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ABSTRACT 

 
This paper presents the results of research, including elements of theoretical calculation, computer 
simulation and experimental study of displacements, internal force factors and temperature fields during 
plane deformation of rods. The temperature problem for a bar of rectangular cross section was studied. The 
differential equation of one-dimensional unsteady heat conduction is solved in the Mathcad system for 
boundary conditions of the first and third kind, including for non-stationary boundary conditions 
established experimentally. The results of numerical calculations in Mathcad are in good agreement with 
the results of the experiment. The maximum error is 17% at the end of heating at t =440 с. The coordinates 
of the reduced center of gravity with uneven temperature distribution are determined. It has been 
established that an increase in the temperature gradient affects the coordinates of the reduced center of 
gravity and, in fact, does not depend on the law of temperature change. The calculations were carried out in 
the Mathcad system. The simulation experiments carried out in the Mathcad system reduced the 
laboriousness of work by about 20% to study factors that influence internal stresses and temperature fields 
during plane deformation of rods. 
Keywords: Thermoplastic Rod, Computer Simulation, Non-Stationary Thermal Conductivity 
 
1. INTRODUCTION  

  
Rods, as structural elements, are widely used 

in building structures, machines, measuring 
devices, robots and manipulators as force 
elements, mechanical energy accumulators, 
elastic transmission mechanisms, flexible 
couplings, etc. Therefore, the study of the laws 
of deformation is necessary for solving 
practically important problems. 

The reliability of building structures, machines 
and devices depends on the reliability of 
structural elements and, accordingly, on the 
accuracy of their calculations. Therefore, at the 
present stage, the requirements for accuracy of 

calculations have increased significantly, taking 
into account the real properties of the material 
and the loading mode. For such situations at the 
initial stages of research, it is better to use 
mathematical packages, for example, Mathcad.  

In building structures, turbines, power plants, 
machines on iron roads, the core elements 
experience the action of a mechanical load and a 
non-uniform temperature field.   The impact of 
the temperature field significantly affects the 
laws of deformation. The non-uniformity of the 
temperature field causes the non-uniformity of 
the material, since the modulus of elasticity 
depends on temperature, the curvature of the rod 
changes. Flexible rod elements substantially 
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change the shape, for alloys with a shape 
memory, the displacements of the elastic line can 
be comparable with the geometric dimensions of 
the rod in the temperature range of thermoelastic 
martensitic transformations.  

Solving a non-linear problem gives the 
opportunity to investigate the stability of the 
elements of engineering and building structures, 
establish a critical load and study for critical 
behavior, and it is rather difficult to perform this 
study without the use of modern application 
software packages, which predetermined the 
relevance of our research topic.  

 
2.  ANALYSIS OF LITERARY DATA AND 

PROBLEM STATEMENT 
 

In the works [1–3] large displacements of 
flexible rods under mechanical loads are studied, 
but the authors refer to the results of calculations 
performed manually and it is difficult to 
establish the adequacy of these calculations. In 
these works, it is assumed that the length of the 
elastic line does not change, i.e. there is a neutral 
layer where the deformation is zero. However, as 
the temperature changes, all layers of the rod are 
deformed due to temperature expansion, which is 
not always taken into account by the developers 
of specialized software.  

In the works [4–6] the methods for calculating 
nonlinear deformation of rods under 
thermomechanical loading are considered. The 
complex development of the authors, in 
particular, took into account the geometric 
characteristics of the rods, but the results of 
computer modeling were not supported by the 
publications of the authors.  

All of the foregoing has led to the relevance of 
our study, in which the emphasis is placed on 
presenting the results of computer simulation in 
the Mathcad system of the results of calculations 
of non-linear problems of rod deformation under 
thermomechanical loading [7–11]. 

Statement of work – is to develop methods 
for calculating nonlinear problems of deforming 
rods under thermomechanical loading using the 
Mathcad system. 

To achieve the goal, the following tasks 
were set and solved: 

- the non-stationary problem of heat 
conduction for the rod was investigated using the 
mathematical editor Mathcad;  

- the generalized geometric characteristics of a 
flat section were also studied with non-uniform 

heating and a variable modulus of elasticity of 
the material;  

- the nonlinear boundary value problem of 
plane bending of the rod under 
thermomechanical loading was formulated; 

- a numerical integration of nonlinear 
equations was carried out using the Mathcad 
package. 

 
 

3. METHODS AND MODELS 
 

The calculation of the temperature distribution 
for each structural element requires the 
compilation of a heat balance equation. In the 
case of dependence of the heat distribution in the 
body both on the coordinates and on time, we 
have a non-stationary mode of thermal 
conductivity. 

Unsteady heat conduction mode takes place 
during various technological operations.  

The heat equation (Fourier equation) in 
Cartesian coordinates has the following form: 
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where c – the heat capacity of the solid, T – 

temperature, )/(  ca   – coefficient of 

thermal diffusivity,  – the density of the 

material,  - thermal conductivity of a solid, Q  

– density of internal heat sources. 
 

The boundary conditions of the first kind, 
when the temperature is set on the limiting body 
surfaces. In the general case, the temperature at 
the boundary may depend on the coordinates of 
the boundary points and time. 
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The boundary conditions of the second kind, 
when the heat flux density is set on the surface, 
i.e. derivative of temperature normal to the 
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surface as a function of time and coordinates of 
surface points. 

The boundary conditions of the third kind, in 
which the heat flux is assumed to be proportional 
to the temperature difference between the surface 
and the environment [12–14]. 
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(3) 

The boundary conditions of the fourth kind 
(conjugation conditions), which are reduced to 
the simultaneous specification of the equality of 
temperatures and heat fluxes at the interface, 
when the problem of heat exchange between two 
media (solid-liquid, body-body, liquid-liquid) is 
solved, in each of which the transfer heat is 
described by the equation: 
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The one-dimensional problem of unsteady 

heat conduction is being solved for boundary 
conditions of the first and third kind. The 
equations and the corresponding boundary 
conditions are specified. The problem of one-
dimensional unsteady thermal conductivity. 

The temperature field varies by 
coordinate y and by time ),(, tyTTt  , source 

of heat in the body 0Q . In this case, equation 

(4) is simplified and takes the form: 
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For the heat equation and third kind boundary 
conditions in the similarity theory, dimensionless 
combinations were obtained representing the 
Fourier similarity criterion (Fo) for the 
differential heat and bio equation (Bi) for the 
boundary condition [15, 16]: 
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where *t – is a characteristic heating time. 

 
For the numerical solution of these equations, 

dimensionless quantities are involved, and the 
partial differential equation is solved in the 
Mathcad system for different boundary 
conditions.  
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where *t  – the final value of temporary 

heating. 
When the boundary conditions of the first kind 

are specified for the temperature, the functional 
dependence is used which is established by us 
experimentally. Then a study of the problem for 
the boundary condition of the third kind is 
carried out.  The boundary and initial conditions 
in dimensionless quantities have the form (two 
variants are presented): 
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For excessive dimensionless temperature, in 

the absence of a heat source ( 0Q ), equation 

(5) has the form: 
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where: fT/  .   

             
The boundary condition of the third kind for 

excessive dimensionless temperature. 
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For numerical integration in partial derivatives 

in the Mathcad system, the built-in pdesolve 
function is used. 

 
4. RESULTS OF COMPUTATIONAL 

EXPERIMENTS IN THE MATHCAD 
SYSTEM. 

 
In this section of the article, the results of the 

calculation are shown, from which it can be seen 
that the theoretical conclusions are inconsistent 
with the experiment. The maximum difference is 
observed at the end of heating, with somewhere 
around eight minutes of heating and the 
maximum error is 17% for this point. And for the 
main part, in general, good agreement between 
theory and experiment.  
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Figure 1: Solution of the problem under boundary conditions 
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Figure 2: Solution of the problem under the third kind boundary conditions of Bio criterion  

Bi=0.185, u(x,t)=(T-Tf )/Тf  dimensionless excess temperature of Fourier criterion  
Fo=0.412, v(t) – temperature on the free surface
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Figure 3:  Solution of the problem under the boundary conditions of the third kind on both boundaries. Heat transfer 
coefficients on the heating surface α1=79.5 and on the free surface α=7.95 f1(t) – experimental results 
 
 
 

In the course of research, the generalized 
geometric characteristics of a flat section are 
studied taking into account the variable elastic 
parameter with an uneven temperature 
distribution.  

We considered some flat section in the 
coordinate system xoy  and wrote down the 

following integrals: 
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where ),( yxF  – scalar function that describes 

the state of the elementary material area and the 
form of which depends on the material model.  

In formulas (11) integration is carried out over 

the entire area. Magnitudes *
xS  and *

yS  are 

called generalized static moments about axes x  
and y  respectively. 

With a parallel transfer of the axes, the values 
of the generalized static moments are changed: 

                                                

,, ***
1

***
1 aASSbASS yyxx         (12) 

where a – distance between parallel axes y and 

1y , b – distance between parallel axes x  and 

1x , 


A

dAyxFA ),(*                       (13)  

a generalized flat section area is represented.  
 

To select the axes х1 and у1 so that Sх1
*=0 и 

Sу1
*=0. Then the coordinates of the reduced 

center of gravity of a flat section are determined 
by using the formulas [16, 17]: 
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(14)  
 

where **, yx SS  generalized static moments 

about axes x  and y respectively. 

Therefore, in order to determine the 
coordinates of the reduced center of gravity of a 
flat section, it is necessary in an arbitrary 
coordinate system xoy  to calculate the 

generalized static moments and the generalized 
area of a flat section. It is easily seen that for a 
homogeneous body with homogeneous structural 
parameters, the generalized geometric 
characteristics of a flat section are geometric 
characteristics, and the reduced center of gravity 
coincides with the center of gravity (geometric 
center). 

We considered the generalized moments of 
inertia of a flat section about the axes x  and y : 
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where **, yx II  generalized moments of inertia 

about axes yx,  respectively, *
xyI generalized 

centrifugal moment. 
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where kTSk ,,  – constant values, ST – initial 

temperature, T current temperature. 
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It can be seen from the above formulas that to 
determine the generalized characteristics of a flat 
section, it is necessary to calculate the integral of 
the differential binomial, which is quite 
voluminous. Therefore, it is advisable to 
calculate these integrals numerically. For this 
purpose, the dimensionless quantities are 
introduced: 
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Numerical calculation was carried out for the 

following values of constants: 

.1,1,34,108,26 0
1

0
0

0  nkCTCTCTS

 As a result of the calculation, the values of the 
reduced geometric characteristics of a flat 
section are obtained:  
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In this chapter, a numerical study of 

generalized geometric characteristics and a 
reduced center of gravity are carried out. And 
calculations were carried out for two cases: when 
the elastic modulus changes (decreases) by 5% 
and when the elastic modulus changes 
(decreases) by 10%, under the same conditions. 
And calculations were carried out for two cases: 
when the elastic modulus changes (decreases) by 
5% and when the elastic modulus changes 
(decreases) by 10%, under the same conditions 
2500 С. But for magnesium alloys, for aluminum 
alloys, etc., for other materials these changes 
amount to 11%–30%. 

And the calculations show that up to 5% in 
principle, the usual geometric characteristics can 
be used, but when the elastic modulus decreases 
by 10% or more, it is necessary to use 
generalized geometric characteristics and it is 
necessary to calculate the stress-strain state using 
these characteristics.    

Table 1: Calculation data with a decrease in the elastic modulus of 5% 
№ k

 
0T 0

С 
1T    0С ST  0С n  

cy  *
xI  

*
xcI  

*A  

1 
2 
3 
4 

1 108 34 26 1 
2 

1/2 
1/3 

0,504 
0,504 
0,503 
0,502 

0,328 
0,326 
0,33 
0,33 

0,081 
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0,973 
0,965 
0,98 
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1 
2 
3 
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1 168 83 26 1 
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1/2 
1/3 

0,507 
0,507 
0,505 
0,504 

0,31 
0,307 
0,313 
0,314 

0,076 
0,075 
0,077 
0,077 

0,913 
0,9 

0,925 
0,931 

  
 

Table 2: Calculation data with a decrease in the elastic modulus of 10% with the same 
heating modes as in Table 1. 

№ k  
0T 0С 1T    0С ST  0С n  

cy  *
xI  

*
xcI  

*A  

1 
2 
3 
4 

1 108 34 26 1 
2 

1/2 
1/3 

0,676 
0,772 
0,604 
0,574 

0,223 
0,177 
0,256 
0,269 

0,023 
0,008 
0,04 

0,049 

0,438 
0,283 
0,592 
0,669 

1 
2 
3 
4 

1 168 83 26 1 
2 

1/2 
1/3 

0,515 
0,516 
0,512 
0,509 

0,288 
0,28 

0,293 
0,295 

0,069 
0,067 
0,07 

0,071 

0,825 
0,801 
0,85 

0,863 
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From the calculation results given in Tables 1 
and 2, it can be seen that with a slight (up to 5%) 
change in the elastic modulus of the material, the 
reduced center of gravity actually coincides with 
the geometric center and the form of the function 
of temperature variation in the cross section 
slightly influences the position of the reduced 
center of gravity. When the elastic modulus 
changes by 10% at the same temperature 
conditions, the coordinate of the reduced center 
of gravity does not coincide with the geometric 
center. The coordinate of the reduced center of 
gravity substantially depends on the heating 
temperatures of the upper and lower faces of the 
cross section and on the law of temperature 
variation in the cross section.  

The nonlinear problem of deformation of the 
rod under thermomechanical loading is also 
being considered. The radius of curvature of the 
thermoelastic line before and after deformation 
through 0 and  and the angle of inclination of 
the tangent thermoelastic line to the z axis before 
and after deformation through 0 and  
respectively, moving along the z axis through w, 
and along the y axis through v. It is apparent that 
w=w(l),v=v(l),=(l),=(l), the arc l–length of 
deformed thermoelastic line (related coordinate) 
or, w=w(l0),v=v(l0),=(l0),=(l0), where l0 – is 
the length of the arc undeformed thermoelastic 
line.   

 
 
 

The system of equations for curved rods:  
  

dv/dl0=(1+0)sin – sin0,                                                                         
dw/dl0=(1+0)cos – cos0,                    

d/dl0=(1+0)/0+ x ,                                                                                 

dM/dl0=(1+0)(Hsin – Rcos –m),                                     
dR/dl0= – (1+0 )qy,                             
dH/dl0= – (1+0 )qz, 
N=Hcos + Rsin.                           
 

 
 
 
 

(21) 

 
From these equations, the differential equation 

for the straight bars can be obtained, at 0=0 and 
0 equations bending straight bars are 
obtained.  

The system of equations for straight rods: 

,
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 dM/dz=(1+0)(Hsin-Rcos –m) 
 dR/dz= – (1+0 )qy, 
 dH/dz= – (1+0 )qz. 
 

 
 
 
 
 
 

(22) 

These equations constitute a closed system 
that describes the plane bending of a straight rod 
under thermomechanical loading.  

In [5,6, 8, 15, 16, 18] boundary conditions for 
different types of edge fixing were formulated.  

The method of numerical solution of a 
nonlinear boundary value problem: for the 
numerical calculation, the following 
dimensionless quantities are introduced: 

LT

T
T

h

y
y

Lq

M
M

Lq

m
m

Lq

H
H

Lq

R
RL

L

w
w

L

v
v

L

l
l

f

xx















,

,,

,,

,,

,,,

2
*

**

*

           (23) 

L

z
z  ( for straight rods), 

L

l
l 0
0  , 

*

,
, q

q
q zy

zy  , 

where L – the length of the rod to deformation, 

*q – the maximum value of the distributed load. 

 
In dimensionless quantities, the system of 

equations has the form: 
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(27) 
 

Similarly, the equations in dimensionless 
quantities can be written to describe the 
deformation of straight rods. 
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(28)  
 

We solve a number of problems of nonlinear 
deformation of a straight rod of rectangular cross 
section. Define displacements and internal force 
factors for different values of mechanical load 
and non-uniform heating within elastic limits.  
The temperature varies only along the height of 
the cross section according to a given law.  In the 
basic equations, the dimensionless quantities are 
chosen in such a way that characterizing the 

maximum values of external loads *q  and  

material parameters were concentrated in the 
motion parameter .q   

For numerical integration of vector Y  the 
following components are presented: 

 

,),,,,,( 654321
TYYYYYYY            (29)  

where 

,,,,,, 654321 HYMYRYwYYvY     

(30).  
the following components are presented: 

.3.0,56,30

,26,7.0,024.0,012.0
00

0





nCTCT

CTLdh

ha

f
  

For a given material and geometric 

dimensions of the beam qq 4,14*   кН/м. 

Load vector does not change direction [18–23]. 
The boundary conditions at the left end 

correspond to the second condition, and at the 
right end - to the third condition. Vector Y  at 
the starting point of the integration interval has 
the form [24]: 
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TAAAY ),,,0,0,0()0( 321            (31)  

where 3,2,1, iAi  unknown initial parameters 

(shooting parameters). To define them, the 
boundary conditions at the end of the beam are 
given: 

0,0,0 665514  yyy   

Jacobian
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Figure 4: Beam displacements at thermomechanical 

loading for the value of the loading parameter 
q 0.03, 

423 10,10,10  wwvv   

 
has the form [19]: 
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and        
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The value of parameters iA  at 0q , equal 

to zero 3,2,1,0  iAi . 

The initial step of the motion parameter is 
equal to 0,01. At each step of the motion 
parameter, convergence is achieved in 2–3 
iterations. The accuracy of satisfying the 
boundary conditions is 10-4. In equations (28) it 

is necessary to put: .0,1,0  mqq yz  

In fig. 4 and fig. 5 the graphs of the 
components of displacements, and in fig.6 and 
fig. 7 – force factors for values 04,0q  and 

q 1,56 are shown.  
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Figure 5:  Beam displacements at thermomechanical 

loading for the value of the loading parameter 
q 0.6  
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Figure 6: Bending moment and vertical distribution 

of force component under thermomechanical loading  

q 0.03 10,  MMRR  

Figure 7: Bending moment and vertical distribution 
for the value of the loading parameter 

q 0.6 10,  MMRR  

of force component under thermomechanical loading  
 

  
Comparative analysis shows that with 

increasing of parameter q  the ratio between 

displacements changes significantly v  and w . 
 
5. CONCLUSIONS 

 
1. A theoretical and computer study of the 

displacements, internal force factors and the 
temperature field during plane deformation of 
rods has been performed. 

2. The temperature problem for a bar of 
rectangular cross section was studied. The 
differential equation of one-dimensional 
unsteady heat conduction is solved in the 
Mathcad system for boundary conditions of the 
first and third kind, including for non-stationary 
boundary conditions established experimentally. 
The results of numerical calculations are in good 
agreement with the results of the experiment and 
third kind, including for non-stationary boundary 
conditions established experimentally. The 
maximum error is 17% at the end of heating at 
t =440 с.   

3. The two-dimensional unsteady heat 
conduction problem is considered, when a 
heating device acts on a part of the rod surface. 
The boundary conditions on this part are written 
using the Heaviside function. The solution of a 
differential equation in partial derivatives is 

carried out by the method of lines using a 
rectangular division grid in the Mathcad system.  
The generalized moments of inertia are 
calculated for structural carbon steels and 
various alloys. It has been established that the 
calculation of generalized geometric 
characteristics is essential for aluminum, 
magnesium and other alloys which elastic 
modulus changes to 24% when heated to 250–
300 0С, for structural carbon steels the elastic 
modulus when heated to 250 0С changes slightly 
and geometric characteristics should be used. 

The necessity for conducting simulation 
experiments in the Mathcad system will allow, in 
our opinion, to significantly reduce the work 
involved in studying the factors that affect the 
internal stresses and temperature fields during 
plane deformation of rods. 
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