
Journal of Theoretical and Applied Information Technology
15th August 2019. Vol.97. No 15

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

4213

PERFORMANCE ENHANCEMENT OF THE ADVANCED
ENCRYPTION STANDARD VIA PIPELINED

IMPLEMENTATION

1MALEK M. BARHOUSH, 2NAJIB A. KOFAHI, 3KHALID M.O. NAHAR, 4ANAS M.R.
ALSOBEH, 5AMEERA JARADAT, 6BAYAN ALOMARI

1, 2, 3, 5, 6 Department of Computer Sciences, Faculty of Information Technology & Computer Sciences,
Yarmouk University, Irbid-Jordan

4 Department of Computer Information Systems, Faculty of Information Technology & Computer Sciences,

Yarmouk University, Irbid-Jordan

E-mail: 1malek@yu.edu.jo, 2nkofahi@yu.edu.jo, 3khalids@yu.edu.jo, 4anas.alsobeh@yu.edu.jo,
5ameera@yu.edu.jo, 6beboalomari12@gmail.com

ABSTRACT

Information and computer security become a key issue these days. This is due to rapid developments in data
communications and computer technologies. Hence, there is a serious need for a secure transmission of
both data and information between senders and receivers. Since there is no fully secured communication
system for Web-based systems, communication systems rely heavily on complex and difficult cipher
systems. Cipher systems usually consist of two main parts; Encryption and Decryption to hide and secure
both transmitted data and information on long trunks. In addition, storing both important and sensitive data
and information requires securing them from intruders, which can be handled by encrypting them. This
paper studies one of the most important and widely used secret key encryption/decryption algorithms,
namely the Advanced Encryption Standard (AES). The implementation of the AES algorithm involves
complex computational steps that have made the implementation of these steps slow and time consuming.
Using state of the art of multi-core architecture, we propose a pipelined implementation of the AES
algorithm to reduce both computation complexity and elapsed computation time. Our contribution, the
proposed AES implementation does not require dedicated equipment, it works with any kind of computers
that are available to the public, such as Intel-based computers. A comparison of CPU performance is
performed on both pipelined and sequential implementations on different file sizes. We have found that our
pipelined implementation outperforms the sequential one, without the use of any special equipment. What
distinguishes our work from the rest of the work done by several researchers is that the proposed AES
implementation is designed for multi-core computers that do not have expensive equipment such as GPU or
FPGA, such devices are widely available.

Keywords: Cryptography, AES Encryption & Decryption, Pipelined Advanced Encryption Standard, Web-
based application.

1.0 INTRODUCTION

Security of data and information is a key
issue in today's communication and network
information systems, where data and information
are exchanged electronically across the web. There
is an urgent need to defend sensitive information
against intentional attacks as it is moving through
public communication or cyberspace [1] [2].

Encryption and decryption mechanisms

are the easiest, cheapest, more effective and more
flexible way to protect digital information within

public networks [3]. The world of encryption
facilitates the ability of Web-based systems to hide
and retrieve information when needed, enabling
users to maintain their personal information and
communicate with others through secure channels
[4]. Cryptographic technologies support secrecy
service, which prevents unauthorized entity from
accessing critical information. Secrecy service is
achieved by replacing the original data with
encrypted code. Cryptographic technologies also
provide many services for the original data, such as
integrity, authenticity, non-repudiation, privacy and
digital signature [5] [6].

Journal of Theoretical and Applied Information Technology
15th August 2019. Vol.97. No 15

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

4214

Cryptography is a technique that uses a

specific ciphering algorithm to convert plaintext
into unintelligent text that is hard to recover
without obtaining the decryption key. Since data is
exchanged widely through the public networks
(The Internet), safe exchange of data through
communication lines requires a strong and reliable
encryption algorithm. Faulty or breakable
cryptographic algorithm makes information
interchange between parties risky, which in turn
makes the communication system unreliable. Many
factors are taken into consideration when choosing
to implement a cryptographic algorithm such as,
execution time, security level and computation
power, memory required [4] [7] [8] [9] [10] [11]
[12] [13] [14].

DES algorithm has become insufficient for

securing newly emerging applications [15] [16]. A
new version of the classical DES was formulated
by extending the key size and applying three
different keys to encrypt the data, which was
referred to as a 3-DES (or TDES). Unfortunately,
the performance of 3-DES was inefficient [17].
Advanced Encryption Standard (AES) is a modern
ciphering standard used by several applications to
secure sensitive data and information, as well as
transfer them over insecure networks [12] [18] [19].
In 1997, the National Institute of Standards and
Technology (NIST) conducted a race to formulate a
new standard for encryption and decryption. As a
result of the contest, AES was elected by NIST as a
new standard technology for both encryption and
decryption [19] [20] [21] [22] . AES was
formulated by Rijndael, it is a subset of Rijndael
family's algorithms, each with a different block and
key sizes. AES uses a block size of 128 bits and
three versions of keys: 128 bits, 192 bits and 256
bits [19] [20] [21]. AES is more secure and has a
good performance and more flexibility for many
hardware and applications [23].

In this research paper, we focused on the

AES algorithm as a modern encryption standard,
and our goal is to improve the speed of the
algorithm implementation using the tools available
in our hands. Since the modern machines are made
up of more than one core, there is no need to use
special equipment for acceleration. We use
software pipelined implementation based on
multithreading in JAVA programming language.
The main contribution of this work provides an
enhancement to the AES algorithm performance
using software pipelining (task decomposition) and

multicore architecture, without the need for special
and costly hardware or software.

The rest of the paper is organized as

follows: Section 2.0 presents previous work. After
that, Section 3.0 introduces AES Sequential
Algorithm. Section 4.0 presents hardware and
software AES implementations. Section 0 describes
our approach, while section 6.0 analyses pipelined
AES implementation. The results is shown in
section 7.0. Finally, Section 8.0 concludes the
work.

2.0 RELATED WORK

In cryptographic terms, we call data and
information that we can simply read without any
distinctive treatment a plaintext. The routine of
altering the original text in a way to hide the
essence is called encryption. Encrypting plaintexts
will result in vague and unreadable texts, and those
are called ciphertext. Encryption is one way to hide
readable data from ineligible users. Figure 1
illustrates the encryption and decryption Processes,
where in the encryption process a message is
converted to a ciphertext, while in decryption
process, the original plaintext is extracted from the
ciphertext [24]. Assuming that encryption and
decryption are done between two parties, each must
have a secret Key to encrypt the transmitted data or
decrypt the received encrypted data [24].

Figure 1. Ciphering Process [25].

2.1 Definition of Cryptography

Cryptography or Cryptology is related to
the Ancient Greek. The word cryptography consists
of two parts: the first, “crypto”, meaning secrecy
and the second, “graphy”, meaning writing or logy
which means “to speak”. It is known as the practice
and study of hiding information. The word graphy
appears in mathematics, which teaches
mathematical techniques used to hide big numbers
[26]. There are two trends in the world of
cryptology: cryptography and cryptanalysis.

Journal of Theoretical and Applied Information Technology
15th August 2019. Vol.97. No 15

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

4215

Cryptography is a two-way process:
converting text into an incomprehensible text using
a key, and vice versa. Cryptanalysis is the
extraction of text from incomprehensible text
without obtaining the decryption key in a legitimate
manner [1]. Cryptography allows hiding sensitive
information or data when either transferred in the
risky communication system or stored for long
range. As far as the cryptic algorithm is
complicated and has a long secret key, it is hard to
be breakable by any intruder. Recently, encryption
is considered a branch of many disciplines, such as:
mathematics, computer science, information theory,
computer security and computer engineering.
Cryptography is used in various applications such
as ATM and smart cards, access control and
internet security [27] [28].

The safety and confidentiality of

cryptographic implementations lie in the
computation time consumed in both encryption and
decryption. Some complicated and high
computation algorithms need hundreds or even
thousands of years to decipher a message despite of
today’s available computing power [17].

2.2 The Purpose of Cryptography

The Egyptians were first to use the
cryptography 1900 BC, where they were engraved
in hieroglyphics [26]. In Web-based systems, the
cryptography refers to the mechanism that enables
individuals to achieve better security when storing
data and information and when they are transmitted
over communication lines. There are many
techniques to achieve better security and require
that this be reflected on encryption to achieve this
goal.

Many researchers attribute the appearance

of encryption sometime after the invention of
writing, with a wide range of applications ranging
from communication between diplomats and
combat plans during wartime. They noticed that
new forms of cryptography have appeared as a
result of the widespread development of computer
communications [26]. Therefore, there are many
services provided by the world of cryptography
when establishing a communication between two or
more parties, including: confidentiality,
authentication, privacy, integrity and non-
repudiation [5] [6] [23].

Two main categories of cryptographic

schemes to achieve these functions, namely:
symmetric (secret key) and asymmetric (public-

key) cryptography. In the next section, we will
describe these techniques. In both cases, symmetric
and asymmetric, the original text is called plaintext
and the output of the encryption process is the
ciphertext [6] [29].

2.3 Classification of Cipher Systems

Cipher systems were developed over time
from classical systems that usually based on the
substitution or transposition of the characters to
modern cryptography, where modern cryptography
techniques depend on the presence of a key. Figure
2 illustrates the hierarchical classification of the
current cipher systems [17].

Modern cryptography systems are either
symmetric or asymmetric ciphers. In symmetric
cipher the decryption stage is the reverse of the
encryption stage and the key used in both
encryption and decryption processes are same. This
indicates that both encryption and decryption
processes have same time and space complexity.
On the other hand, in asymmetric, public-key,
cryptography, two different keys: public and private
keys are used for encryption and decryption
processes. The time required for encryption differs
from the time of decryption. In general, public keys
can be accessed by public people, public key is
used for encryption when a secrecy service is
needed, and the private key is in the hand of owner
and used for decryption process [24] [26]. In our
research we focus on a symmetric encryption, block
cipher, namely AES.

Figure 2. Cipher Systems Classification [17].

In 1977, IBM developed Data Encryption

Standard (DES) algorithm, which was adopted by
US government as an official standard. However,
due to the new developments in technology, the
DES is no longer secure in its standard form, while
it is still useful in its updated form [12] [23] [30]
[31].

In 1979, the DES was broken by a
machine implemented by Diffie and Hellman.
They declared that given a small piece of text and

Journal of Theoretical and Applied Information Technology
15th August 2019. Vol.97. No 15

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

4216

match cipher text, the key is found by the breakable
machine in less than 24 hours, knowing that the
search space for the key is 2^56 [32]. In 1979 the
DES was replaced with 3DES, which was slower
than any other block cipher algorithm [18] [33].
Then, the US Federal Register announced on
September 12, 1997, NIST’s desire to develop a
new encryption standard [22] [34].

On November 26, 2001, the Federal

Information Processing Standards Publication no
197 announced the new standard named Advanced
Encryption Standard (AES). AES is used as a
standard algorithm for encryption in 2001. AES
becomes one of the most useful symmetric blocked
cipher algorithms that support different key sizes
[20] [34] [35].

3.0 AES SEQUANTIAL ALGORITHM

In AES standard, the input block size is
128 bits, the size of the output block is 128 bits, and
the state size is 128 bits. 128 bits are denoted by
four words, each of 32-bit or four bytes (Nb = 4). In
other words, the state is arranged in four columns,
each of four bytes. The key (K) size in AES either
128, 192 or 256 bits, which is given as Nk = 4, 6,
and 8 of 32-bit words. In other words, key is
represented by the number of columns in the cipher
key, where each column is 32-bit words. The
number of rounds (Nr) in AES algorithm depends
on the length of cipher key, Nr equal to 10, 12 or 14
for Nk equal to 4, 6, and 8 respectively [20] [36].

AES is a cryptographic algorithm that
encrypts data after dividing it into blocks of equal
size, and then apply the algorithm and key to these
blocks. The size of blocks is 128-bits and the size
of key is variable. AES is an iterated symmetric-
cryptographic algorithm that uses state of 16 bytes
arranged in the form of two-dimensional bytes of (4
by 4) for 128 block size. The transformations in the
algorithm are performed on the state. The input and
output blocks as well as the key are treated as byte
array of bytes [20] [36]. Figure 3 shows AES
algorithm top level blocks, the figure clearly shows
both the basic inputs and outputs of the algorithm.

Figure 4. The AES Algorithm Top Level Block Diagram
[37].

In standard AES, the last round of the 10
rounds for key size of 128 bits will be performed
separately. The AES algorithm uses a round
function consisting of four different
transformations. These transformations are byte
oriented. The same transformation functions are
used for encryption and decryption. The
transformation functions are [37]:

 Byte substitution operation, where the AES
algorithm reacts with substitution table (S-
box).

 Shift rows operation, where the algorithm
reacts with the State’s rows.

 Mix Columns operation, where the algorithm
reacts with the State’s columns.

 Add Round Key operation, where the
algorithm performs the operation XOR bit wise
with 128 bits data and sub key.

The four operations are performed for each
single round, however the third operation is not
performed in the last round, which requires the last
round is carried out separately. Depending on key
size used, a fresh set of keys is produced, these
keys are fed to a corresponding round [20] [38]
[39]. In order to examine the power of any cipher
system, it should meet some factors like: Firm and
strong security, Speed, Ease of implementation
(simple mechanism), and Flexibility (use of
different key length) [6]. The purpose of this
research is to enhance the AES's performance using
software pipelining (task decomposition) and
multicore architecture.

There are many details concerning
mathematical preliminaries of AES cryptography
algorithm such as confusion, diffusion, key

Journal of Theoretical and Applied Information Technology
15th August 2019. Vol.97. No 15

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

4217

expansion, scheduling, S-box, Inverse S-box,
addition and multiplication. There are a variety of
examples and more details about AES encryption
and decryption processes in [20] [36] [38] [39] [40]
[41] [42] [43] [44].

4.0 HW/SW AES IMPLEMENTATIONS

Many researchers have tackled the
problem of AES performance improvement, some
of them went through hardware development while
the others went through software improvement. In
this research, we tackled the AES performance
enhancement from software side through software
pipelining. Next sub sections will briefly get into an
overview of researchers’ contribution in both sides:
hardware and software.

4.1 HARDWARE (HW) ENHANCEMENT
In [8], the authors pointed out that the cost

and performance of implementing any
cryptographic mechanism should be feasible. The
authors study the performance of the AES
algorithm on a variety of common platforms: 32-bit
CPUs, 64-bit CPUs, 8-bit smart-card CPUs, DSPs
and hash functions in many hardware applications
were presented. General observations on the
performance issues for each of the platforms were
taken into consideration. The authors recommended
that AES need to be: efficient on the smaller,
weaker 32-bit CPUs, it also needs to be
parallelized, able to work on DSPs, and need to
efficiently work as a hash function.

The structure of pipelined hardware

architecture for AES RIJNDAEL were defined by
[42], they used heuristic rules to choose best
hardware implementation and deeply evaluate it.
They use FPGAs/Xilinx Virtex-E technology for
their implementation, they consider the FPGA's
constraints in order to define an optimal pipelined
technique that takes into consideration the AES
place and route constraints. The authors used loop
unrolling technique to improve pipeline outcome.
They demonstrated that Sub Bytes Transformation
can be parallelized. They were able to improve the
ratio throughput (speed / slice) by 25% for the
Xilinx Virtex1000. The throughput reaches 18.5
Gbits/sec with only 542 slices and ten blocks of
RAM.

In 2010 an AES hardware architecture was

designed and deployed on the top of FPGA and
VHDL [45]. FPGA stands for a hardware called
Field Programmable Gate Arrays [16], and VHDL

stands for Very High Speed Integrated Circuit
Hardware Description language. The authors use
XCV600 of Xilinx Virtex Family and VHDL
language to implement 128-AES. They tested and
debugged their work using Xilinx ISE 8.1 software.
The authors simulated their work using Xilinx xst.
The authors claimed that the hardware
implementation for 128-AES provides more
security and more performance, so it is an urgent
requirement for wireless communication and
cellular systems. Their 128-AES design works on
frequency of 140.390MHz, 1853 slices, 512 slice
flip flops, 20 units of 256x8-bit ROM, and 130248
kilobyte of total memory usage. Both 128-bit
encryption and decryption process implementation
were programmed in VHDL. The throughput of
encryption/decryption of their product reached up
to 352 Mbit/Sec.

An optimized 128-AES hardware

employing FPGA and VHDL was made by [46].
Their 128-AES hardware optimized multiplier
architecture. The author claims that the result is
cost effective and secure, it was deployed using
Xilinx 14.2. In their design, they use less hardware
resources with respect to different platforms. A
code was written using VHDL for both 128-bit
encryption and decryption processes. The result
was tested via Xilinx 14.2., it is 6% space reduced
on FPGA Spartan 3e.

Because AES is the best and most flexible

and efficient cryptosystem used to secure data,
another effort using an FPGA and VHDL to
implement AES appears in [22]. The authors
propose 128-AES hardware design to increase AES
performance through FPGA and VHDL. They
simulate their design via Xilinx ISE 12.3i. The
result gives a throughput of 1609 Mbit/Sec.

The authors in [43] realized that the

servers in cloud systems need AES accelerators in
order to reduce the computation time for securing
communications. The authors have put in place the
necessary precautions to speed up the encryption
and decryption process, they provide a memory
with multiple ports, so that it allows reading and
writing more than one location at the same time.
They pipelined and unrolled the 128-AES
algorithm, so at each clock cycle, there will be
many activities. Their pipelined implementation is
simulated and synthesized on XC7VX690T chip,
their throughput is 104.06 Gbps at a frequency of
813 MHz, and the maximum efficiency was 30.74
Mbps.

Journal of Theoretical and Applied Information Technology
15th August 2019. Vol.97. No 15

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

4218

4.2 SOFTWARE (SW) ENHANCEMENT

Secure Web service requires a high speed
in dealing with security, and as these services
consume heavy calculations, there is a need to
accelerate these services. In [47], the authors focus
on speeding up AES cryptosystem, they
implemented AES using parallel computing
platform called CUDA. The authors designed a
parallel AES that run on NVIDIA GeForce 8 GPU,
the code is implemented with CUDA. They used
OpenSSL implementation to show their results.
Normally a GPU contains hundreds of cores, each
have many threads. CUDA is a programming
model used to program NVIDIA GeForce GPU
family. The implementation was optimized and
improved, as well as, the throughput was increased
14 times compared with a faster CPU at that time.
Using CUDA, different parallel implementations
were spawned with collaboration with hardware
control resources. The ultimate goal is to produce
the best performance.

For improving the performance of secure

web services, the author in [48] presented another
attempt to parallelize AES implementation Based
on the GPU and multiple thread of control. The
GPU is designed for intensive graphical
computations. The authors created many threads in
AES process, they assign each thread to one GPU-
processing-element. They divide the AES text data
into blocks, then assign each block to one thread.
The shared resources of parallel AES are stored in
the global GPU space, so each AES thread can run
in parallel along with its corresponding block.
Results of [48] show that the enhancement of their
AES over GPU was 7x faster than AES over the
CPU.

Many applications, such as Web services,

smart cards and digital multimedia services, use
AES. Acceleration of the AES implementation has
become an urgent requirement, so researchers in
[49] investigated many parallel AES
implementations in term of data-level & task-level
parallelism, loop unrolling, Parallel SubBytes and
MixColumns over 6 to137 cores. They tested 16
different versions of online and offline key
expansion AES cipher. The first small grain
implementation for AES was implemented with six
to one hundred and seven cores for offline key
expansion, as well as eight to one hundred and
thirty-seven cores for online key expansion. The
authors studied none pipelined silicon-based AES
accelerator which offers a throughput of 2.29 Gbps,

and the pipelined version offers 8 Gbps throughput.
They also studied many AES accelerators; their
throughputs range from 2 to 73.7 Gbps. They
noticed that the large grain implementation best fits
with 8 to 137 cores. The throughput per unit of chip
area becomes 3.5-15.6 times higher and the energy
efficiency becomes 8.1-18.2 times better. In
addition, the throughput of the design was 2.0 times
higher compared with the TIDSPC6201. In terms of
energy efficiency, the design was 2.9 times higher
than the GeForce8800GT [49].

In [50], the authors noticed that AES

cryptosystem can be parallelized in many different
ways, they have developed a new model for AES
that works with larger block and same key size,
200-bits, on the basis of 5 rows and 5 columns and
10 rounds. The authors only modify the mix
column transformation component. The results of
proposed AES were compared with different
implementation of conventional AES of 128, 192,
and 256 bits. The comparison was in term of
encryption/decryption time and throughput. For
200-bit AES block sizes, the encryption time
reduced by 20%, and the time for decryption was
increased by 25% compared with conventional
AES of key size 128 bits. Regarding the
throughput, it was 15%, 20%, and 30% better in
their proposed AES-200 compared to AES-128,
AES-192, and AES-256 respectively. The authors
claim that the security of the proposed 200-bits-
AES is better.

Parallel multiprocessor implementation

and pipelined design of AES was conducted by
[51]. The authors tackled many sources of
parallelization in AES algorithm, they pipeline the
AES rounds, as well as parallelize MixColumns,
and AddRoundKey components. In their parallel
AES proposal, 11 stages were used to include the
first and last AES rounds, their proposal increased
AES throughput. The authors drew the data
dependency graph for the AES implementation in
order to better understand the exploitation of
parallelism with AES. The authors’ model provided
a 95% improvement. Extending parallelization to
Inv_MixColumns transformation improved the
performance by 98%.

Given the need for accelerating data

encryption and decryption, especially in cloud
computing, which by its nature deals with many
numbers of users, the authors in [52] implemented
Six types of parallel AES algorithms, which are:
Coalescent and Sliced GPU, Coalescent & Unsliced

Journal of Theoretical and Applied Information Technology
15th August 2019. Vol.97. No 15

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

4219

GPU, Uncoalescent GPU, Coalescent & Sliced
CPU, Coalescent & Unsliced CPU and
Uncoalescent CPU. The authors devoted three
algorithms to the GPU, and three to the CPU. For
Big data, AES supports many modes: Electronic
Code Book, Cipher Feedback, Output Feedback,
Counter and Cipher Block Chaining. The authors
noted that the counter mode provides more security
and parallelism, so they built their six applications
in this mode. They evaluated the six parallel
applications within either GPU or CPU. Their main
motive was to find a cost effective and efficient
way to protect electronic commerce on the top of
cloud servers. The authors proposed to collect a
huge amount of data that comes from many users,
split them into segments of the same size, and then
encrypt each segment using their six AES
algorithms over many cores. This improves the
performance of the protection mechanism.
Experimental works show the cloud can gain
superior performance when using GCS algorithm.

Authors in [53] divided the AES model

into three parts: encryption, decryption and key
expansion. They proposed a model for paralleling
AES algorithm in order to gain efficient data
protection on the top of multicore architecture. In
their research paper, the authors detailed several
points in the AES model, particularly the CBC
mode, because it contains many places that can be
parallelized. The authors identified parallelized
AES parts, and suggested splitting data to be
encrypted or decrypted into several fixed-length
blocks, and then manipulate them in parallel within
multiple core processors. The authors used Verilog
language and Xilinx to design Parallel AES system.
The simulation results showed that the parallel AES
is faster and has more performance compared with
serial AES implementations.

4.3 SUMMARY

As we mentioned earlier the enhancements
of AES suggestions were tackled both in hardware
and software sides. We briefly went through these
issues in subsections 4.1 and 4.2. We summarized
both hardware and software enhancements in Table
1 and Table 2.

Many of the previous solutions need
special equipment, such as FPGA, VHDL or GPU,
to increase the AES performance. Some researchers
suggested a new layout for AES algorithm in order
to reduce AES’s execution time, but they didn’t
check its final security. In this work, a pipelined
AES software implementation is suggested, this
implementation does not change the overall AES

layout, and it does not need any special HW
equipment. The solution is developed with the Java
programming language, and it is targeted to
multicore processors.

Table 1: AES Hardware Implementations.
Author Method Throughput

Enhancement
Enc/Dec
Speed

[42] HW pipelined
AES via

FPGAs/Xilinx
Virtex1000.

18.5 Gbits/sec with
only 542 slices & 10

RAM blocks.

18.5
Gbits/sec.

[45] AES design &
implementation

based on
Xilinx Virtex
XCV600 over

FPGA and
VHDL.

Throughput reaches
352 Mbit/Sec

352
Mbit/Sec.

[46] 128-AES HW
over FPGA &

VHDL

6% space
enhancement Using

Xilinx 14.2

NA

[22] HW design
Using FPGA

&VHDL

1609Mbit/Sec on
XC6vlx240t of Xilinx

Virtex Family

1609
Mbit/sec

[43] pipelined and
unrolled 128-
AES & use a
memory with
multiple ports

104.06 Gbps at
frequency 813 MHz

Max
efficiency
is 30.74
Mbps

Table 2: AES Software Implementations.
Author Method Throughput

Enhancement
Enc/Dec
Speed

[47] Parallel AES via
CUDA platform and

NVIDIA 8 GPU

14 times
compared

with
previous

work

Increased

[48] Parallel AES on GPU
via CUDA

Increased 7x speedup

[49] 16 implementations
and online/offline

key expansion

range from 2
to 73.7 Gbps.

3.5-15.6
times higher

[50] 200 bit block size
and modifying mix

column function

15%,
20%,and

30% better in
AES-200.

enc time is
reduced by
20% and

dec time is
increased by

25% .
[51] pipeline rounds,

parallelize MixCol &
AddRoundKey

components

95% to 98%
improvement

NA

[52] Six parallel AES
algorithms using

either GPU or CPU
parallelism

Improved GCS has the
best

performance
[53] Parallel many parts

of AES on multicore
processes

Improved Increased

Journal of Theoretical and Applied Information Technology
15th August 2019. Vol.97. No 15

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

4220

5.0 THE PROPOSED PIPELINED
IMPLEMENTATION OF THE AES

In this section, we present the proposed
software pipelined implementation of the AES in
order to achieve better throughput using minimum
number of threads. The original AES consists of
four main operations: AddRoundKey (ARK),
SubBytes (SB), ShiftRows (SR) and MixColumns
(MC). These operations are applied repeatedly to
128 bits of input message blocks. Figure 5 shows
the Pseudo code for the AES cipher, which
summarizes the AES whole process. As been
noticed from Figure 6 and Figure 7, the four main
operations are connected together in a form of
chain, where these operations should run in a
specific sequence. Each operation sends its
processed intermediate cipher block as input to the
operation that follows it in the chain. The output of
the last operation is returned and sent back to the
first operation in the chain. These events are
repeated as many times as needed by the AES
algorithm.

From parallel computing perspectives, a

pipeline is a set of processing operations connected
together like a chain, where the output of one
operation is the input of the next one in the chain.
In pipelined computing, these operations are
overlapped and executed in parallel. In our
implementation, we assigned the four operations
into four threads. The four threads are supposed to
work together in parallel on a multicore system
when it has a task to do.

To increase the performance of AES

implementation, we use the pipelining concept,
whereby multiple blocks are processed and
overlapped in execution. We created four threads,
named: AddRoundKey Thread (ARKT), SubBytes
Thread (SBT), ShiftRows Thread (SRT) and
MixColumns Thread (MCT). These names reflect
the operations that each thread supposed to
perform. Each thread connected with a
Synchronous Queue named SQAddRoundKey
(SARK), SQSubBytes (SSB), SQShiftRows (SSR)
and SQMixColumns (SMC). These queues
represent the intermediate connections between
threads. The reason behind using Synchronous
Queues (SQs) is to emphasize that the process of
inserting element to the queue by a thread must be
followed by the process of removing that element
by another thread and vice versa [java doc]. Figure
8 depicts the interaction between threads via SQs.

The implementation of Pipelined AES
divides the message that needs to be encrypted into
blocks of specific length, ex 128 bits. We name
these blocks B1, B2, B3 ...etc. Then these blocks
are passed on the four threads one after the other as
programmed in the sequential implementation. The
difference here is that we deal with threads rather
than functions. Suppose that each thread receives a
block, it processes the block, it produces a new
value for the block and pass it to the next thread in
the chain.

Figure 9: Pseudo Code for AES Cipher [20][54].

Figure 10: AES Flow Chart [43].

The process starts when ARKT receives
B1, process it and then insert the result of B1 into
SARK queue, this triggers SBT to take inserted B1
and process it, at the same time, ARKT receives

Journal of Theoretical and Applied Information Technology
15th August 2019. Vol.97. No 15

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

4221

new block B2. After that, SBT inserts the new
value of B1 into SSB queue, which in turn triggers
the SRT to start working on the B1. Meanwhile
SBT is working with B2, ARKT has started
working with new block B3. Figure 11 shows the
timeline for the four working threads, note that B1
represent block number one and the it1 represents
iteration number one, and so on.

Figure 12: Interaction between Threads Via SQs.

Figure 13: Time Slices of the Threads and their Tasks.

As seen in Figure 14, at time t1: ARKT

receives the first block B1, process it, and send the
result to SBT at time t2, at the same time, ARKT
receives block B2. At time t3, the output from SBT
goes to SRT, SBT receives block B2 from ARKT,
meanwhile, ARKT receives block B3. At time t4,
MCT is busy working with block B1, SRT is
working with block B2, SBT is working with block
B3 and ARKT is working with block B4. After that,
MCT sends back block B1 to ARKT, and these
actions are repeated for many iterations (Nr). To
clarify this, at the end of time t5, MCT sends block
B1 to ARKT in order to start processing it for the
second iteration at time t5, during this time, block
B1 is processed five times. After (Nr *4) times,
block B1 is ready. During the next time unit, block
B2 is ready, then block B3 is ready and after that,
block B4 becomes ready. Each [n*(Nr*4)]
iterations, nth four cipher blocks are completed,
where n equals the number of blocks.

If the four threads are working
simultaneously, and if each thread takes the same
amount of time to finish its work, then the speedup
of the pipelined AES compared with sequential
AES should equal to 4, assuming that each thread is
working on a separated core.

It should be noted that each thread needs
(Nr+1) keys in the process of encryption. These
keys should be produced before the whole
encryption process starts. These keys need to be
distributed to all threads. This process is called key
expansion and scheduling. Figure 15 shows the
pseudo code for this process.

Figure 16: key expansion and scheduling process [55].

6.0 PIPELINED AES IMPLEMENTATION
ANALYSIS

Pipelining block processing is one way to
improve the AES performance, it is achieved by
interleaving the encryption process of multiple
blocks within multiple thread of control
simultaneously. The four fundamental operations
(ARK, SB, SR and MC) are assigned into four
threads. With multicore system, the simultaneous
run of the four threads can be achieved, if each
thread has a block to work with. The throughput of
the sequential AES encryption algorithm is
measured by computing number of plain blocks
being completed within a certain amount of time.
The latency time in converting each plain text into
cipher text is measured by the time needed to
process each block individually multiplied by the
number of blocks, since the individual time is the
same for all blocks.

Each step in the pipeline process is called

a pipeline stage, and a stage time is the time
required to complete a single pipeline stage. We
have four threads, each do a certain task, then each

Journal of Theoretical and Applied Information Technology
15th August 2019. Vol.97. No 15

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

4222

is considered a stage, so we have four stages in our
context of this paper. These stages named:
AddRoundKey stage (SARK), SubBytes stage
(SSB), ShiftRows stage (SSR) and MixColumns
stage (SMC). We call the time required for
AddRoundKey stage tARK, the time required for
SubBytes stage tSB, the time required for
ShiftRows stage tSR, and the time required for
MixColumns stage tMC. Equation 1 represents the
time for serial computation of the AES algorithm:

Where tsAES is the serial execution time of

the AES, tRB is the time needed to read plain text
and divide it into blocks, Nr is the number of
iterations and NB is the number of blocks.

Each block needs a processing time equal

to the sum of elapsed time for four major operations
multiplied by the number of iterations Nr. The AES
pipelined version proposed in this paper has bigger
latency to convert each individual block of plain
text into a block of cipher text, because there is a
dependency between threads, leading to a time
equal to the largest values among tARK, tSB, tSR
and tMC. The following formula depicts this fact.

Where tpAES is the Pipelined AES time, Ps
is the number of pipeline stages, which equals to 4
in this paper, Nr is the number of iterations to
process all blocks and NB is the number of blocks.
Max (tARK, tSB, tSR, tMC) is the maximum time of
these stages.

The implementation of pipelined AES
overlaps the execution of different blocks
simultaneously. Our Pipelined AES works with
multiple threads equal to four in sequence, so the
result of the first thread is an input to the second
thread, the output of the second thread is fed to the
third thread, the output of the third thread is fed to
the fourth thread, and the output of the fourth
thread is fed back to the first thread, these four
operations is iterated Nr times.

As we know from pipeline
implementations, the speed of the stages becomes
the same as the slowest stage, which is equal to the
maximum time of tARK, tSB, tSR and tMC. In other

words, the four basic operations, SubBytes,
AddRoundKey, ShiftRows and MixColumns
required for the encryption process have a specific
time. These operations are employed for four
threads, so each thread has a specific time to finish
its work on each block. If these times are not equal
and the threads are working at the same time, the
times will unify for the greatest time in them. This
time is called time pipeline’s slot (tps). The time
needed to encrypt a block individually becomes
equal to the value of tps multiplied by the number
of iterations Nr multiplied by Ps [56], as equation 2
depicts. The number of time slots required to end
the encryption process for a number of blocks is
expressed in equation 3.

Equation 3 depicts the fact that after Ps-1
time slots all four threads operate simultaneously
with different blocks. These Ps-1 times are needed
to fill the pipeline chain. Every Nr * Ps pipeline
time slots, four block ciphers are completed.
Equation 4 shows the speedup (S) of the proposed
pipeline implementation.

Where tps is the maximum time of tARK,
tSB, tSR and tMC. The maximum speedup (MS) would
be obtained when the NB approach to infinity,
equation 6 reflects the formula of MS.

We ignore tRB, because this serial part
considered constant value or lower degree term
with respect to the variable NB, due to it is being
read one time. This tRB value is shared between
serial code and the pipelined version, so we will
concentrate only on the portion of the serial code
that will be parallelized.

We ignore Ps-1 because this value is too
small with respect to Nr * NB * tps.

Journal of Theoretical and Applied Information Technology
15th August 2019. Vol.97. No 15

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

4223

From equation 8, we can remove Nr *NB
from nominator and denominator. The result is seen
in equation 9.

 By substituting the value of tps, the final
equation becomes

We notice from equation 10 that the
maximum speedup depends on the slowest time of
the four operations tARK, tSB, tSR and tMC. So if these
times are equal, then the maximum speedup is
equal to 4.

7.0 EXPERIMENT SETUP

The specifications in Table 3 were used to
test our pipeline implementation. We use an Intel
based Dell Inspiron 15 5000 series Intel® core™
i7-6500U machine with CPU Speed of 2.5 GHz and
16 GB RAM. Table 4 shows the time execution in
nanosecond according to the Intel based Dell
Inspiron machine.

Table 3: HW specifications Used to Test the Pipeline
Implementation

Machine Type CPU speed RAM
Dell Inspiron 15 5000
series Intel ® core™ i7-
6500U

2.5GHz 16 GB

Time of (tARK, tSB, tSR, tMC) in nanoseconds
tARK tSB tSR tMC

790 ns 1185 ns 1975 ns 5536 ns

From these readings, we can expect that
the maximum speedup is equal to 1.7. See the
following substitutions from equation 10.

We run both the serial version and our
pipeline version on different file sizes, we obtained
the following results as been depicted in Table 3.

As shown in Table 4, as the number of
blocks increase the improvement degree increases
and reached to maximum theoretical measures. The
chart in Figure 17 shows the enhancement in the
performance with respect to the number of blocks.

Table 4: The Run of Serial and Pipelined AES Algorithms

File size
in kilo
Byte

Sequential
run in

microsecond

Our
pipeline
run in

microsecond

Speedup

20 78000500 62400400 1.25
40 109200700 78000500 1.4
80 191601100 156001000 1.2
160 234001500 187201200 1.25

5639 639604100 390002500 1.64

Figure 17: Enhances in The Performance.

Compared to the achievements made to
improve the speed of AES by many researchers,
what distinguishes our work is that it does not need
expensive equipment or software such as GPU,
FPGA or CUDA.

8.0 Conclusion

The Advanced Encryption Standard (AES)
is a symmetric block for encryption and decryption
algorithm, it mainly composed of four functions
AddRoundKey, SubBytes, ShiftRows and
MixColumns, these functions must be implemented
in a specific order and for Nr times for each block.
Four threads have been employed so that each of
them is dedicated to carrying out one of the four
main AES functions. They are prepared to work in
parallel. We analyzed pipelined implementation
and showed that the result has a significant increase
in the performance. Our technique enhances the
performance of the algorithm by 1.7 times
compared with serial one. The contribution of this
pipelined AES implementation is that the proposed
implementation helps the majority of users in the

Journal of Theoretical and Applied Information Technology
15th August 2019. Vol.97. No 15

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

4224

world to accelerate the work of AES without the
need for special equipment such as GPU, FPGA or
CUDA.

REFRENCES:

[1] W. Madsen, “Trust in Cyberspace,” Netw.

Secur., vol. 1999, no. 11, pp. 18–19, 1999.
[2] H. Nissenbaum, “Where computer security

meets national security,” Ethics Inf.
Technol., vol. 7, no. 2, pp. 61–73, 2005.

[3] J. Bielby et al., “Protecting Internet Traffic:
Security Challenges and Solutions,” 2017.

[4] A. Nadeem and M. Y. Javed, “A
Performance Comparison of Data
Encryption Algorithms,” 2005 Int. Conf.
Inf. Commun. Technol., no. September, pp.
84–89, 2005.

[5] M. Barhoush and J. W. Atwood,
“Requirements for enforcing digital rights
management in multicast content
distribution,” Telecommun. Syst., vol. 45,
no. 1, pp. 3–20, 2010.

[6] W. Stallings, Cryptography and Network
Security, 4/E. Pearson Education India,
2006.

[7] G. J. Popek and C. S. Kline, “Encryption
and secure computer networks,” ACM
Comput. Surv., vol. 11, no. 4, pp. 331–356,
1979.

[8] B. Schneier, J. Kelsey, D. Whiting, D.
Wagner, C. Hall, and N. Ferguson,
“Performance comparison of the AES
submissions.” 1999.

[9] T. Karygiannis and L. Owens, “Wireless
network security,” NIST Spec. Publ., vol.
800, p. 48, 2002.

[10] M. Hendry, Smart card security and
applications. Artech House, 2001.

[11] A. Odeh, S. R.Masadeh, and A. Azzazi, “A
performance evaluation of common
encryption techniques with secure
watermark system (sws),” Int. J. Netw.
Secur. Its Appl., vol. 7, no. 3, pp. 31–38,
2015.

[12] N. H. Zakaria, R. Mahmod, N. I. Udzir, and
Z. A. ZUKARNAIN, “ENHANCING
ADVANCED ENCRYPTION
STANDARD (AES) S-BOX
GENERATION USING AFFINE
TRANSFORMATION.,” J. Theor. Appl.
Inf. Technol., vol. 72, no. 1, 2015.

[13] P. Arul and A. Shanmugam, “GENERATE
A KEY FOR AES USING BIOMETRIC
FOR VOIP NETWORK SECURITY.,” J.

Theor. Appl. Inf. Technol., vol. 5, no. 2,
2009.

[14] P. Garg, “GENETIC ALGORITHMS,
TABU SEARCH AND SIMULATED
ANNEALING: A COMPARISON
BETWEEN THREE APPROACHES FOR
THE CRYPTANALYSIS OF
TRANSPOSITION CIPHER.,” J. Theor.
Appl. Inf. Technol., vol. 5, no. 4, 2009.

[15] D. P. Leech, M. W. Chinworth, G. G.
Payne, and C. M. Waychoff, “The
Economic Impacts of NIST’s Data
Encryption Standard (DES) Program,”
2001.

[16] V. Patel, R. C. Joshi, and A. K. Saxena,
“FPGA IMPLEMENTATION OF DES
USING PIPELINING CONCEPT WITH
SKEW CORE KEY-SCHEDULING.,” J.
Theor. Appl. Inf. Technol., vol. 5, no. 3,
2009.

[17] G. Singh, “A Study of Encryption
Algorithms (RSA, DES, 3DES and AES)
for Information Security,” Int. J. Comput.
Appl., vol. 67, no. 19, pp. 975–8887, 2013.

[18] R. Bhanot and R. Hans, “A review and
comparative analysis of various encryption
algorithms,” Int. J. Secur. Its Appl., vol. 9,
no. 4, pp. 289–306, 2015.

[19] J. Daemen and V. Rijmen, The Design of
Rijndael: AES - The Advanced Encryption
Standard. 2002.

[20] V. Rijmen and J. Daemen, “Advanced
encryption standard,” Proc. Fed. Inf.
Process. Stand. Publ. Natl. Inst. Stand.
Technol., pp. 19–22, 2001.

[21] “Advanced Encryption standard,” 2002.
[22] K. P. Singh and S. Dod, “An Efficient

Hardware design and Implementation of
Advanced Encryption Standard (AES)
Algorithm,” no. February, pp. 5–9, 2016.

[23] M. M. Thulasimani, “Design And
Implementation of Reconfigurable Rijndael
Encryption Algorithms For Reconfigurable
Mobile Terminals,” Int. J. Comput. Sci.
Eng., vol. 02, no. 04, pp. 1003–1011, 2010.

[24] N. A. Kofahi, “An empirical study to
compare the performance of some
symmetric and asymmetric ciphers,” Int. J.
Secur. its Appl., vol. 7, no. 5, pp. 1–16,
2013.

[25] S. Agarwal, “Image encryption techniques
using fractal function: a review,” Int. J.
Comput. Sci. Inf. Technol., vol. 9, no. 2, pp.
53–68, 2017.

Journal of Theoretical and Applied Information Technology
15th August 2019. Vol.97. No 15

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

4225

[26] D. Pandya and K. R. Narayan, “Brief
History of Encryption,” vol. 131, no. 9, pp.
28–31.

[27] M. Nagendra and M. Chandra Sekhar,
“Performance improvement of advanced
encryption algorithm using parallel
computation,” Int. J. Softw. Eng. its Appl.,
vol. 8, no. 2, pp. 287–296, 2014.

[28] N. A. Rathi and S. R. Gupta, “Analysis of
Security mechanism in E-commerce
transaction,” vol. 5, no. 1, pp. 131–135,
2016.

[29] A. Barnes, R. Fernando, K. Mettananda,
and R. Ragel, “Improving the throughput of
the AES algorithm with multicore
processors,” 2012 IEEE 7th Int. Conf. Ind.
Inf. Syst. ICIIS 2012, no. August, 2012.

[30] M. E. Smid and D. K. Branstad, “Data
encryption standard: past and future,” Proc.
IEEE, vol. 76, no. 5, pp. 550–559, 1988.

[31] D. Coppersmith, “The Data Encryption
Standard (DES) and its strength against
attacks,” IBM J. Res. Dev., vol. 38, no. 3,
pp. 243–250, 1994.

[32] S. Bhati, A. Bhati, and S. K. Sharma, “A
New Approach towards Encryption
Schemes : Byte – Rotation Encryption
Algorithm,” vol. II, no. 009352118885, pp.
24–27, 2012.

[33] P. K. Dey and T. K. Dey, “ANALYSIS OF
THE SECURITY OF AES, DES, 3DES
AND IDEA NXT ALGORITHM,” Int. J.
Eng. Sci. Res. Technol.

[34] J. Foti, “Status of the advanced encryption
standard (AES) development effort,” in
Proc. 21st NIST-NCSC National
Information Systems Security Conference,
1998, pp. 549–554.

[35] E. Biham and A. Shamir, Differential
cryptanalysis of the data encryption
standard. Springer Science & Business
Media, 2012.

[36] S. Soni, H. Agrawal, and M. Sharma,
“Analysis and Comparison between AES
and DES Cryptographic Algorithm,” Ijeit,
vol. 2, no. 6, pp. 362–365, 2012.

[37] L. Thulasimani and M. Madheswaran, “A
single chip design and implementation of
aes-128/192/256 encryption algorithms,”
Int. J. Eng. Sci. Technol., vol. 2, no. 5, pp.
1052–1059, 2010.

[38] A. Srivastava and N. R. Venkataraman,
“AES-128 Performance in Tinyos with
CBC Algorithm,” vol. 7, no. 5, pp. 40–49,
2013.

[39] A. Berent, “Aes (advanced encryption
standard) simplified,” 2003.

[40] J. Daemen and V. Rijmen, “AES proposal:
Rijndael,” 1999.

[41] J. Daemen and V. Rijmen, The design of
Rijndael: AES-the advanced encryption
standard. Springer Science & Business
Media, 2013.

[42] F. Standaert, G. Rouvroy, J. Quisquater,
and J. Legat, “Efficient Implementation of
Rijndael Encryption in Reconfigurable
Hardware : Improvements and Design
Tradeoffs,” Cryptogr. Hardw. Embed. Syst.
- CHES 2003, vol. 2779, pp. 334–350,
2003.

[43] M. B. Chellam and R. Natarajan, “AES
hardware accelerator on FPGA with
improved throughput and resource
efficiency,” Arab. J. Sci. Eng., pp. 1–18,
2017.

[44] M. Shakir, A. B. Abubakar, Y. Bin
Yousoff, and M. Sheker,
“IMPROVEMENT KEYS OF
ADVANCED ENCRYPTION
STANDARD (AES) RIJNDAEL_M.,” J.
Theor. Appl. Inf. Technol., vol. 86, no. 2,
2016.

[45] P. B. Ghewari and A. B. Chougule,
“Efficient Hardware Design and
Implementation of AES Cryptosystem,” Int.
J. Eng. Sci. Technol., vol. 2, no. 3, pp. 213–
219, 2010.

[46] L. Anjali, “An Efficient Hardware FPGA
Implementation of AES-128 Cryptosystem
Using Vedic Multiplier and Non LFSR,”
vol. 3, no. 5, pp. 842–846, 2014.

[47] A. Di Biagio, A. Barenghi, G. Agosta, and
G. Pelosi, “Design of a parallel AES for
graphics hardware using the CUDA
framework,” IPDPS 2009 - Proc. 2009
IEEE Int. Parallel Distrib. Process. Symp.,
2009.

[48] D. Le, J. Chang, X. Gou, A. Zhang, and C.
Lu, “Parallel AES algorithm for fast data
encryption on GPU,” ICCET 2010 - 2010
Int. Conf. Comput. Eng. Technol. Proc.,
vol. 6, pp. 1–6, 2010.

[49] B. Liu and B. M. Baas, “Parallel aes
encryption engines for many-core processor
arrays,” IEEE Trans. Comput., vol. 62, no.
3, pp. 536–547, 2013.

[50] R. Pahal and V. Kumar, “Efficient
Implementation of AES,” Int. J. Adv. Res.
Comput. Sci. Softw. Eng., vol. 3, no. 7, pp.
290–293.

Journal of Theoretical and Applied Information Technology
15th August 2019. Vol.97. No 15

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

4226

[51] G. F. Elkabbany, H. K. Aslan, and M. N.
Rasslan, “A design of a fast parallel-
pipelined implementation of AES:
advanced encryption standard,” arXiv
Prepr. arXiv1501.01427, 2015.

[52] X. Fei, K. Li, W. Yang, and K. Li,
“Practical parallel {AES} algorithms on
cloud for massive users and their
performance evaluation,” Concurr.
Comput. Pract. Exp., vol. 28, no. 16, pp.
4246–4263, 2016.

[53] R. Patel and S. Kanjariya, “Design of
Parallel Advanced Encryption Standard (
AES) Algorithm,” vol. 4, no. 3, pp. 219–
222, 2015.

[54] D. Selent, “Advanced encryption standard,”
Rivier Acad. J., vol. 6, no. 2, pp. 1–14,
2010.

[55] S. Heron, “Advanced encryption standard
(AES),” Netw. Secur., vol. 2009, no. 12, pp.
8–12, 2009.

[56] J. L. Hennessy and D. A. Patterson,
Computer architecture: a quantitative
approach. Elsevier, 2011.

