller (MVC), model view ViewModel

(MVVM), model view presenter (MVP), and view
Interactor presenter entity router (VIPER). This
section also presents prior works related with mobile
architecture pattern and discusses any possible
research gaps.

2.1 Software Architecture Pattern

Architectural patterns have always helped to
build a testable, manageable and optimized software
performance. It usually helps modularize the software
so that each component is separated and handles a
single responsibility. They also significantly improve
the usability of a code, which performs a critical
function in connecting the coding software. The
software construction process also accelerates
dramatically with the already proven design
paradigms and mobile developers get more benefits
in the development process with following the
architectural patterns. Since the mobile application is
getting bigger, hence mobile developer necessitate
considering the design patterns before they go into
the development application process. Several studies
have shown that 50% to 70% of the total lifecycle cost
for a software system is spent on evolving the system
[7]. Software pattern architecture has an essential role
in the process of changing, refactoring, and rewriting
function or feature in the software development
process.
A. Model View Controller
 The MVC design pattern considers there to
be three types of objects: model, view, and controller.
Model objects encapsulate the data specific to an
application and define the logic and computation that
manipulate and process that data [8]. A view object is
an object in an application purpose of display data
from the model object that end user can see.
Controller objects purposely to ast as an intermediary
between one or more objects in view and model.
Many objects in these applications tend to be more
reusable, and their interfaces tend to be better defined
[8].

 MVC is a default architecture pattern in iOS
native development. UML class diagram is illustrated
in Figure 1 which gives view linked to the Controller
class. View in iOS development could use Xib,
Storyboard, or swift class to generated view. Xib and
Storyboard not swift class, but user interface
representation of an iOS application. In iOS, when
using Xib class usually must declare a swift class as
Controller with extending UIViewController class
from UIKit native library in iOS. Model is typically
plain Swift object class with responsibility for
business logic. For example, regain data (text, photo,
and etc.) from consumed RESTful API.

Journal of Theoretical and Applied Information Technology
15th August 2019. Vol.97. No 15

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

4023

Figure 1. MVC IOS Implementation UML Class Diagram

 A piece of an iOS app’s architecture is
necessary to view controller communication between
controllers with another controller. For example, in
Figure 2, which shows controller, connected with
another controller, which every single controller
connected with Model and Network Singleton for
consumed RESTful API. View controller
communication acquaints a strict sequel between
view controllers. Architecture increased to the
already complex execution flow of MVC.

Figure 2. MVC IOS Implementation UML Class Diagram

2.1.2 Model View Presenter
 The MVP pattern was invented in the 90s as
a current C++ initiative from Apple, IBM, and HP as
an alternative to the MVC pattern [9]. MVP has six
components, which are a view, model, commands,
selections, presenter, and interactor. Model element
indicates a data in the application and share a similar
concept in MVC. Sections component specified the
part of the data to operate. Commands component
deliver actions that could be execute. Presenter
component that aims organize and coordinate all the
same as the controller in MVC. Interactor component
demonstrates the events that will be triggered by the
user action. View component represented a view,
which is similar in MVC. Although in original MVP,
six components are defined, implementation in real-
world development used only three components,
which are Model, View, and Presenter. Hence,
commands, selections, and interactor included in
Presenter.

 Figure 3 shows a UML class diagram
implemented in the Swift project. In this version

using Xib and View class as a view with import
UIViewController from UIKit. Presenter decelerated
in View class, which is view class could access
function in a presenter. View Class extends a protocol
class as an interface, so that could trigger callback
action from presenter class. Callback action from
presenter based on result data computation, response
RESTful API, and logic depend on a case study. For
example for a login case study, after the user clicked
the login button, a view will call a function in the
presenter. Then, the Presenter will throw the set of
data to the model for the validation process. The
result of process validation has typically success and
failure response that result throws with a delegate to
view for make a result view feedback.

Figure 3. MVP IOS Implementation UML Class Diagram

2.1.3 Model View ViewModel
 The MVVM is an architectural pattern most
commonly used in Windows applications. The
Architecture pattern was formulated by Ken Cooper
and Ted Peters while working at Microsoft. John
Gossman first announced this pattern in his blog in
2005 [10]. Model is the data or business logic,
completely UI independent that stores the state and
does the processing of the problem domain. The view
consists of the visual elements display data that
binding from the view model. View model Mediate
the interaction between the Model and View. It
passed data also manage the view’s logic and
behavior.

Figure 4. MVVM IOS Implementation Diagram

 In MVVM, the Swift class extends with
UIViewController that considered as View. View
only knows how to present the data they are pass from
View Model Class. In View Model, the core function
is managing and preparing and the data for a View. It
also handles communication data from local data and
the rest of the application. After view was created,
then View class calls the rest function by view model.

Journal of Theoretical and Applied Information Technology
15th August 2019. Vol.97. No 15

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

4024

View model will execute logic and data that needed
showing to view class.

2.1.4 View Interactor Presenter Entity Router
 Viper was created at Mutual Mobile, an
agency in Austin, Texas in 2014. After using and
publishing the architecture, it became more common.
The word VIPER is an acronym for View, Interactor,
Presenter, Entity, and Routing.
View component like in MV(X) architecture to
display and user input back to the presenter.
Interactor focus on business logic as by use case.
Presenter component like MVP architecture, but has
other function different. Presenter received a data
from interactor that displays to preparing content with
view logic; by requesting new data from the
interactor, that give reacting to user inputs. The
interactor like Model component uses entity as a
primary model objects. Routing as navigation logic
for describing which screens are shown in which
order.

Figure 5. VIPER IOS Implementation Diagram

2.2 Comparative Prior Works in Software
Architecture

 Table 1 shows comparison prior works in
software architecture pattern in criteria research type,
architecture, and evaluation of research. The view of
the comparison means to exist the advantages and
disadvantages of prior works research with different
architecture pattern. The view of the comparison
means to exist the advantages and disadvantages of
prior works research with different architecture
pattern. The research study offers a development
using MVP Architecture enhance with clean
architecture, dependency injection, and reactive
programming [11]. Clean architecture and
dependency injections provide likelihood to make
application easy to test as well as easy to add new
features, which are features have to follow the
dependency rules.

Table 1: The Comparison of prior works in Mobile
Software Architecture Pattern

Authors Title of Paper Architecture Advantages Disadvanta

ges
Duy, T. B. (2017) Reactive

Programming
and Clean
Architecture in
Android
Development

MVP

Explain detail
of third party
library
(RxJava,
Retrofit) which
was
implemented in
architecture
pattern design.

Not explain
detail
qualities
impact of
implementat
ion software
architecture.

Lou, T. (2016)

A comparison
of Android
Native App
Architecture
MVC, MVP
and MVVM

MVC
MVP

MVVM

Architecture
evaluation
methods using
ATAM
(Architecture
Trade-off
Analysis
Method)

Case study
feature for
comparative
testing not
specifically
defined.

Felix Javier
Acero Salazar,
M. B. (2015)

Tailoring
Software
Architecture
Concepts and
Process for
Mobile
Application
Development

MVVM
VIPER

Present an
advance level
process and
several drafts
that aim to clue
developers in
the fit creation
architectures
for their apps

Not explain
of step
evaluate
software
architecture.

Giedrimas, V.
and S. Omanovič
(2015)

The Impact of
Mobile
Architectures
on Component-
based Software
Engineering

MVC
MVVM

Description
differences
between
android and
iOS component
in architecture
pattern

Not explain
better option
architecture
for
development
process.

Syromiatnikov,
A. and D. Weyns
(2014)

A Journey
Through the
Land of Model-
View-* Design
Patterns

MVC
MVP

MVVM

Explain pros
and cons of
MVC, MVP,
and MVVM

Test case
just using
MVP
pattern,
which is not
comparing
every single
architecture

 Further research studies, offer metrics
framework for evaluating architecture considers
multiple quality attributes such as performance,
modifiability, security, and reliability [6].
Furthermore, the metrics framework made with some
modifications based on ATAM method. ATAM has
six phases are a collect scenario, collect requirement,
describe architecture view, attribute-specific
analysis, identify sensitives, identify tradeoffs. Thus,
the architecture displayed in the research is modified
from an android native application.

Implementation component in Android and
iOS have differences. Example, component control in
Android have two types are activity and fragment,
while in iOS have one that ViewController. A paper
discusses significant changes in the component
concept influenced by the mobile platform [10]. The
paper offers, differences of the software for mobile
devices could be handled as the modern challenges in
software engineering. Although, the platform of
mobile changes in market side the component-based
paradigm adapts from under evolution.
 One of research that present a high-level
process and several concepts that aim to the creation
of suitable architectures mobile [17]. This research
offers three processes to guide developers in creating
an architecture for their apps. First, based on

Journal of Theoretical and Applied Information Technology
15th August 2019. Vol.97. No 15

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

4025

important architectural processes. Second, to
mapping the central concept and knowledge software
architecture in real word mobile development. Third,
to recommend for a different view of mobile software
architectures, which is process and methodology are
favored over predefined solutions. Thus, the research
aims to extend the perspective of mobile software
architectures. Moreover, in real-world mobile
development well known that MV(X) architecture
pattern. Research explain the journey of through in
MVC, MVP, and MVVM that analyze pros and cons
of every single architecture pattern [12]. Although,
the case study of comparing architectures show with
MVP, the decision result detail and inline to help
practitioners to make a better
selection for choosing architecture.

B. Discussion
 A software architecture have a major
contribution towards a successful software project. At
the beginning of development, it may take some time
to design a good architecture. However, the effort
will be paid off after the architecture has been
developed with consideration of suitable qualities.
One of the advantages is the ability to refactor a poor
quality code caused by a bad architecture.
 One of attribute comparison is an
evaluation, that means disadvantages from uncovered
in their research. The research not explains detail in
terms of qualities impact of implementation using
MVP [11]. The result of the research offer conclusion
implemented with a clean architecture based on MVP
is the code could easier for test and add a new feature.
Indirectly state that with implementation architecture
correctly could increase a quality of testability and
modifiability of software.
 Quality is part of essential things that
practitioners are selecting the software architecture.
The research proposes comparison software
architecture based on testability, modifiability, and
performance quality in android platform [5].
However, case study feature for comparative testing
not explicitly defined, only exist the to-do apps in an
appendix. Moreover, metrics formula for the subject
is not included in this research. The advantage of this
research is using ATAM method which one has an
excellent flow to relate structurally. ATAM has six
phases, which every single phase described based on
prior work and requirement from a goal of phase.

3. METHODOLOGY

In general, the methodology describes
research groundwork concerning definitely which
research elements are required and what particular
terms are applied to realize the whole research study.

Figure 6. Methodology

3.1 Testability
3.1.1 Size of test cases

Le Taraon and Baudry proposed that the
software testability influence by three parameter
namely global test effort, controllability, and
observability [13]. Moreover, test sets size is one of a
part in global test effort to realize the aim of test. Unit
test (XCode) feature used to calculate test cases size.
Thus, the architecture with less test cases is better.

3.2 Modifiability
3.2.1 Cohesion level

The former is aimed to decide the cohesion
component level by investigating tasks and data items
inside the component cohesion [13][14]. The
cohesion component strength is decided by analyzing
the dependencies number inside this component as
shown in Equation (1).

Ai is the strength of dependency within

the ith component. μi refers to the number of
dependencies within the ith component. ni is the
number of tasks within the component, and m is the
number of components within the generated software
architecture [13] [14].

 Xulin Z, Fouts K, and Ying Z defines
cohesion levels in the order from the worst namely
low cohesion to high cohesion as to the top. Table 2
determines the data characteristics items and tasks in
components for assessing the cohesion of
components.

(1)

Journal of Theoretical and Applied Information Technology
15th August 2019. Vol.97. No 15

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

4026

Table 2: Cohesion levels and their characteristics
Category Cohesion

level
Characteristics

Moderate
levels

Procedural Task within
component is
connected by control
connectors.

3.2.2 Coupling level

The goal of components coupling is to
assess the interdependencies strength between
components with broken down into 7 distinct level
[13] [14]. The coupling strength is measured based on
the average of coupling strength among components.
Researcher claimed the coupling between two
components is assessed by examining the number of
dependencies between the two components using
Equation (2) [13] [14].

Ei,j is the inter-dependency between the ith

component and the jth component. Εi,j is the total
number of dependencies between the two
components. Number of task are represented by two
components ni and nj. m is the total number of
components in the generated software architecture
[13] [14].

Xulin Z, Fouts K, and Ying Z defines
coupling levels in the order from the worst namely
high coupling to low coupling as to the top. Table 3
determines the data characteristics items and tasks in
components for assessing the components coupling.

Table 3: Coupling level and their characteristic

Low levels Data Primitive data or
arrays of primitive
data are passed among
components.

Message Components
communicate through
standardized interface

3.2.3 Measuring amount of functionality

Following functional size measurement, we re-
mapped functionalities into the following five
functional factors [13] [14]:

Table 4: Five functional factors
Functional

Factors
Description

Internal logic
files

which hold data items used
within a component

External
interface

files

which contain external data
received from the operational

environment.
External
inputs

which refer to input pins of
tasks that hold external data

External
outputs

which correspond to output pins
of tasks that return data to the

operational environment
External
inquiries

which are tasks that capture data
access actions.

For each functional factor, the FSM approach defines
three levels of complexity and specifies a weight for
the functional factor at each complexity level [13]
[14]. Complexity levels and corresponding weights
for the five functional factors shown in a table below:

Table 5: Weights of functional factors in FSM
Functional

Factors
Low

Internal logic
files

7

External
interface files

5

External
inputs

3

External
outputs

4

External
inquiries

3

3.3 Performance
3.3.1 Consumed memory

The metrics for consumed memory based on
average of allocation memory for application per
millisecond. To calculate of consumed memory using
XCode Instrument. Thus, the architecture with less
consumed memory is better

3.3.2 Consumed central processing unit

The metrics for consumed CPU based on
average of allocation CPU for application per
millisecond. To calculate of consumed CPU using
XCode Instrument. Thus, the architecture with less
consumed CPU is better

3.4 Case Study

The case study used for this study is Contact
App. This case study is used to prove the usefulness

(2)

Journal of Theoretical and Applied Information Technology
15th August 2019. Vol.97. No 15

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

4027

of the research outcomes concerning modeling and
analysis of architecture impact to software quality in
iOS native.

3.4.1 Contact App

Contact App is an application for looking for
a contact phone, each of smartphone default has a
contact application included. However, another
developer has extended the contact phone app for
custom features included in this app. Moreover,
another application messenger and social media have
a feature contact app. Thus, contact app features
depend on the aim of application and user.

Figure 7. Contact App

In this case study, contact data based on
public API randomuser.me. Randomuser.me is a free
open-source API for generating random user data
people created by Keith. A and Arron J.H [38]. The
API will provide a default formatted in JSON.
However, the API could custom formats such as
CSV, YAML, and XML. Moreover, the API always
updated features or information every year. Thus, a
current number of data users generated are more than
ten billion users per year.

3.4.2 Justification and Classification of the Case
Studies

Table 6 shows the case studies and relevant
criteria. The justification of the case studies choice is
based on research contributions. Each contribution is
proved by the selected case study in order to show the
applicability of the findings.

Table 6: The justifications of the case studies
Criteria Contact App

Feature to be
Tested

- list contact
- search contact
- detail of contact

Data source https://randomuser.me

Architecture
Pattern

VIPER, MVP, MVVM,
MVC

Quality to be
measured

Modifiability, Performance,
and Testability

Based on Table 6, the feature to be tested for

every app have different feature and data source. Data
source get from public data that could consume with
JSON formatted. The case studies developed by Swift
programing language based on every Architectures
namely MVC, MVP, MVVM, VIPER.

A. Integrated Development Environment (IDE)

XCode

XCode is IDE for macOS which containing
SDK for native iOS development. XCode supports C,
C++, Objective-C, Objective-C++, Java,
AppleScript, Python, Ruby, and Swift. Swift is a most
common language to develop in iOS, Mac, and Apple
TV. XCode has a feature to shows the debug
navigator CPU, memory, disk, and network. This
feature covered application when running on
simulator or device. Figure 8 and Figure shows the
graph percentage used and time when an application
in a running test. The debug navigator will be turn off
when application debugs stops.

Figure 8. Debug CPU Navigator

Figure 9. Debug Memory Navigator

Journal of Theoretical and Applied Information Technology
15th August 2019. Vol.97. No 15

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

4028

Figure 10. Debug Memory Navigator

Feature debug navigation has a specific app
to record when application testing. The name is an
instrument that has many features related to an
analytic application. Figure 11 shows a menu of
instrument namely activity monitor, leaks, time
profiler and others.

Figure 11. Instrument Menu Features

B. Device Testing

Testing application could use simulator and
device. XCode provided simulator from iPhone 4
until iPhone X included in XCode after installed.
However, build using real device have to used bundle
ID, which is could download in developer.apple.com.
The Certificate of apple developer also used to upload
application to app store.
 Device test used in this research is iPhone 5.
Therefore, iPhone 5 has the lowest iPhone with
supported iOS 10 with specification namely display
phone 4.0 inch, processor 1.3 GHz, and RAM 1 Gb.

4. RESULT

4.1 Case Study

The result of the experiment will be
explained based on the quality metrics, which are
testability, modifiability and performance.

4.1.1 MVC

Model View Controller (MVC) is an
architecture pattern with three components. Figure 12
shows the concept flow of MVC in a business
application. Documentation MVC provided by
Apple, so if follow the instruction of documentation

Figure 12. MVC Class Diagram

4.1.2 MVP

Model View Presenter (MVP) has three
component View, Model, and Presenter.
Implementation MVP in the iOS project needs to
know about the delegation pattern. Delegation
concept in swift bridged by protocol class. Each
presenter has a protocol to communicate with View
and protocol for declare method in a presenter.

Figure 13. MVP Class Diagram

Figure 14. Class Abstract for Binding

Figure 15. Class Abstract for Binding

Figure 14 and 15 is example in case study
Contact. Inside of UIContactSetupDelegate protocol
as method callback that which will be forwarded from
the presenter to the view when protocol activated.

Journal of Theoretical and Applied Information Technology
15th August 2019. Vol.97. No 15

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

4029

Besides, ContactListPresenter extend
ContactSetupCommand which is automatically
declaration method and variable in
ContactSetupCommand will implement inside
ContactListPresenter class.

4.1.3 MVVM

Implementation MVVM in the iOS project
needs an abstract class to binding data in ViewModel
component. In Figure 17 shows class Observable
which has a function of binding data. Obervable class
implemented concept of observer pattern that can
updated automatically when value change or update.
Inside the class have three functions and two setup
values for declaration data that want to bind. Syntax
“T” mean value could set with anything type data
start from a string, integer, long, double and so on
until data object model. For example, in this case,
Contact app has a Contact model class as data object
shown in Figure 16.

Figure 16. MVVMM Class Diagram

Figure 17. Class Abstract for Binding

In Figures 17 shows the usage of class
observer binding variable list, isError, and isLoading.
Usually declaration variable in class like roomsFilter
which is after equals that value of data.

Figure 18. Class Abstract for Binding

Figure 19. Class Abstract for Binding

In Figure 19 shows initiation data binding
used in class extend UIViewController which is at
MVVM that class as View component. For example,
ContactListVC class in contact case study

4.1.4 VIPER

VIPER has five components and five a
protocol classes in one flow of case. Implementation
VIPER in the iOS project needs to know about the
delegation pattern. Delegation concept in swift
bridged by protocol class same like MVP. In Figure
21 shows an all of the protocol class in VIPER.
Presenter and Interactor have a protocol to
communicate with View and protocol for declare
method in a presenter. Router component used
protocol class for declare method inside class.

Figure 20. VIPER Class Diagram

Journal of Theoretical and Applied Information Technology
15th August 2019. Vol.97. No 15

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

4030

Figure 21. Class Protocol VIPER

4.2 Quality

Below are result of experiment in case study
contact using MVC, MVP, MVVM and VIPER in
testability, modifiability and performance.
4.2.1 Testability

A. Size of test cases

In this architecture is ContactListVC class.
The result comparison shows in Table 7.

Table 7: Lines test case each architecture
Architecture
Pattern

Lines of code

MVC 164

MVP 129

MVVM 113

VIPER 123

MVC > MVP > VIPER > MVVM

MVVM has fewer line codes for testing
because MVVM applies data binding in ViewModel.
After each function that requires data, it will retrieve
data in the ViewModel component. Unlike MVP and
VIPER, data thrown into View will be processed and
re-aligned in view. So, the declaration process occurs
in each component. MVC has the most code because
all aspects of the data, control view, handle a case,
etc. are in the controller. The impact is that the longer
the product development process, the number of lines
in the controller component. making it more difficult
to test.

B. Execution time to run application

Execution time build using XCode with
clear cache in XCode before testing. The result of
comparison execution time shows in Table 8.

Table 8: Differences time each architecture
Architecture Pattern Time (Second)
MVC 24.1
MVP 20.9
MVVM 19.6
VIPER 21.4

MVVM has a testing time that is faster than
other architectures. Because declarations in data
usage are more divided into different components. On
the other hand, MVC has a long-time due to a large
number of business applications run within the
Controller.

4.2.2 Modifiability

C. Cohesion Level
Modifiability criteria using Cohesion level

procedural. Result cohesion shows at Table 9:
Table 9: Differences cohesion point each architecture

Architecture Cohesion
(Procedural)

MVC 0,4
MVP 0,3809

MVVM 0,55
VIPER 0,528

The result of cohesion each architecture
shows in Table 10. MVP has the lowest value
between 4 architectures. MVVM is the best of
cohesion level in procedural.

D. Coupling Level
Modifiability criteria using coupling level data, and
coupling level message.
The scenario for update new feature:
1. User click filter icon
2. Click event to Send to C/P/VM
3. Show loading state on view
4. Sending parameters to model / entity component,

in this case – male/female
5. After a request, a response is delivered to

C/P/VM.
6. When a response has feedback if the list contact

filter successfully refreshes the view. If the list
contact filter failed, show an error message.
C/P/VM passes this command to View.

7. Dismiss loading state

Journal of Theoretical and Applied Information Technology
15th August 2019. Vol.97. No 15

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

4031

The result coupling at Table 10:
Table 10: Coupling point each architecture

Architecture Coupling
(Message)

Coupling
(Data)

MVC N/A 0,0416
MVP 0,0208 0,0208

MVVM 0,0208 0,0312
VIPER 0,0173 0,0173

MVC does not have a coupling level message

because the all of the business function application is
handled by the Controller. Viper is the best
architecture in coupling level messages and data,
because the change of function involves three
components.

C. Measuring Amount of Functionality

Amount of functionality based on class that
extend UIViewController class. Weight FSM in this
testing using Low because a total of functional
number point no more than 50 attributes is low

Figure 23. Class Protocol VIPER

Based on the result the highest count of functionality
is MVC. Besides MVVM has the less of the amount
of functionality

4.2.3 Performance

Performance divided in two criteria
consumed memory and CPU. The following are the
results of testability testing.

A. Consumed Memory

Figure 24. Consumed Memory

Table 11: Testing by simulator

Architecture Average Memory (Mb)

MVC 27,7925

MVP 27,41225

MVVM 26,4465

VIPER 26,8085

Table 12: Testing by device

Architecture Average Memory (Mb)

MVC 26,12875

MVP 22,9645

MVVM 21,19275

VIPER 23,269

Best performance in consumed memory in
simulator and device is MVVM. Because when move
from screen to other screen view the data model will
be deleted and the ViewModel class will be
deactivated. MVC, MVP, and VIPER have data
declarations in the UIViewController class. When
move from screen to other screen the data still
remains in the UIViewController class.

Journal of Theoretical and Applied Information Technology
15th August 2019. Vol.97. No 15

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

4032

B. Consumed CPU
Figure 25 shows the consumed CPU each

architecture tested using simulator and device.

Figure 25. Consumed CPU

Table 13: Testing by simulator

Architecture Average CPU (%)

MVC 21,375

MVP 12,6

MVVM 13,625

VIPER 8,525

Table 14: Testing by simulator

Architecture Average CPU (%)

MVC 22,85

MVP 10,825

MVVM 11,61538462

VIPER 8,925

Best performance in consumed CPU in
simulator and is VIPER. Because VIPER divided in
5 components and the functions in component not
called simultaneously.

5. DISCUSSION

This section discusses the result on
comparison of quality between MVC, MVP, MVVM
and VIPER in Table 15 below.

Table 15: Comparison of Quality Architecture

Architecture MVC MVP MVVM VIPER
Metrics

Testability
Size of test

cases
164 129 113 123

Execution
time

24.1 20.9 19.6 21.4

Modifiability
Cohesion

0,40 0,38 0,55 0,53

Coupling
Message

N/A 0,0208 0,0208 0,0173

Coupling
Data

0,041 0,0208 0,0312 0,0173

Amount of
Functionality

94 72 60 63

Performance
Performance

CPU
(Simulator)

21,3 12,6 13,6 8,5

Performance
Memory

(Simulator)

27,8 27,4 26,4 26,8

Performance
CPU (Device)

22,8 10,8 11,6 8,9

Performance
Memory
(Device)

26,1 22,9 21,1 23,2

The result in testability show a good
architecture based on fewer test cases and consumed
less time to run a test.
Size of test case:

MVC > MVP > VIPER > MVVM
Consumed time:

MVC > VIPER > MVP > MVVM
Based on the criteria, the result of MVVM is

the best of architecture in testability, and MVC is
worse between four architectures were tested. Size of
a test case in MVVM reduces because architecture
implemented data binding in ViewModel which is
each View using binding data from ViewModel than
there is no need to declare data in a view.

The next result is on good which
architecture has the best modifiability quality
compared based on higher cohesion, lower coupling
and less of amount functionality. In this case, the
cohesion level used in this research is procedural, and
coupling level used is Data and Message.
Cohesion Level (Procedural):

MVP < MVC < VIPER <MVVM
Coupling Level (Data):

VIPER < MVVM < MVP < MVC

Journal of Theoretical and Applied Information Technology
15th August 2019. Vol.97. No 15

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

4033

Coupling Level (Message):
 VIPER < MVVM = MVP
Amount of Functionality:

MVVM < VIPER < MVP < MVC
Results show that best architecture in

modifiability cohesion level and amount of
functionality is MVVM. Besides, best coupling level
is VIPER. MVVM become best in cohesion because
of MVVM reduce of task within a component
connected by control connectors between View and
ViewModel. Besides, VIPER become best on
coupling because component in VIPER is the most
than any other architecture.

The result of good architecture in
performance based on less memory and CPU
consumed.
Memory (Simulator):

MVC > MVP > VIPER > MVVM
Memory (Device) :

MVC > VIPER > MVP > MVVM
CPU (Simulator):

MVC > MVVM > MVP> VIPER
CPU (Device):

MVC > MVP> MVVM > VIPER
The result shows that MVC architecture consumes
most memory and CPU. Therefore, in device and
simulator shows that VIPER is better that three-other
architecture in CPU. Hence MVVM shows better
than three other architectures for performance quality
which is compared based on consumption of memory
in device and simulator. Based on the quality results,
MVVM and VIPER is identified as two of the best
architecture, which has big potential in solving the
problem of sustainable product in architecture pattern
side. However, there are still opportunities in
improving the architectures in the future.

6. CONCLUSION

This paper provides an interesting research on
comparing mobile architecture pattern on 3 software
qualities. Based on the findings, it seems MVVM and
VIPER quite outstanding in term of testability,
modifiability and performance. However, there a few
things that needs to be considered to improve the
quality of paper and hopefully close to be a candidate
as an accepted paper.

The proposed future research might be the best
practice to execute MVVM or VIPER architecture in
iOS development. To gain better software qualities
with migrating from the MVC to MVVM or VIPER
architecture, which has the potential to become the
basis for the development of mobile architectural
patterns in the future.

The case study used in this paper is for proof of
concept, more investigations should be carried using
case study with higher complexity than the one used
in this paper. Furthermore, third-party library affects
the qualities of the software architecture. In this case,
the similarities and differences, cons and pros used
the third-party library. In addition, a measurement of
the modifiability impact of refactoring from MVC or
MVP to MVVM or VIPER in a complex case study
is a good topic to be discussed.

7. ACKNOWLEDGEMENT

This research work has been carried out by
Software Engineering Research Group (SERG),
University Teknologi Malaysia (UTM) and is funded
from Research University Grant (RUG) Universiti
Teknologi Malaysia, under vote
no. Q.J130000.2528.16H51. We would also like to
thank Embedded & Real-Time Software Engineering
Laboratory (EReTSEL) members for their feedback
and continuous support.

REFRENCES:
[1] DeviceAtlas. (2018). The Mobile Web

Intelligence Report, August 2018 Available
from https://deviceatlas.com/blog/android-v-
ios-market-share

[2] Kelly Rice, How Long Does It Take to Build a
Mobile App. 2013, January 08. Available from
https://www.progress.com/blogs/how-long-
does-it-take-to-build-amobile- app.

[3] Habchi, S., et al. (2017). Code Smells in iOS
Apps: How Do They Compare to Android?
2017 IEEE/ACM 4th International Conference
on Mobile Software Engineering and Systems
(MOBILESoft).

[4] Zabłocki Krzysztof (2017). Good iOS Application
Architecture: MVVM vs. MVC vs. VIPER,
May 8 Available from
https://academy.realm.io/posts/krzysztofzabloc
ki-mDevCamp-ios-architecture-mvvm-mvc-
viper.

[5] Lou, T. (2016). A comparison of Android Native
App Architecture MVC, MVP and MVVM,
Aalto University. Master: 57.

[6] Soral, R. (2018). Ending the debate: MVC vs
MVP vs MVVM for iOS application
development, 10 January. Available from
https://www.simform.com/mvcmvp-mvvm-ios-
app-development.

[7] P. Bengtsson, N. Lassing, J. Bosch and H. v.
Vliet (2000), "Analyzing software architectures
for modifiability,". University of Karlskrona.

[8] Apple Documentation (2018). Cocoa Core
Competencies: Model-View-Controller,
November 2. Available from

Journal of Theoretical and Applied Information Technology
15th August 2019. Vol.97. No 15

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

4034

https://developer.apple.com/library/archive/doc
umentation/General/Conceptual/DevPedia-
CocoaCore/MVC.html

[9] Mike Potel (1996). “MVP: Model-view-presenter
the taligent programming model for C++ and
java," Taligent Inc., p. 20, 1996.

[10] Gosman John (2005).“ Introduction to
Model/View/ViewModel pattern for building
WPF apps” November 10. Available from
https://blogs.msdn.microsoft.com/johngossman
/2005/10/08/introduction-tomodelviewview
model-pattern-forbuilding- wpf-apps.

[11] Duy, T. B. (2017). Reactive Programming and
Clean Architecture in Android Development,
Helsinki Metropolia University of Applied
Sciences. Bachelor of Engineering Information
Technology: 49.

[12] Syromiatnikov, A. and D. Weyns (2014). A
journey through the land of model-viewdesign
patterns. Proceedings - Working IEEE/IFIP
9Conference on Software Architecture 2014,
WICSA 2014.

[13] X. Zhao, F. Khomh and Y. Zou, (2011).
"Improving the Modifiability of the
Architecture of Business Applications," in 2011
11th International Conference on Quality
Software, Madrid.

[14] L. Bass, (2007). "Modifiability tactics,"
Carnegie- Mellon Univ Pittsburgh Pa Software
Engineering Inst.

[15] Chen, M.-C. and Huang, S.-H. (2003) ‘Credit
scoring and rejected instances reassigning
through evolutionary computation techniques’,
Expert Systems with Applications, 24(4), pp. 433–
441.

[16] John M., Mike S. iOS Design Patterns MVC and
MVVM, 2014, November 21. Available from
https://www.captechconsulting.com/ blogs/ios-
designpatterns- mvc-and-mvvm

[17] Torstensson, F. F. J. (2016). "Applying Mvp
Principles When Developing Mobile Health
Applications."

[18] TORSTENSSON, F. F. J. (2016). "Applying
MVP Principles when Developing Mobile
Health Applications."

[19] Laure, D., et al. (2016). Cross-platform
development for Sailfish OS and Android:
Architectural patterns and “dictionary trainer”
application case study. 2016 19th Conference of
Open Innovations Association (FRUCT).

[20] Harrison, N. B., et al. (2016). Software
Architecture Pattern Morphology in Open-
Source Systems. 2016 13th Working IEEE/IFIP
Conference on Software Architecture
(WICSA).

[21] Ojeda-Guerra, C. N. (2015). A simple software
development methodology based on mvp for
Android applications in a classroom context.
Proceedings - 15th IEEE International
Conference on Computer and Information
Technology, CIT 2015, 14th IEEE International
Conference on Ubiquitous Computing and
Communications, IUCC 2015, 13th IEEE
International Conference on Dependable,
Autonomic and Secure Computing, DASC 2015
and 13th IEEE International Conference on
Pervasive Intelligence and Computing,
PICom.2015.

[22] Giedrimas, V. and S. Omanovič (2015). The
impact of mobile architectures on component-
based software engineering, Institute of
Electrical and Electronics Engineers Inc.

[23] Putrama, I. M., et al. (2017). Architectural

evaluation of data center system using
architecture tradeoff analysis method (ATAM):
A case study, Institute of Electrical and
Electronics Engineers Inc.

[24] Saay, S. and A. Norta (2016). A reference
architecture for a national e-learning
infrastructure, Association for Computing
Machinery, Inc.

[25] Mutual Mobile (2014). Meet VIPER: Mutual
Mobile’s application of Clean Architecture for
iOS apps, September 24. Available from

[26] Felix Javier Acero Salazar, M. B. (2015).
"Tailoring software architecture concepts and
process for mobile application development."
Proceedings of the 3rd International Workshop
on Software Development Lifecycle for Mobile.

[27] Orlov Bohdan. (2015). 5 iOS Architectures in 5
minutes, 29 November. Available from
http://slides.com/borlov/arch/fullscreen#/

[28] Larry D. Roper, K. A. R., J. Patrick Biddix
(February 2018). Research Methods and
Applications for Student Affairs, Jossey-Bass.

[29] Shah Hardik (2017). How to improve your

mobile app's performance, August 18 Available
from https://www.simform.com/mobile-app-
performance/

[30] Pham Khoa (2018). A taste of MVVM and
Reactive Paradigm, August 16 Available From
https://flawlessapp.io/blog/a-taste-of-mvvm-
and-reactive-paradigm

 [31] Fineberg Alan (2015). Ziggurat iOS App
Architecture, December 19 Available from
https://medium.com/square-corner
blog/ziggurat-ios-app-architecture
b54b3f7132f0

Journal of Theoretical and Applied Information Technology
15th August 2019. Vol.97. No 15

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

4035

[32] Novoseltseva Ekaterina (2017). Viper
architecture advantages for ios apps, June 13
Available from https://apiumhub.com/tech-
blog-barcelona/viper-architecture/

[33] B. Baudry and Y. Le Traon, "Measuring design
testability of a UML class diagram,"
Information and software technology, vol. 47,
pp. 859--879, 2005.

[34] F. Buschmann , R. Meunier, “Patternoriented
software architecture: a system of patterns”,
John Wiley & Sons, Inc., 1996

[35] Gallagher, K., et al. (2008). "Software
Architecture Visualization: An Evaluation
Framework and Its Application." IEEE
Transactions on Software Engineering 34(2):
260-270.

[36] Lague, B., et al. (1998). An analysis framework
for understanding layered software
architectures. Proceedings. 6th International
Workshop on Program Comprehension.
IWPC'98 (Cat. No.98TB100242).

[37] Latum, F. V., et al. (1998). "Adopting GQM
based measurement in an industrial
environment." IEEE Software 15(1): 78-86.

[38] Keith. A and Arron J.H (2019) “Random User
Generator” from https://randomuser.me/

