
Journal of Theoretical and Applied Information Technology
31st July 2019. Vol.97. No 14

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

3911

RISK MITIGATION FOR ANTI SOFTWARE AGEING – A
SYSTEMATIC LITERATURE REVIEW

1THAMARATUL IZZAH AZMAN, 2NORAINI CHE PA, 3ROZI NOR HAIZAN NOR,
4YUSMADI YAH JUSOH

1,2,3,4Faculty of Computer Science and Information Technology, Universiti Putra Malaysia, Malaysia.

E-mail: 1thamaratulizzah@gmail.com, 2norainip@upm.edu.my, 3rozinor@upm.edu.my,
4yusmadi@upm.edu.my

ABSTRACT

Software normally undergoes an inevitable ageing process that occurs because of the software performance
degradation and the failures of the software to execute. Usually, maintenance process is implemented to
eliminate and fix the emergence of errors triggering software failures. The phenomenon also can be slow
down and prevented by considering risks exposure through risk mitigation. To achieve anti software ageing,
IT organizations need to employ relevant and effective approach to counteract ageing occurrences, thus
ensuring optimum software quality and performance from degradation to fit with current and future
environmental and technological changes. For this reason, it is significant to ascertain and understand the
concepts of anti software ageing and available approaches addressing the issues to identify existing studies
limitation and research gaps. This paper conduct a systematic literature review on the studies related to risk
mitigation for anti software ageing by following a standard systematic literature review guidelines proposed
by Kitchenham (2009). It aims to review the existing current state of research on risk mitigation for anti
software ageing. A total 106 studies related to the topic from various journals and conference proceedings
has been reviewed. The research in this topic is still active throughout the decade. We noticed that majority
of the proposed solution are focusing on implementing software rejuvenation approach to delay ageing
occurrences. Throughout findings, technical risk is the most addressed and discussed risk in the literature.
The results of this review are significance as a reference on the current trend of research in anti software
ageing. Although software rejuvenation are mainly proposed to handle software ageing issues, there are still
no clear solutions and guidelines modeled by past researchers to effectively mitigate risks to software
ageing especially during software maintenance process and addressing the risks from external risk. Thus,
this paper had achieved its aim to review current state of existing research related to risk mitigation for anti
software ageing.

Keywords: Anti Software Ageing, Software Performance Degradation, Risk Mitigation, Maintenance
Process, Systematic Literature Review

1. INTRODUCTION

 Software is a collection of instructions in a
computer program that can aid the users to perform
tasks on a computer. After software installation and
continuous use of it, software needs to be
maintained to fix the contingency of software
errors. In software development lifecycle (SDLC),
software maintenance is the phase where in the
event of software errors and failures, actions will be
taken to fix errors as well as modifying and
updating the software to meet new demands in
business process to improve its performance. Most
often, the accumulation of these software errors and
failures causes the degradation of software
performance and leading software ageing to

happen. In software development life cycle,
software maintenance is the phase where in the
events of software failure, action will be taken to
fix the errors as well as modifying and updating the
software to improve its performance and thus
preventing the occurrences of software ageing.
 Software ageing is a phenomenon where a
software degradation occurs, generally in term of
the software performance, function and its quality,
due to the exhaustion of operating systems
resources, fragmentation and accumulation of
numerical error [1,2]. Failure of the software to
adapt with technological and environmental
changes also will cause the software to age and
getting old. Moreover, software ageing
phenomenon could be noticed through a

Journal of Theoretical and Applied Information Technology
31st July 2019. Vol.97. No 14

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

3912

continuously long running software execution,
where eventually it degrades condition of the
software, which consequently resulting in software
crash [1]. On the contrary, anti software ageing is
referred as an action to prevent and delay software
ageing occurrences. Normally, software
rejuvenation is a process proposed by most
researchers, to counteract the software ageing by
classifying the ageing factors and implementing the
reverse action to the software system [2]. Software
ageing phenomenon can be delayed using risk
mitigation approach to solve and treat the risks.
Specifically, risk is the possibility of something
unpleasant to happen that may cause negative
impact. By identifying the causes and factors of
software ageing, the potential risks causing the
software to degrade could be determined. Although
software ageing is inevitable, mitigation approach
at the very least could assist in slowing down and
delaying the software ageing processes for a better
performance and function of software to sustain its
lifecycle.
 Thus, this paper aims to review the
existing current state of research on risk mitigation
for anti software ageing. This paper provides an
updated current state of the research in the software
ageing field on software ageing detection and
forecasting analysis, proposed approach as well as
discussion on the risks associated to deficiency and
failure which gives rise to software ageing which is
different from previous work in the area. The
structure of this paper is organized as follows:
Section 2 presents the materials and method applied
in this study, Section 3 summarizes the results on
the findings, Section 4 discusses on the results of
the findings on risk mitigation for anti software
ageing, Section 5 address on the limitations of the
study conducted and finally Section 6 is concluded
with a conclusion and further research expectation.

2. METHOD

 The study will follow the systematic
literature review guideline that has been proposed
by Kitchenham [3]. This section discusses on the
materials and method involved in collecting,
analyzing and evaluating existing studies or work
related to the topics. We utilized a software
program, Mendeley, as for gathering, managing and
referencing the journal articles and conference
papers. The SLR guideline that has been proposed
consists of three main phases; planning the review,
conducting the review and reporting the review.
Planning the review: Initial planning of the review
is needed to find the motivation to conduct the

review and drive the research. This phase involved
with identifying the need of the review, build and
specify the research questions, and developing as
well as evaluating the review protocol. The need
may arises from the requirement of the researchers
to evaluate and summarize previous studies related
to their topics [3].

Research questions need to be formulated
and specified, as it is one of the important parts in
SLR to drive the entire SLR methodology [3].
Significantly, it is also needed to gain more
understanding and overview on the trend, issues
and practices of the selected study. The research
questions for this study are as follows:

RQ1: How much research has been done to
achieve anti software ageing?
RQ2: What are the approaches to detect
software ageing?
RQ3: What are the existing proposed
approaches to achieve anti software ageing?
RQ4: What are the risks to software ageing?

Aim of research questions

RQ1: This research question aims to provide
number of research that has been done on anti
software ageing. A clear definition and
understanding of anti software ageing and its whole
purposes will be discussed. Studies related to anti
software ageing will be reviewed to further
investigate the aim and purpose of anti software
ageing. In addition, it also helps to provide possible
areas of study of software ageing.
RQ2: This research question aim to identify what
type of analysis is mostly used to detect ageing
occurrences in software by past researchers.
RQ3: This research question is directed to provide
an overview of the proposed approaches by past
researchers to achieve anti software ageing.
RQ4: This research question aim to identify and
categorize risks related to software ageing.
Further discussion on this paper will answer these
following research questions and help to direct the
study in this topic to identify and summarize the
issues, challenges and the limitations of the existing
research in this area.

Inclusion and exclusion criteria: Developing and
evaluating the protocol is the critical part in SLR
[3]. It is adapted from the research questions that
has been built and specified earlier. One of the
components in protocol review is the study
selection criteria, consists of inclusion and
exclusion criteria, to determine which study should
be included and excluded in the review. The criteria

Journal of Theoretical and Applied Information Technology
31st July 2019. Vol.97. No 14

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

3913

to select the primary studies are shown as in Table
1.

Table 1: Inclusion and exclusion criteria

No. Inclusion Exclusion
1 Study in the area of

risk mitigation for
anti software ageing

Does not related to
mitigating risks to
achieve anti software
ageing

2 Submitted to or/and
published in a
conference or
journal articles or
books between 2008
to 2018

Informal surveys,
books

3 Content are written
in English and can
be understand

Studies are not
structurally
developed and not
described in detailed

Search terms: Defining and selecting a suitable
search term to select primary study is very
important in SLR. This search term can be derived
from the research question that has been developed.
It helps to guide the researchers to find and search
for the relevant studies related to the study
disciplined. Search term helps to minimize the time
to search for the relevant papers related to the
study. The search term are also combined using
Boolean AND/OR search string for advanced
search. The search term that were used are:

 Anti software ageing
 Software ageing
 Software ageing risk
 Software performance degradation
 Risk mitigation
 Risk management
 Risk mitigation model
 Software maintenance
 Software failures

Data sources: Four electronic database that has
been selected and used to perform this study which
are IEEExplore, Science Direct, SpringerLink and
Google Scholar that includes conference
proceedings and journal articles.

Search in digital libraries.

In this study, we had chosen four selected digital
libraries that are IEEExplore, Science Direct,
SpringerLink and Google Scholar. All of the four

selected digital libraries and its url are shown as in
Table 2. The relevant studies include titles and
keywords analysis and comprehensive reading of
abstract. We also dismissed duplicates papers that
are found in each databases. Particularly, we only
selected papers published in journals articles and
conference proceedings to focus on only research
studies and locating on more important materials.

Table 2 Selected databases and its URL

Database /
Source

URL

IEEExplore ieeexplore.ieee.org/Xplore/home.jsp
Science Direct https://www.sciencedirect.com/
SpringerLink https://link.springer.com/
Google Scholar https://scholar.google.com/

Data collection

The data collected from each of the papers includes
attributes as follows:

1. Paper Titles.
2. Paper Author(s).
3. Year of paper’s publication.
4. The journal or proceedings in which the

paper is published in.
5. Aim of the study and its problem

statement.
6. The proposed solution for the problem

stated.
7. Type of risks addressed in the study.

Data Analysis

The data collected will be tabulated and discussed
to answer the proposed research questions:
RQ1: The number of papers discussing anti
software ageing will be reviewed. Area of focus in
software ageing field also will be discussed.
RQ2: Type of analysis is used by past researchers
to detect ageing occurrences in software will be
categorized.
RQ3: The proposed approach or solution of to
achieve anti software ageing will be classified.
RQ4: The identification of risks to software ageing
will be categorized. A brief explanation of each risk
will be discussed.

Conducting the review: This phase involved with
carrying out the procedures to identify and select
the existing study using the criteria and protocol
that has been developed in the previous phase. It
consists of steps such as identification of the
research, retrieving the studies from the data
sources by using the search term as described. The
relevant studies or paper related to risk mitigation

Journal of Theoretical and Applied Information Technology
31st July 2019. Vol.97. No 14

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

3914

and software ageing disciplined are retrieved from
the four selected electronic databases that provide

conference proceedings and journal articles.

The selected papers are then narrowed down into
selecting papers that were published from the year
of 2008 to 2018 to gather relevant and newer
studies on the topic. Before conducting the paper
selection process, we generated the search string
term as steps followed:
Step 1: Identify the keywords from the area of
research. The keywords are derived from the search
term described.
Step 2: Define the generic search expressions as
shown in Table 3. [Example of expression:

]
Step 3: Perform the generic search expression
using the string in the selected digital libraries.

Table 3 Domain and Keywords
Domain Key Keywords/String

Anti
Software
Ageing

A : Anti software ageing

 : Software ageing

 : Software
performance degradation

 : Software failures
Risk
Mitigation

B : Risk

 : Risk mitigation

: Risk management

 : Risk mitigation model
Software
Maintenance

C : Software maintenance

The generic search expression is used for paper
selection process to conduct systematic literature
review. The process is performed as shown in
Figure 1. Overall, the phases to select suitable

papers that fits criterion defined involved seven
phases. In advance, we also looked at the references
of the selected papers and search for its
publications in the database that are related to the
topic. This is done to obtain more published papers
that might not be available in our selected databases
or are missed.
The selected papers are then to be used to answer
the defined research questions. After a full paper
reading, we only selected 106 papers for data
extraction and analysis to conduct a review report.

Reporting the review: A comprehensive study will
be done through full reading of the selected papers
and the report of the review will be discussed in
section III. The report of the review is reported
accordingly by each of the research questions
formulated.

3. RESULTS

In this section, we summarize the findings and
results of our studies. A total of 106 studies has
been gathered and reviewed from four digital
libraries. Each of the relevant papers found are
classified accordingly to its year of publications as
in Figure 2. We also classify the reviewed papers
into two types of publication; journal articles and
conference proceedings. Table 4 provides an
overview of total number of papers published
through journal and conference proceedings along
with its percentage.

Figure 1 Paper Selection Process

Journal of Theoretical and Applied Information Technology
31st July 2019. Vol.97. No 14

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

3915

To answer research question RQ1, we
found out that 106 studies has been done on anti
software ageing. The definition and broad
explanation of anti software ageing are briefly
explained in section 4.1. Thorough reviews of each
paper leads to the summarization and categorization
of software ageing area of focus into two
categories; software ageing detection and software
ageing mitigation as shown in Table 5.
 To answer research question RQ2, ageing
detection approaches are divided into three type of
analysis. The papers are then classified accordingly
to each analysis used to detect ageing in software
with its percentage as tabulated in Table 6. We also
provide description and explanation on the analysis
used by the researchers in section 4.2. Moreover,
we also summarize a detailed view of all
information on approaches as well as the ageing
indicator used to measure ageing in measurement-
based approach for research question RQ2 as
shown in Appendix Table 4.2A.
 On the other hand, Table 7 provides an
overview of seven classes of proposed software
ageing mitigation approach by the studies to answer
RQ3. Brief discussion on the proposed mitigation
approaches is explained in section 4.3.
 The risks to software ageing also had been
identified and discussed to answer RQ4. Further
discussion on the identified risks is explained in
section 4.4. Table 8 categorizes previous studies
with the risk addressed and discussed by the
authors. We also identified those studies that
addressed more than one risks.

Lastly, Table 9 in Appendix provides a
detailed view of information from reviewed papers
contributing to answer research questions RQ1-
RQ4.

4. DISCUSSION

4.1 RQ1: How much research has been done to
achieve anti software ageing?

 Overall, we had identified and gathered
106 studies from four selected digital libraries.
Figure 2 illustrates the graph of publications of the
reviewed studies by 1-year interval. From the
graph, the data shows the trend of research on the
topic is active and on going every year, except in
the year 2014. However, the research shows an
increase trend the year after and even more active
in year 2017. The rising trend could be a sign of
increasing interest to this field among researchers.
Citation for each paper is included in the reference
section.

Figure 2 Number of publications by year 1-year interval

From 106 papers, 45 (42.5%) of the

publications are articles published in variety of
journals publication, some of which published in
high reputations such as IEEE, ACM and Elsevier.
The articles cover different areas of studies ranging
from Software Engineering, Computer Science,
Information Systems and etc. Meanwhile, 61
(57.5%) of the papers are published in various
international conference proceedings, which are
mostly from IEEE conferences and ACM. Table 5
shows the classification of papers into journal
articles and conference proceedings. Overall, the
publications of reviewed studies are diverse across
various journals and proceedings. In particular, the
classification is important to help researchers to
view and differentiate the number of studies
published in each class in an organized and
structural manner. From Table 5, we noticed that
publication of reviewed papers is published slightly
more through conference proceedings than through
journals. Nevertheless, conference proceedings may
process a faster publication than journal articles,
however, journal articles is highly significant as it
provides a more in-depth and detailed research than
conference proceedings.

Table 4 Type of publications

Classification References No. of
studies

Percentage
(%)

Journal
Articles

[2] [4-47]

45 42.5%

Conference
Proceedings

[48-108] 61 57.5%

Total 106

Anti software ageing is a process to counteract,
delay or slowing down the ageing process in
software by identifying the factors and causes of

Journal of Theoretical and Applied Information Technology
31st July 2019. Vol.97. No 14

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

3916

software ageing [2,27]. It helps to prevent the
software from degrading in terms of its
performance and quality [47]. In other words, anti
software ageing restrain the chances of software
errors and failures to sustain the survivability of
software thus prolonging its lifecycle. A good
quality of software helps in preserving the software
from ageing [47]. Software that maintain its high
quality and possess adaptability feature towards its
environmental changes enable the software to stay
young and relevant [2,19,104].
 To achieve anti software ageing, the
concept of software ageing must be fully
understood. Software ageing is described as the
accumulation of errors during software execution,
resulting in a crash or failures of the software [1,2].
In particular, software ageing is not a phenomenon
where it will immediately cause the system to fail,
but rather it will cause software performance to
degrade up to the point where the software will
crash and hangs [3]. Software ageing phenomenon
also known to be associated with the interruption of
software maintenance activities that consequently
lessen the software quality [5]. In fact, software
also may suffer from ageing faster whenever it is
untended [5]. Software also may undergo ageing
process due to slower response time which resulting
to slower software performance. However, by
updating the software to a new version, ageing
could be overcome [23]. Early studies of software
ageing stated that there are two categories of
software ageing; first, failure of the product owners
to make alterations to the product to meet the
changing needs, and second is the results of the
changes that are made [4,47]. Generally, to
understand the phenomenon, the factors, causes and
risks of software ageing are crucial to be identified
to achieve anti software ageing.
 Past researchers [2,47] suggested two
factors leading to software ageing; internal and
external factors. The internal factors includes
memory bloating, residual disability, memory leak,
unreleased files lock, debug failure, quality
degradation and drop, and increase complexity
meanwhile the external factors includes technology
challenge (hardware and software), maintenance
cost, competition, evolution requirement, dynamic
environment, business stability and consistency,
and human [2,19,47]. Internal factors are the factors
that are closely related to the function of the system
software meanwhile the external factors are
associated with the environment of the software.
Few past researchers studies analyses software
ageing in term of its external factors, dealing with

the practitioners and users to assess and measure
the software ageing [19,44,97].
 Other researchers focuses on the software
internal factors to measure software ageing,
particularly dealing with aging-related bugs, data
corruption fragmentation, memory leaks, failure
rates and numerical error accumulation
[6,46,51,52,54,55]. Previous studies in software
ageing and rejuvenation also focus on the internal
factors of the software, specifically on the operating
systems, its hardware and software [51,53,55].
 Previous researchers [5,19] suggested few
main factors of software ageing that has been
identified and verified, and categorized them into
four factors, which are functional, human,
environment and product profile. Functional factors
are the factor from the software product itself
which user used to interact. This factor is related to
the functionalities of the system that may caused
the software to age such as memory bloating and
leak, errors and bugs and residual defects. Second
factor highlighted by the researchers is human
which are closely related to the users that used the
software or system, for example, employee, end
user and consumer. The researchers [5,19] suggest
that inexperience and lack of training of people in
handling and managing the software may also
causes software ageing to happen. Meanwhile,
environmental factors comprises of the
environment within or outside the system itself, for
example, accessories, environmental and
technological changes. Inadaptability of software
towards its environmental and technological
changes may leads to the complexity of the
software itself to be updated and modified thus
leading to ageing in a software. Lastly, the product
profile factor involves factors in relation with the
product of the software itself. For example, date of
acquisition of the product, date of purchasing the
software and age index of the software. The
software ageing factors has been identified and
verified through empirical studies conducted among
software practitioners by the researchers [5].
 Software ageing also can be measured
using data collected from a system about it
resources usage. Internal measure is a measurement
based on the internal attributes such as static
measures of product, for example, its functionality
and interoperability [2]. This measurement is very
extensive as it involves with statistical
measurement of the software product itself that
deals with the software ageing. Some of the
measurements are very expensive and hard to apply
in assessing software ageing. However, this

Journal of Theoretical and Applied Information Technology
31st July 2019. Vol.97. No 14

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

3917

measurement provides precise statistical
measurement to detect software ageing internally.

 Table 5 gives an overview on which areas
of software ageing are more focused into. In brief,
106 studies are classified into two main areas of
focus; software ageing detection and mitigation
approach.

Table 5 Area of focus

Area of focus References No. of
studies

Percentage
(%)

Ageing
detection

[5,8,12,18,
21,25,30,34,
50-54,57,63,
64,66,77-79,
82,84,85,87,
88,93,94,
100-102,
105-108]

34 32.1%

Mitigation
approach

[2,7,9,10,11,
13-15,17,19,
20,23,24,28,
29,31,33,
35-49,56,
58-62,67-
69,72-76,81,
90-92,95-
99,103,104]

57 53.8%

Combination [4,6,16,22,2
6,27,32,55,
65,70,71,80,
83,86,89]

15 14.2%

Total 106

From Table 5, we distinguish 34 (32.1%) studies
are focusing on detecting ageing in software.
Meanwhile, 57 (53.8%) studies are discussing on
delaying software ageing through various ageing
mitigation approaches, discussed in section 4.2. On
the other hand, 15 (14.2%) studies are discussing
on both ageing detection and mitigation. The
diverse approaches of ageing mitigation for anti
software ageing are discussed in section 4.3.
 Hence, we could see the current state of
area of focus in software ageing field where
research on proposing mitigation approach for
software ageing are quite numerous than research
on ageing detection and the combination of both
studies (ageing detection and mitigation). Ageing
detection involves software system observation and
monitoring to locate potential unusual behavior
within software. Precise prediction is crucial to
assure software system reliability [101]. Moreover,
forecasting and detection ageing in software as well
includes predicting time to ageing failure, which
mainly past researchers tries to improve one

another studies by obtaining accurate time to ageing
failure to perform rejuvenation. Ageing detection
involves applying analysis that includes
measurement-based analysis, model-based analysis
and hybrid analysis (integration of both
measurement- and model-based analysis). Further
explanation on the three analyses for ageing
detection will be discussed in the next section.
Meanwhile, mitigation approach involves with
introducing and suggesting best suitable solutions
to delay software ageing phenomenon. There are
various approach proposed by past researchers to
prevent software ageing that includes software
rejuvenation, application of maintenance activities,
partial computation offloading, software life
extension, recovery actions and etc. that will be
discussed in section 4.3.
As observed, attention has been given more
thorough to delay ageing occurrences rather than
detecting the causes of ageing itself. This might be
because locating aging-related bugs incurring
ageing manifestation within the software system
might be difficult even after software system failure
[15]. Furthermore, ageing forecasting and
prediction also is argued to be a critical area of
study since it involves crucial monitoring of the
state of software system using certain instrument.
Thus, this requires greater effort for successful
ageing observation. Moreover, studies that
combine both ageing detection and mitigation are
still scarce. Whilst studies on ageing detection
necessitate great effort, studies that reconcile both
areas might acquire a greater effort as it involves
both precise observation of ageing manifestation
and effective ageing delaying process. However,
this could open ways and ideas future
studies/research to develop a more effective
mechanism and approach for ageing detection and
mitigation.

4.2 RQ2: What are the approaches to detect
software ageing?

Ageing detection involves with predicting and
forecasting ageing events in software/system using
specific approach. Overall, there are 34 studies
discussed on ageing detection only meanwhile 15
studies discussed on both ageing detection and
mitigation. Hence, this concludes that there are
overall 50 studies discussed on ageing detection in
software. In particular, literature study revealed that
there are three major type of approach used by past
researchers to detect ageing; measurement-based,
model-based and hybrid ageing analysis.

Journal of Theoretical and Applied Information Technology
31st July 2019. Vol.97. No 14

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

3918

 Through review, we noticed 37 (75.5%)
out of 49 studies are discussing ageing detection
using measurement-based analysis, seven (14.3%)
studies uses model-based analysis, four (8.2%)
studies detecting ageing using hybrid analysis,
meanwhile one (2%) study proposes a new heuristic
approach. Table 6 shows the classification of the
studies with the type of analysis.

Table 6 Type of Analysis for Ageing Detection
Type of
Analysis

References No. of
studies

Percentage
(%)

Measuremen
t-based

[4,6,8,12,16,
18,25-27,30,
51-55,64,65,
71,77-80,82,
84,86-89,93,
94,100,102,
105-108]

37 75.5%

Model-based [5,21,32,50,
57,66,83]

7 14.3%

Hybrid [22,63,70,
101]

4 8.2%

Others [34] 1 2.0%
Total 49

 From the obtained findings above,
measurement-based analysis is the most preferred
analysis to detect software ageing by past
researchers. It involves with statistical approach by
monitoring the software/system behavior directly
using aging indicators to predict and forecast aging
phenomenon. Aging indicators act as markers to
identify the presence of ageing in software [51].
Examples of aging indicators that are widely used
as a mean to detect ageing in software/system are
resource usage (memory consumption and CPU
utilization), response time, memory-related
(memory leak and memory fragmentation) and
performance indicator. Some studies not only
measures ageing using one indicator but also a
combination of several ageing indicators as well. In
particular, measurement-based analysis uses several
approaches to forecast ageing such as time-series
approach and machine learning approach. Time-
series approach is an approach based on the trend
estimation of selected ageing indicators. The trend
test also is used to reject or accept the hypothesis of
no trend in the data for example Mann-Kendall test
used in [84,94] and applying technique to estimate
the trend such as linear regression or multiple linear
regressions as used in [6,55,78,79,87,108].
Meanwhile, machine learning approach involves
with adopting algorithm to identify trend and
categorize the software/system into robust state or
failure prone state [7,65,105,107]. This approach

applies non-linear or non-parametric regression to
diverse software/system variables and examines the
remaining errors between the predicted and actual
software/system values [87].
 Model-based analysis involves with
adopting stochastic processes to model the aging
phenomenon. Seven (14.3%) studies used model-
based analysis in their research to detect ageing
occurrences. This type of analysis assumes
software/system failure and repair time distribution
to determine rejuvenation schedule to maximize the
software/system variables while minimizing costs
and its management [50,66]. Researchers adopted
several models to forecast ageing in software such
as semi-Markov model [39,83], the Gaussian
Mixture Model [21], square quality model [50],
ageing index [5,57] and typical polynomial
mathematical model [66] to characterize the ageing
state of software/system.
 Meanwhile, another four papers applied
the hybrid-analysis in their studies. Hybrid analysis
is a combination of both measurement- and model-
based approach. It adopts a stochastic process in
model-based approach to describe ageing
phenomenon and determining the model parameter
by using measurement approach. In [22], the
combination of Markov model and time-series
techniques is used for ageing detection. In [63], a
continuous time-hidden Markov Model (CTHMM)
is proposed. The researchers extend the hidden
Markov Model (HMM) with a continuous time
domain. In [70], a hybrid approach is adopted to
analyze software ageing in android. Trend
estimation technique is applied which uses memory
availability as aging indicator and later uses
Markov model to conduct predictive analysis.
 On the other hand, only one study in [34]
made comparison and exploits the differences
between software version as mean to predict and
forecast ageing. The ageing is detected by runtime
comparisons of different development versions of
the same software and analyzing the differences in
runtime traces of chosen metric (memory
depletion). It utilizes the information gathered via
the differentiation between software versions,
which is a different type of analysis from general
analysis used by other researchers.

Thus, we could see the current states of ageing
analysis are slightly more favoured to
measurement-based approach than model-based
and hybrid approaches. This might be because
measurement-based approach uses statistical
analysis to observe and monitor data directly to
ascertain time window to conduct rejuvenation. The
benefit of measurement-based is that it allows data

Journal of Theoretical and Applied Information Technology
31st July 2019. Vol.97. No 14

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

3919

to be directly from the actual system and able to
incorporate changes in dynamic environment [15].
Another advantage of this type of analysis is that it
produces accurate prediction of ageing occurrences
[16]. Furthermore, it allows evaluation of current
and future state of software system assembling of
parameters at certain extent time [105]. However,
this analysis is unable to assess and evaluate
persisting dependability attributes such as
availability as measurement-based analysis utilizes
ageing indicators associated to exhaustion of
resources [44]. It is also argued in [106] that most
researchers only utilize only one ageing indicator to
describe the data in measurement-based analysis,
whilst multiple ageing indicators are yet to be
exploit.

Meanwhile, model-based analysis is used to
analyze and evaluate software system behavior by
means of software system availability and
performance. It is also seeks to determine the
optimal time to perform rejuvenation. It establishes
mathematical model and forecast ageing based on
historical data [58]. Model-based analysis does not
make use of any metrics (ageing indicators as used
in measurement-based analysis) upon determining
possible ageing state of the software system as it
uses dependability attributes for the analysis.
Significantly, model-based analysis is easy to be
applied across different software systems as it
based on the simplification of the software system
[44]. The accuracy of this approach however relies
on the presumption and estimation made for the
model. Another drawbacks include poor flexibility,
unable to be validated easily in practice, incapable
of making decisions in real time and unsuitable to
be utilized for software ageing issues during
production phase [105].

On the other hand, hybrid analysis reconciles
both approach by the integration of measurement
data and stochastic model to illustrate the
phenomenon. It utilizes field data to support
analytical models to forecast ageing phenomenon.
This type of analysis leverages both measurement-
and model-based values and offers more effective
results of analysis. Based on the review conducted,
despite its significant merit, studies on hybrid
analysis are yet to be explored.

In brief, ageing analysis involves forecasting
and prediction of potential events/caused of
software ageing occurrences, determining plausible
time to ageing failure and is conjointly associated
with software rejuvenation approach to tackle and
deal with software ageing occurrences as it as well
involves ascertaining best time to perform
rejuvenation. Precise time to ageing is crucial to

commence countermeasures to delay 0ageing
occurrences [4].

An overview of the studies with its type of
analysis and approach used in each analysis as well
as its ageing indicator contributed for this research
question RQ2 is presented in Appendix Table 4.2A.

4.3 RQ3: What are the proposed mitigation
approaches to achieve anti software ageing?

To answer RQ3, approach involves with
implementing method or techniques to prevent
software ageing occurrences such as failures and
performance degradation is shown as in Table 7.
Through review, there are 56 studies that focused
on ageing mitigation only and 16 studies on the
combination of both detection and mitigation. This
summarize that there are overall 72 studies
suggested mitigation approaches to achieve anti
software ageing. The proposed approaches are
many and varied such as software rejuvenation,
maintenance activities, software life extension,
partial computation offloading, software
regeneration strategies, recovery actions.

We also had identified eleven risk mitigation
models that incorporates various risk activities to
minimize risks in software leading to failure.

Table 7 Proposed approaches

Approaches References No. of
studies

Percentage
(%)

Software
rejuvenation

[4,6,7,10,13,
15-17,20,22,23,
26,27,29,31-33,
35-37,43-47,49,
55,56,58,59,65,
67-69,70-72,
74-76,80,81,83,
86,89,90,92,96,
98,103,104]

50 69.4%

Maintenance
activities

[2,19,24,60,68,9
7]

6 8.3%

Software life
extension

[14,91] 2 2.8%

Partial
computation
offloading

[73] 1 1.4%

Software
regeneration
strategies

[95] 1 1.4%

Recovery
actions

[28] 1 1.4%

Journal of Theoretical and Applied Information Technology
31st July 2019. Vol.97. No 14

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

3920

Mitigation
model

[9,11,38,39,40,4
1,42,48,61,62,9
9]

11 15.3%

Total 72

Software rejuvenation

Thorugh our review, software rejuvenation is
an approach that are mostly emphasized by past
researchers by having 51 (83.6%) out of 61 studies.
It is an action or technique of proactive faults that
designs the system for periodic reboots [4,57]. In
particular, software rejuvenation is the concept
where an application will be restarted periodically
and preemptively at a clean internal state after
every rejuvenation interval [2]. It performs several
operations such as cleaning up file systems,
disposing buffer queues, resetting internal kernel
tables as well as garbage cleaning [4]. From
findings, software rejuvenation approach is divided
into main focus; internal factors and external
factors.

Software rejuvenation approach that focuses on
rejuvenating internal ageing factors such as
memory-related, operating system and resources
consumption is divided into two categories of
rejuvenation scheduling; time-based and
inspection-based. Time-based rejuvenation is a
form rejuvenation activities performed at a pre-
determined time intervals [33]. It is an open-loop
control technique [44]. This type of rejuvenation is
used in [7,29,35,43,47,70,80,90].

On the other hand, inspection-based is a form
of rejuvenation triggered based on measuring the
attributes of aging effects whenever it crosses
certain fixed limits [33]. It is a closed-loop control
technique [44]. Inspection-based rejuvenation is
used in [17,23,27,32,33,36,37,44,65,67,71].

Furthermore, another type of rejuvenation
includes threshold-based, where it is an action that
monitor the aging effects using threshold value,
triggering the rejuvenation whenever it exceeds
certain pre-fixed threshold value [33]. It is found in
[10,13,31,49,55,58,59,68,75,86].

Meanwhile, prediction-based rejuvenation is a
predictive approach to estimate the time to failure
or time to resources exhaustion caused by the
software aging [33], found in
[4,6,16,46,56,81,83,98]. Another type of approach
used by researches in [45,92,103] is condition-
based approach where a certain type of event or
command that will trigger software rejuvenation
activities to start, in response to the state.
Moreover, this type of rejuvenation is combined
with time-based rejuvenation used in [96]. The
study derived the condition for the optimal
rejuvenation time under opportunity time-triggered
rejuvenation policy. On the other hand, another

combination of rejuvenation policy used are time-
and workload-based combination used in [15],
time-and prediction-based used in [22,69,72] and
time-and threshold-based used in [26,74].

On the other hand, researchers in [20,150]
focuses on software rejuvenation strategies that are
handles external factors of software aging such as
environmental and technological changes, human
errors, change in business requirement and
hardware aging. In brief, this type of software
rejuvenation tackles aging problem in software by
mitigating aging-related failures in the design and
maintenance stage [20].

Maintenance activities

 Maintenance activities are proposed by
five (8.2%) studies to handle the occurrences of
software ageing in software. Software maintenance
is the dynamic behavior of a programming software
or system, whenever they are maintained and
involved in any modification throughout their life
cycle, where mostly, software ageing occurs
because of the failure of the software or system to
cope with the current changes in its environment
[19]. Past researchers emphasized on the
importance of software maintenance in a software
as software that do not adapt to its environment
changes and inflexible may cause software ageing
to occur [2,19,60]. In [24], maintenance policies by
using corrective and preventive maintenance are
used to improve the efficiency of the system.
Maintenance is performed to improve the reliability
and availability of the system by optimizing the
components and procedures [24]. Researchers in
[60] measure the complexity of software in
software evolution and maintenance and
emphasized that the complexity of the software
makes it difficult for the software to be changed.
Researchers [19] proposed a prevention technique
to counteract software ageing by using software
maintenance activities/processes that are
preventive, perfective, corrective and adaptive
maintenance. The researchers also emphasized on
the importance of software maintenance activities
as it helps to assist practitioners in delaying ageing
processes and preserve the software from degrading
[19]. The anti-ageing metrics includes software
performance, software usefulness, software failure,
business demand, changes in the environment,
changes in the technology and expertise. Each
metrics are suggested with software maintenance
prevention technique to help prevent software
ageing to happen.

Journal of Theoretical and Applied Information Technology
31st July 2019. Vol.97. No 14

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

3921

Software life extension

 Software life extension is a technique of
prolonging the lifetime of software execution
whenever the software failure that leads to software
ageing occurs [91]. It is proposed in two (3.3%)
studies. Software life extension is a preventive
maintenance technique that could be implemented
to delay the occurrences of software ageing
temporarily [14,91]. There are two methods to
extend the software lifetime that are dynamic
resource allocation by restoring resources that are
depleted due to software ageing and workload
control by lessening the workloads of software that
are ageing [14,91]. Researchers in [14]
implemented software life extension by increasing
the duration of software execution and used hybrid
approach, a combination of software life extension
with rejuvenation strategies that shows intended
result in delaying software ageing. Meanwhile,
researchers in [91] allocates extra memory to the
virtual machine which has depleting memory
consumption and shows the effectiveness of
software life extension technique compared to
software rejuvenation.

Software regeneration strategies

Researchers in [95] proposed software regeneration
strategy to handle software ageing. The
regeneration strategy is implemented in component-
level, composed of two parts, first, by determining
the degree of software aging states in each
component by threshold interval and using the
results, regeneration strategy is implemented. The
regeneration strategy includes component recovery
using serial mode, changing the state of aging
component back to normal state.

Recovery actions

 Researchers in [28] proposed a recovery
actions model to handle software failures caused by
Mandelbugs. The model aim to lessen unplanned
downtime in business-critical applications using
proposed recovery actions taken by IT operations
staff. In particular, system failures are detected
either by automatic-detection using enterprise
system management tools or manual-detection. The
problem is then diagnosed and recovery actions are
taken using four approaches; restart, reboot,
reconfigure and hot-fix (involves with minor
change in the source code or changes to the
software system such as OS, run-time and library
code). The model handles four type of bugs; restart-

maskable Mandelbugs, reboot-maskable
Mandelbugs, reconf-maskable Mandelbugs and
Bohrbugs.

Partial computation offloading

 Other researchers in [73] proposed partial
computation offloading performed in application-
level. The proposed solution is a using application-
partitioning algorithm where it divides the
application into local and remote parts. This
algorithm automatically determines which parts of
application tasks to be processed in cloud server
meanwhile another parts stays on mobile device to
ensure high performance results [73].

 Overall, there are eleven studies [9,11,38,
39,40,41,42,48,61,62,99] that proposed mitigation
model which involved with processes such as risk
identification, risk assessment, risk decision, risk
avoidance, risk treatment, risk monitoring, risk
evaluation, risk control and risk measurement. Risk
mitigation concentrates on determining strategic
and tactical approaches in minimizing the effects of
identified risks in a system [9]. It helps practitioners
or management to understand and control the risk
that might occur in a software or system [6]. Risk
mitigation usually involves basic activities such as
identification of risks, risk treatment, risk decision
and risk monitoring. Other activities such as risk
evaluation, risk assessment, risk avoidance, risk
reducing, risk control and risk measurement can
also be included in risk mitigation processes
[41,42]. However, most models focuses on
mitigating risks during software development to
ensure delivering quality software to meet users
expectation and current technological future
demand to avoid software failures, only one study
in [11] mitigate software function and faults after
software has been implemented. Thus, this creates
the gap in the study in the development of risk
model to tackle software ageing especially during
software maintenance since there is lack of risk
mitigation approach during the phase. These
models could be used as for guidelines in the
development of future risk mitigation model for
anti software ageing during software maintenance.

 Through review, software rejuvenation
technique is still leading as a dominant way to
mitigate ageing occurrences in software as shown
in Table 7. It is worth noting that most of software
rejuvenation techniques proposed from the studies
tackles software ageing issues internally by using
factors as such of memory-related, resource

Journal of Theoretical and Applied Information Technology
31st July 2019. Vol.97. No 14

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

3922

consumption and availability, and aging-related
bugs. At the same time, another available
approaches also handle software ageing by
addressing software ageing caused by software
internal factor specifically software technical
update and malfunction. For this reason, we also
could see the trend by applying mathematical and
analytical measures to address software ageing
phenomenon internally, which disregard another
factor leading to software ageing that might not
arises from the deficiencies and errors of the
software system function itself. In particular, only
studies in [2,19,20,97,104,150] addressed software
ageing by proposing software rejuvenation actions
and maintenance activities using external factors
such as human, environmental and technological
changes, from the viewpoint of hardware and
software environment.

Each studies developed different strategies to
conduct software rejuvenation in various software
environment in order to effectively delaying
software ageing occurrences. As argued in [12],
prior work focused more on software rejuvenation
to deal with software ageing. In spite of the fact that
software rejuvenation has the capability to tackle
software ageing effectively, however, it is a
proactive approach employed on running software
system without eliminating and fixing potential
bugs and errors in the code [12]. Thus, these errors
and bugs can still manifests in the future leading to
software degradation or crash. Moreover, one of the
drawbacks of this approach is it increases system
downtime and acquires costs to the loss of business
and due to software unavailability [23]. Contrarily,
other approach attempts to address software ageing
by prolonging and extending the lifetime of
software lifecycle. This is done through controlling
of resources and workloads by allocation additional
resources to the software to increase its lifecycle
[91]. Despite its attempt to add the lifespan of the
software, the approach seemingly does not directly
fixing ageing manifestation within the software.
Another approach by maintaining the software by
performing maintenance activities however has
potential to increase the complexity and declining
the structural architecture and design of the
software after frequent maintenance although it
addresses both internal and external caused of
software ageing. Some other approach also
suggested on dealing with ageing by component-
and application-level, however, it involves great
effort to disintegrate the modules of components
and applications to forecast which modules are
infected by ageing. Meanwhile, recovery actions
proposed by past researchers only deals with aging-

related bugs, which disregard external caused of
ageing. From the analysis, one of the shortfall from
existing proposed approach for anti software ageing
is to deal and tackle software ageing by means of
external settings that may contributes to software
ageing phenomenon.

4.4 RQ4: What are the risks to software ageing?

From the findings, risks addressed and discussed
emerges based on the factor software ageing are
grouped into three general types of risk; technical
risk, organizational risk and business risk.
Technical risk is the most discussed risk from the
literature study with overall 86 (81.1%) out of 106
studies, followed by 12 (11.3%) studies discussing
on all of the risks to software ageing and four
(3.8%) studies discussed on the combination of
technical and business risks. Meanwhile, there are
only one (0.9%) study discussed on business risk,
one (0.9%) study on the combination of both
organizational and business risks, and another one
(0.9%) study on both technical and organizational
risks. However, we noticed that there are none of
the studies that discusses on only organizational
risk. Table 8 shows the classification of the studies
and type of risks addressed.
 Technical risk emerges from functional
failures of software and unexpected behaviors of
the system which affecting the software
performance [5,30,49,81]. It also involves with the
quality of the software produced [39]. It refers to a
set of internal failures of software such as memory-
related
[6,18,25,33,34,51,52,63,70,78,82,83,88,90,93,102],
internal resource unavailability or consumption
[4,13,14,16,26,46,73,74,89,91], response time
[15,68,92,101], number of jobs queue [84], low
processing rate [31], throughput loss [94,95] and
aging-related bugs [8,12,28,32,67,77,100]. Hence,
in particular, technical risk most often related to the
internal factors subjecting to software ageing which
makes the software being liable to failures and
error-prone thus leading to ageing occurrences.
 Operational risk is the risk events that
occur in results from the inadequacy from people
(human factors) [2,5,19]. It most often related to the
loss associated with people having lack of
experience and capabilities in the specific area of
expert [9]. It also emerges from the events of
management failures in handling software [2] and
scarce resources within the organization [2].
Organizational risk may arise by the issues of
mistrust and failure to communicate among staff
members in the organization [9,19].

Journal of Theoretical and Applied Information Technology
31st July 2019. Vol.97. No 14

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

3923

 Business risk in general affected the
growth and development of software product [39].
It incorporates external factors of software ageing
such as environmental [2,5,41] and technological
[2,5,19] factors [39]. Business risk also may occur
from the evolution and changes in business
requirement [5,19,20]. Consequently, it may affect
business stability and consistency in delivering a
good quality of software [19].

Table 8 Risks to software ageing

Type of risks References No. of
paper
s

Percentag
e (%)

Technical [4,6-8,10-
18,21-23,
25-37,43-
47,49,51-53,
55,56,58,59,
63-96,98,
100-103,
105-108]

86 81.1%

Operational - 0 -
Business [61] 1 0.9%
Technical &
Operational

[24] 1 0.9%

Operational &
Business

[38] 1 0.9%

Technical &
Business

[39,48,62,99] 4 3.8%

All [2,5,9,19,20,
40,41,50,57,
60,97,104]

12 11.3%

Not specified [42] 1 0.9%
Total 106

In brief, the scope of risks associated is estimated to
increase impact stemming from the deficiencies or
failures that gives rise to software ageing
occurrences. From the review, we could observe the
current state of risk discussed by past researchers is
more to technical risks than business and
operational risks. This might be because technical
risks could be minimized internally using direct
mitigation strategies implemented onto the software
system for risks minimization, whilst, operational
and business risks requires greater effort from
people and management as the likelihood of risks
occurrences cannot be seen directly as technical
risks. This concludes that risks from external
viewpoint has been paid little attention compared to
risks emerges from internal viewpoint. There are
studies that discussed on all of the risks
collectively, however, the studies focused on the
three risks are still scarce and insufficient. Future
work could put more on effort to develop approach
that assist in addressing all of the risks and possibly

locate other potential risks associated with software
ageing. This could help to minimize the likelihood
of risk impact to assist in delaying software ageing
occurrences from internal and external prospect
entirely.
 In this review, we had conducted an
updated state of research in this field for the past 10
years ranging from year 2008 to year 2018. From
the findings, we had identified and classified past
studies area of focus into two scope, which are (1)
study on detecting/predicting ageing occurrences
and (2) study on proposing approach to mitigate
ageing occurrences. We had analyzed and classified
the type of analysis used by past researchers to
predict and forecast software ageing occurrences
into three type of analysis that are model-based,
measurement-based and hybrid approach. On the
other hand, we also had discovered mitigation
approach proposed by past researchers to mitigate
the influence of software ageing into several
categories; software rejuvenation, maintenance
activities, software life extension, software
regeneration strategies, recovery actions and partial
computation offloading. Moreover, we also had
categorized risks based on the factor of software
ageing into three types of risk: technical,
operational and business risks. This work is
different from previous review in the field of anti
software ageing as most prior review lack of
discussion on risks associated with software ageing
phenomenon as they mostly discussed on the causes
and type of analysis of software ageing.
Furthermore, this review is updated with more
current existing studies up to 2018, which contain
more additional and fresh different approaches and
analysis in the field of software ageing.
 From the analysis, existing studies
discussed on mitigating software ageing
occurrences is highly more than existing studies
that focused on forecasting/predicting software
ageing occurrences. Nevertheless, each one of the
studies tries to improve one another
method/approach to accurately predict and forecast
software ageing occurrences to detect which
internal components of the software causes
software ageing to manifest and become apparent.
Conversely, the main interest of our review is on
mitigation of software ageing occurrences. From
the analysis of our findings, we discovered most
existing studies proposed software rejuvenation to
mitigate ageing influences in software. These create
a huge research gap on the proposed approach for
anti software ageing. Other existing approach as
well has certain limitations and drawbacks need
further refinement for effective solution to slow

Journal of Theoretical and Applied Information Technology
31st July 2019. Vol.97. No 14

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

3924

down software ageing manifestation. Furthermore,
from the analysis of risks discussed clearly revealed
that software ageing occurrences arises by external
aspect have been paid a little attention. Hence, this
could pave the way for further research to propose
anti software ageing approach, which reconciles
both ageing internal and external risks/factors
mitigation.

5. LIMITATIONS OF THE STUDY

In spite of comprehensive study we had
conducted on 106 articles related to risk mitigation
for anti software ageing, we can still address few
limitations to our study. The study may not been
extensive as we limits the papers publications for
our study from the year of 2008 to 2018. Few of the
studies before the year of 2007 may still be relevant
and significant in the area, which are not included
in the review. Secondly, our study also may not be
thorough. We might neglect and missed few of the
relevant papers related to the topic as we only select
four databases for the review. Third, the study may
be biased due to the researchers’ knowledge and
understanding on the topic related. Few of relevant
studies might possibly be missed during papers
abstract filtration and full reading process.

6. CONCLUSION

In this study, we have conducted a systematic
literature review of 106 articles related to risk
mitigation for anti software ageing. Thus, this paper
had achieved its aim to review existing research
related to risk mitigation for anti software ageing
and discuss the existing research based on the
research questions formulated. Knowledge from
this review is significant to be used as for further
work in the area. From the review, we could see the
trend of area of focus in software ageing field are
more drawn to ageing mitigation than ageing
detection and combination of both (ageing
detection and mitigation). This is because it is
argued by past researchers that studies involve with
detecting and forecasting ageing manifestation in
software are more challenging to be done [15]. For
this reason, from our review we could see the
studies in this area are still limited. Likewise,
studies that combine both areas are also still scarce
as it incurs considerably greater effort.
 From the findings, there are numerous
approaches and solutions to address software
ageing phenomenon and each one of the approaches
drives to the same goal, which is to delay and
reduce the occurrences of software ageing for a

better software performance and quality. Since it is
impossible to eliminate ageing in software, most of
researchers developed various and diverse
alternatives to prevent its occurrences. Most often
the researchers proposed software rejuvenation
process as a prevention action to delay the ageing
process in software. The techniques used to
perform software rejuvenation are many and
diverse as researchers are trying to improve and
produce best solution and strategies to fit with the
current demands in technology. In particular, we
could see the trend by applying mathematical and
analytical measures to address software ageing.
However, there are still lack of approaches that
address software ageing from the viewpoint of
external software and hardware environment and
technological challenges as many of the existing
studies focus on tackling software ageing by means
of internal factors of ageing. Thus, we could see a
huge gap of research on the proposed approach for
anti software ageing. On the other hand, few
suggested mitigation model, which uses risk
management and mitigation activities, only
addresses risks during software development
process, before implementing the software to
market. Only one study proposes mitigation model
after the software has been implemented. However,
it only addresses risks from internal factors of
software.
 Moreover, we can see current state of
studies addressing and discussing technical risks
are huge compared to another type of risks. Studies
that discussed on all of the risks however are still
scarce. Thus, this creates a gap in the study on the
risks associated with software ageing as studies
addressing and discussing risks from external point
of view such as business and organizational risks
are also has been paid a little attention. Future
works on this area could consider devoting effort
on external risks viewpoint or combination of both
internal and external risks prospect for effective
risk mitigation to slow down impact of risks to
failure leading to software ageing phenomenon.
 Therefore, from the review, we could
summarize the gap in the literature study by each
research questions, hence includes (1) more studies
are focused to ageing mitigation rather than ageing
detection analysis and combination of both studies,
(2) huge gap on the analyses performed in prior
work to forecast and detect software ageing
phenomenon as most past researchers frequently
employed measurement-based analysis compared to
model-based and hybrid analysis, (3) numerous
studies proposed software rejuvenation as
prevention action to delay ageing phenomenon, and

Journal of Theoretical and Applied Information Technology
31st July 2019. Vol.97. No 14

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

3925

(4) minimal attention has been given to business
and operational risks (external prospect) as majority
past studies discussed on addressing technical risks
(internal prospect).

 In conclusion from the obtained findings,
it provide strong evidence to encourage further
development of new methodology to perform
integrated and step-wise risk mitigation
technique/approach to ensure the sustainability and
survivability of software. New development of
mitigation approach might help to improve the
ability of existing mitigation approach to cope with
current technological demands. Further research
direction in this field may build a new in-depth
model/framework using integrated risk mitigation
activities to address risks from external factors
point of view to achieve anti software ageing,
different from most of past researchers had
suggested and modeled, especially during software
maintenance phase. Perhaps it is time for
researchers to move their aim and goals in
sustaining software life cycle from internal
mitigation outlook to a whole nature of the software
system that includes external prospect mitigation.

ACKNOWLEDGEMENT

This work was supported by Malaysian Ministry of
Education under Putra Graduate Initiative Grant,
Universiti Putra Malaysia (GP-IPS/2018/9644600).

REFRENCES:

[1] Li, L., Vaidyanathan, K., & Trivedi, K. S.,An

approach for estimation of software aging
in a web server in Empirical Software
Engineering, Proceedings International
Sympsosium 2002, (pp. 91-100). IEEE.

[2] Abdullah, Z.H., Yahaya, J.H. and Deraman, A.,
The Anti-Ageing Factors for Evergreen
Software–a Preliminary Study Sci-Int.
Com, 2014, pp.1615-1618.

[3] Kitchenham, B., Pretorius, R., Budgen, D.,
Brereton, O.P., Turner, M., Niazi, M. and
Linkman, S., Systematic literature reviews in
software engineering–a tertiary study in
Information and software technology
52(8), 2009, pp.792-805.

[4] Umesh, I.M., Srinivasan, G.N. and Torquato,
M., Software Rejuvenation Model for Cloud
Computing Platform. International Journal of
Applied Engineering Research 12(19),
2017, pp.8332-8337.

[5] Abidin, Z. N. Z., Yahaya, J. H., & Deraman, A.,
Software ageing measurement model (SAMM):
The conceptual framework in Electrical
Engineering and Informatics (ICEEI), 2015
International Conference on (pp. 456-461).
IEEE.

[6] Cotroneo, D., Orlando, S., Pietrantuono, R., &
Russo, S., A measurement‐based ageing
analysis of the JVM. Software Testing,
Verification and Reliability, 23(3), 2013, 199-
239.

[7] Manel, S., Ridha, A., & Alia, M., Optimised
Migrate Virtual Machine Rejuvenation. Journal
of Computer and Communications, 3(08), 2015,
33.

[8] Cotroneo, D., Natella, R., & Pietrantuono, R.,
Predicting aging-related bugs using software
complexity metrics. Performance Evaluation,
70(3), 2013, 163-178.

[9] Shahzad, B., Al-Ohali, Y., & Abdullah, A.,
Trivial model for mitigation of risks in software
development life cycle. International Journal of
Physical Sciences, 6(8), 2011, 2072-2082.

[10] Dang, W., & Zeng, J., Optimization of Software
Rejuvenation Policy based on State-Control-
Limit.International Journal of Performability
Engineering, 14(2), 2018, 210.

[11] Ahdieh, K., Hashemitaba, N., & Ow, S. H., A
novel model for software risk mitigation plan to
improve the fault tolerance process. IJITCM:
2012, 1, 38-42.

[12] Qin, F., Zheng, Z., Qiao, Y., & Trivedi, K. S.,
Studying Aging-Related Bug Prediction Using
Cross-Project Models. IEEE Transactions on
Reliability, (99), 2018, 1-20.

[13] Fakhrolmobasheri, S., Ataie, E., & Movaghar,
A., Modeling and Evaluation of Power-Aware
Software Rejuvenation in Cloud
Systems. Algorithms, 11(10), 2018, 160.

[14] Machida, F., Xiang, J., Tadano, K., & Maeno,
Y., Lifetime Extension of Software Execution
Subject to Aging. IEEE Transactions on
Reliability, 66(1), 2017, 123-134.

[15] Zheng, J., Okamura, H., Li, L., & Dohi, T., A
Comprehensive Evaluation of Software
Rejuvenation Policies for Transaction Systems
With Markovian Arrivals. IEEE Transactions
on Reliability, 66(4), 2017, 1157-1177.

[16] Ficco, M., Pietrantuono, R., & Russo, S.,
Aging-related performance anomalies in the
apache storm stream processing system. Future
Generation Computer Systems, 2017.

Journal of Theoretical and Applied Information Technology
31st July 2019. Vol.97. No 14

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

3926

[17] de Melo, M. D. E. T., Araujo, J., Umesh, I. M.,
& Maciel, P. R. M., SWARE: An approach to
support software aging and rejuvenation
experiments. Journal on Advances in
Theoretical and Applied Informatics, 3(1),
2017, 31-38.

[18] Umesh, I. M., Srinivasan, G. N., & Torquato,
M., Software Aging Forecasting Using Time
Series Model. Indonesian Journal of Electrical
Engineering and Computer Science, 7(3), 2017,
839-845.

[19] Abdullah, Z. H., Yahaya, J. H., Mansor, Z., &
Deraman, A., Software Ageing Prevention from
Software Maintenance Perspective–A Review.
Journal of Telecommunication, Electronic and
Computer Engineering (JTEC), 9(3-4), 2017,
93-96.

[20] Mahmud, H., A Simple Software Rejuvenation
Framework Based on Model Driven
Development. UHD Journal of Science and
Technology, 1(2), 2017, 37-45.

[21] ZHAI, Y. Z., LI, Q. Y., & YOU, H. C.,
Software Health Measurement Method Based
on Aging-related Bugs. DEStech Transactions
on Computer Science and Engineering,
(cmsam), 2017. Conference*

[22] Araujo, J., Oliveira, F., Matos, R. D. S.,
Torquato, M., Ferreira, J., & Maciel, P. R. M.,
Software Aging Issues in Streaming Video
Player. JSW, 11(6), 2016, 554-568.

[23] Meng, H., Liu, J., & Hei, X, Modeling and
optimizing periodically inspected software
rejuvenation policy based on geometric
sequences. Reliability Engineering & System
Safety, 133, 2015, 184-191.

[24] Kumar, G., & Kaushik, M., Maintenance
policies for improving the availability of a
software-hardware system. In Reliability,
Maintainability and Safety (ICRMS), 2016
11th International Conference, 2016, pp. 1-5,
IEEE.

[25] Yan, Y., & Guo, P., A practice guide of
software aging prediction in a web server based
on machine learning. China Communications,
13(6), 2016, 225-235.

[26] Meng, H., Hei, X., Zhang, J., Liu, J., & Sui, L.,
Software aging and rejuvenation in a j2ee
application server. Quality and Reliability
Engineering International, 32(1), 2016, 89-97.

[27] Umesh, I. M., & Srinivasan, G. N., Optimum
Software Aging Prediction and Rejuvenation
Model for Virtualized Environment. Indonesian
Journal of Electrical Engineering and Computer
Science, 3(3), 2016 572-578.

[28] Grottke, M., Kim, D. S., Mansharamani, R.,
Nambiar, M., Natella, R., & Trivedi, K. S.,
Recovery from software failures caused by
mandelbugs. IEEE Transactions on Reliability,
65(1), 2016, 70-87.

[29] Meng, H., Hei, X., Li, Y., Du, Y., & Xie, G., A
Rejuvenation Model for Software System under
Normal Attack. In Trustcom/BigDataSE/ISPA,
1, 2015, pp. 1160-1164. IEEE. Conference*

[30] Chen, P., Qi, Y., Li, X., Hou, D., & Lyu, M. R.
T., ARF-Predictor: Effective prediction of
aging-related failure Using Entropy. IEEE
Transactions on Dependable and Secure
Computing, 15(4), 2018, 675-693.

[31] Okamura, H., & Dohi, T., Dynamic software
rejuvenation policies in a transaction-based
system under Markovian arrival processes.
Performance Evaluation, 70(3), 2013, 197-211.

[32] Grottke, M., & Schleich, B., How does testing

affect the availability of aging software
systems?. Performance Evaluation, 70(3), 2013,
179-196.

[33] Alonso, J., Matias, R., Vicente, E., Maria, A., &
Trivedi, K. S., A comparative experimental
study of software rejuvenation overhead.
Performance Evaluation, 70(3), 2013, 231-250.

[34] Langner, F., & Andrzejak, A., Detecting
software aging in a cloud computingframework
by comparing development versions. In
Integrated Network Management (IM 2013),
2013 IFIP/IEEE International Symposium,
2013, pp. 896-899. IEEE. *conference

[35] Dohi, T., Zheng, J., Okamura, H., & Trivedi, K.
S., Optimal periodic software rejuvenation
policies based on interval reliability
criteria. Reliability Engineering & System
Safety, 180, 2018, 463-475.

[36] Avritzer, A., Cole, R. G., & Weyuker, E. J.,
Methods and opportunities for rejuvenation in
aging distributed software systems. Journal of
Systems and Software, 83(9), 2010, 1568-1578.

[37] Zhao, J., Wang, Y., Ning, G., Trivedi, K. S.,
Matias Jr, R., & Cai, K. Y., A comprehensive
approach to optimal software
rejuvenation. Performance Evaluation, 70(11),
2013, 917-933

[38] Firdose, S., & Rao, L. M., 3LRM-3 Layer Risk
Mitigation Modelling of ICT Software
Development Projects. International Journal of
Electrical and Computer Engineering, 6(1),
2016, 349.

Journal of Theoretical and Applied Information Technology
31st July 2019. Vol.97. No 14

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

3927

[39] Singh, B., Sharma, K. D., & Chandra, S., A new
model for software risk management.
International Journal of Computer Technology
and Applications, 3(3), 2012, 953-956.

[40] López, C., & Salmeron, J. L., Monitoring
software maintenance project risks. Procedia
Technology, 5, 2012, 363-368.

[41] Chowdhury, A. A. M., & Arefeen, S., Software
risk management: importance and practices.
IJCIT, ISSN, 2011, 2078-5828.

[42] Elzamly, A., & Hussin, B., An Enhancement Of
Framework Software Risk Management
Methodology For Successful Software
Development. Journal of Theoretical & Applied
Information Technology, 62(2), 2014.

[43] Bruneo, D., Distefano, S., Longo, F., Puliafito,
A., & Scarpa, M., Workload-based software
rejuvenation in cloud systems. IEEE
Transactions on Computers, 62(6),2013,1072-
1085.

[44] Ning, G., Zhao, J., Lou, Y., Alonso, J., Matias,
R., Trivedi, K. S., ... & Cai, K. Y., Optimization
of two-granularity software rejuvenation policy
based on the Markov regenerative
process. IEEE Transactions on
Reliability, 65(4), 2016, 1630-1646.

[45] Machida, F., & Miyoshi, N., Analysis of an
optimal stopping problem for software
rejuvenation in a deteriorating job processing
system. Reliability Engineering & System
Safety, 168, 2017, 128-135.

[46] Salfner, F., & Wolter, K., Analysis of service
availability for time-triggered rejuvenation
 policies. Journal of Systems and
Software, 83(9), 2010, 1579-1590.

[47] Kulkarni, P., Software Rejuvenation and
Workload Distribution in Virtualized System.

 International Journal of Innovative Research in
Computer and Communication
Engineering, 3(6), 2015, 5966-5973.

[48] Prabha, S., & Ujjawal, R. L., Software Risk
Evaluation and Assessment using Hybrid
Approach. Proceedings published in
International Journal of Computer Applications,
2011.

[49] Meng, H., Wang, Y., Wang, H., Wang, F., &
Liu, J., Optimal control method for runtime
system maintenance. In Control And Decision
Conference (CCDC), 2017 29th Chinese (pp.
3272-3275). IEEE.

[50] Bombardieri, M., & Fontana, F. A., Software
aging assessment through a specialization of the
SQuaRE quality model. Software Quality, 2009.

WOSQ'09. ICSE Workshop, 2009 pp. 33-38.
IEEE.

[51] Matias, R., Beicker, I., Leitão, B., & Maciel, P.
R., Measuring software aging effects through
OS kernel instrumentation. In Software Aging
and Rejuvenation (WoSAR), 2010 IEEE
Second International Workshop, 2010, pp. 1-6.
IEEE.

[52] Macêdo, A., Ferreira, T. B., & Matias, R., The
mechanics of memory-related software aging.
In Software Aging and Rejuvenation (WoSAR),
2010 IEEE Second International Workshop,
2010 pp. 1-5. IEEE.

[53] Cotroneo, D., Natella, R., Pietrantuono, R., &
Russo, S., Software aging analysis of the Linux
operating system. In Software Reliability
Engineering (ISSRE), 2010 IEEE 21st
International Symposium, 2010, pp. 71-80.
IEEE.

[54] Zheng, P., Xu, Q., & Qi, Y., An advanced
methodology for measuring and characterizing
software aging. In Software Reliability
Engineering Workshops (ISSREW), 2012 IEEE
23rd International Symposium, 2012, pp. 253-
258. IEEE.

[55] Araujo, J., Matos, R., Maciel, P., Matias, R., &
Beicker, I., Experimental evaluation of software
aging effects on the eucalyptus cloud computing
infrastructure. In Proceedings of the
Middleware 2011 Industry Track Workshop,
2011, p. 4. ACM.

[56] Rahme, J., & Xu, H., Preventive maintenance
for cloud-based software systems subject to
non-constant failure rates. In 2017 IEEE
SmartWorld, Ubiquitous Intelligence &
Computing, Advanced & Trusted Computed,
Scalable Computing & Communications, Cloud
& Big Data Computing, Internet of People and
Smart City Innovation
(SmartWorld/SCALCOM/UIC/ATC/CBDCom/
IOP/SCI), 2017, pp. 1-6. IEEE.

[57] Yahaya, J. H., Abidin, Z. N. Z., Ali, N. M., &
Deraman, A., Software ageing measurement
and classification using Goal Question Metric
(GQM) approach. In Science and Information
Conference (SAI), 2013, pp. 160-165.

[58] Fang, Y., Yin, B. B., Ning, G., Zheng, Z., &
Cai, K. Y., A Rejuvenation Strategy of Two-
Granularity Software Based on Adaptive
Control. In Dependable Computing (PRDC),
2017 IEEE 22nd Pacific Rim International
Symposium, 2017, pp. 104-109. IEEE.

[59] Liu, J., Zhou, J., & Buyya, R., Software
rejuvenation based fault tolerance scheme for

Journal of Theoretical and Applied Information Technology
31st July 2019. Vol.97. No 14

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

3928

cloud applications. In Cloud Computing
(CLOUD), 2015 IEEE 8th International
Conference, 2015, pp. 1115-1118. IEEE.

[60] Yahaya, J. H., Deraman, A., & Abdullah, Z, H.,
Evergreen software preservation: The anti
ageing model. Proceedings of the International
Conference on Internet of things and Cloud
Computing, 2016, p.51. ACM.

[61] Narania, S., Eshahawi, T., Gindy, N., Tang, Y.
K., Stoyanov, S., Ridout, S., & Bailey, C., Risk
mitigation framework for a robust design
process. In Electronics System-Integration
Technology Conference, 2008. ESTC 2008. 2nd
(pp. 1075-1080). IEEE.

[62] Khatavakhotan, A. S., & Ow, S. H., An
innovative model for optimizing software risk
mitigation plan: A case study. In Modelling
Symposium (AMS), 2012 Sixth Asia, 2012 pp.
220-224. IEEE.

[63] Okamura, H., Zheng, J., & Dohi, T., Statistical
Framework on Software Aging Modeling with
Continuous-Time Hidden Markov Model. In
Reliable Distributed Systems (SRDS), 2017
IEEE 36th Symposium, 2017, pp. 114-123.
IEEE.

[64] Zhao, J. F., Modeling of Software Aging Based
on Non-stationary Time Series. In Information
System and Artificial Intelligence (ISAI), 2016
International Conference, 2016, pp. 176-180.
IEEE.

[65] Umesh, I. M., & Srinivasan, G. N., Dynamic
software aging detection-based fault tolerant
software rejuvenation model for virtualized
environment. In Proceedings of the
International Conference on Data Engineering
and Communication Technology, 2017, pp.
779-787. Springer, Singapore.

[66] Kula, R. G., German, D. M., Ishio, T., Ouni, A.,
& Inoue, K., An exploratory study on library
aging by monitoring client usage in a software
ecosystem. In Software Analysis, Evolution and
Reengineering (SANER), 2017 IEEE 24th
International Conference, 2017. pp. 407-411.
IEEE.

[67] Torquato, M., Maciel, P., Araujo, J., & Umesh,
I. M., An approach to investigate aging
symptoms and rejuvenation effectiveness on
software systems. In Information Systems and
Technologies (CISTI), 2017 12th Iberian
Conference, 2017, pp. 1-6. IEEE.

[68] Sukhwani, H., Matias Jr, R., Trivedi, K. S., &
Rindos, A., Monitoring and Mitigating Software
Aging on IBM Cloud Controller System. In
2017 IEEE International Symposium on

Software Reliability Engineering Workshops
(ISSREW), 2017, pp. 266-272. IEEE.

[69] Jiang, L., Peng, X., & Xu, G., Time and
prediction based software rejuvenation policy.
In Information Technology and Computer
Science (ITCS), 2010 Second International
Conference, 2010 pp. 114-117. IEEE

[70] Weng, C., Xiang, J., Xiong, S., Zhao, D., &
Yang, C., Analysis of Software Aging in
Android. In Software Reliability Engineering
Workshops (ISSREW), 2016 IEEE International
Symposium, 2016, pp. 78-83. IEEE.

[71] Cotroneo, D., Fucci, F., Iannillo, A. K., Natella,
R., & Pietrantuono, R., Software aging analysis
of the android mobile os. In Software
Reliability Engineering (ISSRE), 2016 IEEE
27th International Symposium on (pp. 478-489).
IEEE.

[72] Rezaei, A., & Sharifi, M., Rejuvenating high
available virtualized systems. In Availability,
Reliability, and Security, 2010. ARES'10
International Conference on (pp. 289-294).
IEEE.

[73] Wu, H., & Wolter, K., Software aging in mobile
devices: Partial computation offloading as a
solution. In Software Reliability Engineering
Workshops (ISSREW), 2015 IEEE
International Symposium on (pp. 125-131).
IEEE.

[74] Meng, H., Zhang, X., Zhu, L., Wang, L., &
Yang, Z., Optimizing software rejuvenation
policy based on CDM for cloud system.
In Industrial Electronics and Applications
(ICIEA), 2017 12th IEEE Conference on (pp.
1850-1854). IEEE.

[75] Guo, C., Wu, H., Hua, X., Lautner, D., & Ren,
S., Use two-level rejuvenation to combat
software aging and maximize average resource
performance. In High Performance Computing
and Communications (HPCC), 2015 IEEE 7th
International Symposium on Cyberspace Safety
and Security (CSS), 2015 IEEE 12th
International Conference on Embedded
Software and Systems (ICESS), 2015 IEEE
17th International Conference on (pp. 1160-
1165). IEEE.

[76] Huang, B., & Qin, Y., Software Aging Analysis
Based on Man–Machine–Environment System
Engineering. In Proceedings of the 15th
International Conference on Man–Machine–
Environment System Engineering, 2015 (pp.
681-687). Springer, Berlin, Heidelberg.

[77] Qin, F., Zheng, Z., Bai, C., Qiao, Y., Zhang, Z.,
& Chen, C., Cross-Project Aging Related Bug

Journal of Theoretical and Applied Information Technology
31st July 2019. Vol.97. No 14

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

3929

Prediction. In Software Quality, Reliability and
Security (QRS), IEEE International Conference,
2015, pp. 43-48. IEEE.

[78] Yan, Y., Guo, P., & Liu, L. (2014, November).
A practice of forecasting software aging in an
IIS web server using SVM. In Software
Reliability Engineering Workshops (ISSREW),
IEEE International Symposium, 2014, pp. 443-
448. IEEE.

[79] Mohan, B. R., & Reddy, G. R. M., Software
aging trend analysis of server virtualized
system. In Information Networking (ICOIN),
International Conference , 2014, pp. 260-263.
IEEE.

[80] Wang, Q., & Wolter, K., Detection and
Analysis of Performance Deterioration in
Mobile Offloading System. In Software
Reliability Engineering Workshops (ISSREW),
IEEE International Symposium 2014, pp. 420-
425. IEEE.

[81] Sudhakar, C., Shah, I., & Ramesh, T., Software
rejuvenation in cloud systems using neural
networks. In Parallel, Distributed and Grid
Computing (PDGC), International Conference,
2014, pp. 230-233. IEEE.

[82] Matias, R., Andrzejak, A., Machida, F., Elias,
D., & Trivedi, K., A systematic differential
analysis for fast and robust detection of
software aging. In Reliable Distributed Systems
(SRDS), IEEE 33rd International Symposium,
2014, pp. 311-320. IEEE.

[83] Zhao, J., Jin, Y., Trivedi, K. S., & Matias Jr, R.,
Injecting memory leaks to accelerate software
failures. In Software Reliability Engineering
(ISSRE), 2011 IEEE 22nd International
Symposium, 2011, pp. 260-269. IEEE.

[84] Cotroneo, D., Frattini, F., Natella, R., &
Pietrantuono, R., Performance degradation
analysis of a supercomputer. In Software
Reliability Engineering Workshops (ISSREW),
2013 IEEE International Symposium, 2013, pp.
263-268. IEEE.

[85] Machida, F., Andrzejak, A., Matias, R., &
Vicente, E., On the effectiveness of Mann-
Kendall test for detection of software aging. In
Software Reliability Engineering Workshops
(ISSREW), IEEE International Symposium,
2013, pp. 269-274. IEEE.

[86] Araujo, J., Matos, R., Maciel, P., Vieira, F.,
Matias, R., & Trivedi, K. S., Software
rejuvenation in eucalyptus cloud computing
infrastructure: A method based on time series
forecasting and multiple thresholds. In Software

Aging and Rejuvenation (WoSAR), IEEE Third
International Workshop, 2011, pp. 38-43. IEEE.

[87] Li, S., & Yong, Q., Software aging detection
based on NARX model. In Web Information
Systems and Applications Conference (WISA),
2012 Ninth (pp. 105-110). IEEE.

[88] Matos, R., Araujo, J., Alves, V., & Maciel, P.,
Experimental evaluation of software aging
effects in the eucalyptus elastic block storage.
In Systems, Man, and Cybernetics (SMC), IEEE
International Conference, 2012, pp. 1103-1108.
IEEE.

[89] Cui, L., Li, B., Li, J., Hardy, J., & Liu, L. (2012,
December). Software aging in virtualized
environments: detection and prediction. In
Parallel and Distributed Systems (ICPADS),
IEEE 18th International Conference, 2012, pp.
718-719. IEEE.

[90] Yang, T., Bao, J., & Wu, Q., Research of a
resource to influence on the software aging and
rejuvenation cycle. In Industrial Electronics and
Applications (ICIEA), 7th IEEE Conference,
2012, pp. 1349-1351. IEEE.

[91] Machida, F., Xiang, J., Tadano, K., & Maeno,
Y., Software life-extension: a new
countermeasure to software aging. In Software
Reliability Engineering (ISSRE), IEEE 23rd
International Symposium, 2012, pp. 131-140.
IEEE.

[92] Agepati, R., Gundala, N., & Amari, S. V.,
Optimal Software rejuvenation policies.
In Reliability and Maintainability Symposium
(RAMS), Proceedings-Annual, 2013, pp. 1-7.
IEEE.

[93] Araujo, J., Matos, R., Maciel, P., & Matias, R.,
Software aging issues on the eucalyptus cloud
computing infrastructure. In Systems, Man, and
Cybernetics (SMC), IEEE International
Conference, 2011, pp. 1411-1416. IEEE.

[94] Bovenzi, A., Cotroneo, D., Pietrantuono, R., &
Russo, S., Workload characterization for
software aging analysis. In Software Reliability
Engineering (ISSRE), IEEE 22nd International
Symposium, 2011, pp. 240-249. IEEE.

[95] Jun, G., Bo, W., Yunsheng, W., Bin, Z., &
Jiaojiao, W., Research of the software aging
regeneration strategy based on components. In
Proceedings of the 2011, International
Conference on Informatics, Cybernetics, and
Computer Engineering (ICCE2011) November
19–20, 2011, Melbourne, Australia, pp. 601-
608. Springer, Berlin, Heidelberg.

[96] Okamura, H., & Dohi, T., Optimization of
opportunity-based software rejuvenation policy.

Journal of Theoretical and Applied Information Technology
31st July 2019. Vol.97. No 14

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

3930

IEEE 23rd International Symposium on
Software Reliability Engineering Workshops
(ISSREW), 2012, pp. 283-286. IEEE.

[97] Abdullah, Z. H., Yahaya, J., & Deraman, A.,
Towards anti-Ageing model for the evergreen
software system. In Electrical Engineering and
Informatics (ICEEI), International Conference,
2015, pp. 388-393. IEEE.

[98] Alonso, J., Goiri, Í., Guitart, J., Gavalda, R., &
Torres, J., Optimal resource allocation in a
virtualized software aging platform with
software rejuvenation. In Software Reliability
Engineering (ISSRE), IEEE 22nd International
Symposium, 2011, pp. 250-259. IEEE.

[99] Lahon, M., & Sharma, U., Risk assessment and

mitigation approach for architecture evaluation
in component based software development. In
Computing for Sustainable Global Development
(INDIACom),3rd International Conference,
2016, pp. 2801-2804. IEEE.

[100] Kumar, L., & Sureka, A., Feature Selection
Techniques to Counter Class Imbalance
Problem for Aging Related Bug Prediction:
Aging Related Bug Prediction. In Proceedings
of the 11th Innovations in Software Engineering
Conference, 2018, p. 2. ACM.

[101] Li, J., Qi, Y., & Cai, L., A Hybrid Approach
for Predicting Aging-Related Failures of
Software Systems. In Service-Oriented System
Engineering (SOSE), IEEE Symposium, 2018,
pp. 96-105. IEEE.

[102] Qiao, Y., Zheng, Z., & Fang, Y., An empirical
study on software aging indicators prediction in
Android mobile. In IEEE International
Symposium on Software Reliability
Engineering Workshops (ISSREW), 2018, pp.
271-277. IEEE.

[103]Xiang, J., Weng, C., Zhao, D., Tian, J., Xiong,
S., Li, L., & Andrzejakb, A., A New Software
Rejuvenation Model for Android. In IEEE
International Symposium on Software
Reliability Engineering Workshops (ISSREW),
2018, pp. 293-299. IEEE.

[104] Abidin, Z. N. Z., Yahaya, J. H., Deraman, A.,
& Abdullah, Z. H., Rejuvenation Action Model
for Application Software. In 2018 6th
International Conference on Information and
Communication Technology (ICoICT),
2018, pp. 38-43. IEEE.

[105] Jia, S., Hou, C., & Wang, J., Software aging
analysis and prediction in a web server based on
multiple linear regression algorithm.

In Communication Software and Networks
(ICCSN), IEEE 9th International Conference,
2017, pp. 1452-1456. IEEE.

[106] Huo, S., Zhao, D., Liu, X., Xiang, J., Zhong,
Y., & Yu, H., Using machine learning for
software aging detection in Android system.
In Advanced Computational Intelligence
(ICACI), Tenth International Conference, 2018,
pp. 741-746. IEEE.

[107]Alonso, J., Belanche Muñoz, L. A., &
Avresky, D., Predicting software anomalies
using machine learning techniques. In 2011
IEEE International symposium on network
computing and applications, NCA 2011: 25-27
August 2011, Cambridge, Massachusetts, US:
proceedings (pp. 163-170). IEEE Computer
Society Publications.

[108] Du, X., Qi, Y., Lu, H., & He, X., A method for
software aging state evaluation. In Advanced
Information Management and Service (IMS),
6th International Conference, 2010, pp. 48-53.
IEEE.

Journal of Theoretical and Applied Information Technology
31st July 2019. Vol.97. No 14

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

3931

APPENDIX

Table 4.2A Summarization of analysis, approach and ageing indicator used
References Title Type of Analysis Approach Ageing indicator
[4] Software Rejuvenation Model

for Cloud Computing Platform
+SR

Measurement-based Time series Memory consumption

[5] Software ageing measurement
model (SAMM): The conceptual
framework.

Model-based Measuring software
health level

-

[6] A measurement‐based ageing
analysis of the JVM + SR

Measurement-based Linear regression,
time-series

Throughput loss,
Memory depletion

[8] Predicting aging-related bugs
using software complexity
metrics

Measurement-based Machine learning
algorithms

Performance
measuring

[12] Studying Aging-related bugs
prediction using cross-project
models

Measurement-based Machine learning Not specified aging
related bugs

[16] Aging-related performance
anomalies in the apache storm
stream processing system + SR

Measurement-based Time series Perceived
performance
Resource depletion;
memory consumption

[18] Software Aging Forecasting
Using Time Series Model

Measurement-based Time-series CPU usage,
Memory availability

[21] Software Health Measurement
Method Based on Aging-related
Bugs

Model-based The Gaussian
Mixture Model

Memory availability

[22] Software Aging Issues in
Streaming Video Play
+ SR

Hybrid Time-
series+Markov
model

Resource usage

[25] A practice guide of software
aging prediction in a web server
based on machine learning

Measurement-based Machine learning Memory related

[26] Software aging and rejuvenation
in a j2ee application server
+SR

Measurement-based Accelerated aging
test

Resource usage:
Memory usage
CPU utilization

[27] Optimum Software Aging
Prediction and Rejuvenation
Model for Virtualized
Environment
+SR

Measurement-based Machine learning,

Resource usage:
Memory usage
CPU utilization

[30] ARF-Predictor: Effective
prediction of aging-related
failure Using Entropy

Measurement-based Time series,
threshold

Performance metrics

[32] How does testing affect the
availability of aging software
systems? +SR

Model-based Semi-markov model

[34] Detecting software aging in a
cloud computing framework by
comparing development version

Others Comparison,
exploits differences
between software
version

Memory leak and
depletion

[50] Software aging assessment
through a specialization of the
SQuaRE quality mode

Model-based Square quality
model

[51] Measuring software aging effects
through OS kernel
instrumentation

Measurement-based OS Kernel
Instrumentation
Techniques

Memory leaking,
fragmentation

[52] The mechanics of memory-
related software aging

Measurement-based Time series
Trend estimation

Memory leak,
Memory
fragmentation

Journal of Theoretical and Applied Information Technology
31st July 2019. Vol.97. No 14

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

3932

[53] Software aging analysis of the
Linux operating system

Measurement-based Time series
Trend analysis
Workload
controlled

Memory
consumption,
System call latency

[54] An advanced methodology for
measuring and characterizing
software aging

Measurement-based Time series Memory consumption

[55] Experimental evaluation of
software aging effects on the
eucalyptus cloud computing
infrastructure
+SR

Measurement Regression based Memory leak,
Memory
fragmentation

[57] Software ageing measurement
and classification using Goal
Question Metric (GQM)
approach

Model-based Ageing index

[63] A Statistical Framework on
Software Aging Modeling with
Continuous-Time Hidden
Markov Model

Hybrid Continuous-time
hidden Markov
Model (CTHMM)

Memory usage,
response time

[64] Modeling of Software Aging
Based on Non-stationary Time
Series

Measurement-based Time Series Resource usage:
CPU usage
Memory consumption

[65] Dynamic software aging
detection-based fault tolerant
software rejuvenation model for
virtualized environment
+SR

Measurement-based Robust local
regression algorithm

Resource usage:
CPU load
Memory consumption

[66] An exploratory study on library
aging by monitoring client usage
in a software ecosystem

Model-based Typical polynomial
mathematical model

Dependability
attributes: Reliability

[70] Analysis of Software Aging in
Android +SR

Hybrid Memory availability
as parameter to
parametrize Markov
model

Memory availability

[71] Software aging analysis of the
android mobile OS +SR

Measurement-based Time series Resource
consumption;
Memory usage
Storage usage
Tasks performed
Garbage collector

[77] Cross-Project Aging Related
Bug Prediction

Measurement-based Machine learning Software complexity
metrics

[78] A practice of forecasting
software aging in an IIS web
server using SVM

Measurement-based Time series:
Linear regression

Resource
consumption;
Memory

[79] Software aging trend analysis of
server virtualized system

Measurement-based Time series;
Linear regression

Resource usage
Performance
measuring

[80] Detection and Analysis of
Performance Deterioration in
Mobile Offloading System
+SR

Measurement-based Others Performance
deterioration

[82] A systematic differential analysis
for fast and robust detection of
software aging

Measurement-based Time series Memory leak

[83] Injecting memory leaks to
accelerate software failures

Model-based Semi-Markov Memory leak

Journal of Theoretical and Applied Information Technology
31st July 2019. Vol.97. No 14

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

3933

[84] Performance degradation
analysis of a supercomputer

Measurement-based Time series
Mann Kendall test

Performance
measuring

[85] On the effectiveness of Mann-
Kendall test for detection of
software aging

Measurement-based Time series
Mann Kendal test

Memory leak

[86] Software rejuvenation in
eucalyptus cloud computing
infrastructure: A method based
on time series forecasting and
multiple thresholds.

Measurement-based Time series Resource utilization

[87] Software aging detection based
on NARX model

Measurement-based Machine learning
Non linear
regression

Multiple variables

[88] Experimental evaluation of
software aging effects in the
eucalyptus elastic block storage

Measurement-based Time series Resource utilization

[89] Software aging in virtualized
environments: detection and
prediction

Measurement-based Time series
Trend analysis

Resource usage

[93] Software aging issues on the
eucalyptus cloud computing
infrastructure

Measurement-based Time series Resource usage:
CPU
Memory
Disk Space

[94] Workload characterization for
software aging analysis

Measurement-based Workload-
dependent analysis
Time series;
Mann Kendall test

Memory depletion
Throughput loss

[100] Feature Selection Techniques to
Counter Class Imbalance
Problem for Aging Related Bug
Prediction: Aging Related Bug
Prediction

Measurement-based Machine learning Performance
Aging related bugs

[101]

A Hybrid Approach for
Predicting Aging-Related
Failures of Software Systems

Hybrid Threshold.
Construct a baseline
failure model with
Weibull
distribution, and use
runtime
performance metrics
as covariates

System resource
Response time

[102] An empirical study on software
aging indicators prediction in
Android mobile

Measurement based Time series Memory related

[105] Software aging analysis and
prediction in a web server based
on multiple linear regression
algorithm

Measurement-based Machine learning
algorithm

Response time
Memory utilization
CPU utilization

[106] Using machine learning for
software aging detection in
Android system

Measurement-based Machine learning Page fault

[107] Predicting software anomalies
using machine learning
techniques

Measurement-based Machine learning Resource
consumption

[108] A method for software aging
state evaluation

Measurement-based Time series
Linear regression

Resource
consumption

Journal of Theoretical and Applied Information Technology
31st July 2019. Vol.97. No 14

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

3934

Table 9 Summarization of RQ1-RQ4

References RQ1 RQ2 RQ3 RQ4 Year
[2] M - MA All 2014
[4] C ME SReju T 2017
[5] D MO - All 2015
[6] C ME SReju T 2013
[7] M - SReju T 2015
[8] D ME - T 2013
[9] M - Model All 2011

[10] M - SReju T 2018
[11] D - Model T 2012
[12] D ME - T 2018
[13] M - SReju T 2018
[14] M - SLE T 2017
[15] M - SReju T 2017
[16] C ME SReju T 2017
[17] M - SReju T 2017
[18] D ME - T 2017
[19] M - MA All 2017
[20] M - SReju All 2017
[21] D MO - T 2017
[22] C Hyb SReju T 2016
[23] M - SReju T 2015
[24] M - MA T,O 2016
[25] D ME - T 2016
[26] C ME SReju T 2016
[27] C ME SReju T 2016
[28] M - RA T 2016
[29] M - SReju T 2015
[30] D ME - T 2018
[31] M - SReju T 2013
[32] C MO SReju T 2013
[33] M - SReju T 2013
[34] D Others - T 2013
[35] M - SReju T 2018
[36] M - SReju T 2010
[37] M - SReju T 2013
[38] M - Model O,B 2016
[39] M - Model T,B 2012
[40] M - Model All 2012
[41] M - Model All 2011
[42] M - Model Not specified 2014
[43] M - SReju T 2013
[44] M - SReju T 2016
[45] M - SReju T 2017
[46] M - SReju T 2010
[47] M - SReju T 2015
[48] M - Model T,B 2011
[49] M - SReju T 2017
[50] D MO - All 2009
[51] D ME - T 2010

Journal of Theoretical and Applied Information Technology
31st July 2019. Vol.97. No 14

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

3935

[52] D ME - T 2010
[53] D ME - T 2010
[54] D ME - T 2012
[55] C ME SReju T 2011
[56] M - SReju T 2017
[57] D MO - All 2013
[58] M - SReju T 2017
[59] M - SReju T 2015
[60] M - MA All 2016
[61] M - Model B 2008
[62] M - Model T,B 2012
[63] D Hyb - T 2017
[64] D ME - T 2016
[65] C ME SReju T 2017
[66] D MO - T 2017
[67] M - SReju T 2017
[68] M - MA T 2017
[69] M - SReju T 2010
[70] C Hyb SReju T 2016
[71] C ME SReju T 2016
[72] M - SReju T 2010
[73] M - PCO T 2015
[74] M - SReju T 2017
[75] M - SReju T 2015
[76] M - SReju T 2015
[77] D ME - T 2015
[78] D ME - T 2014
[79] D ME - T 2014
[80] C ME SReju T 2014
[81] M - SReju T 2014
[82] D ME - T 2014
[83] C MO SReju T 2011
[84] D ME - T 2013
[85] D ME - T 2013
[86] C ME SReju T 2011
[87] D ME - T 2012
[88] D ME - T 2012
[89] C ME SReju T 2012
[90] M - SReju T 2012
[91] M - SLE T 2012
[92] M - SReju T 2013
[93] D ME - T 2011
[94] D ME - T 2011
[95] M - SRS T 2011
[96] M - SReju T 2012
[97] M - MA All 2015
[98] M - SReju T 2011
[99] M - Model T,B 2016
[100] D ME - T 2018
[101] D Hyb - T 2018
[102] D ME - T 2018

Journal of Theoretical and Applied Information Technology
31st July 2019. Vol.97. No 14

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

3936

[103] M - SReju T 2018
[104] M - SReju All 2018
[105] D ME - T 2017
[106] D ME - T 2018
[107] D ME - T 2018
[108] D ME - T 2018

Footnotes: M-Mitigation, D-Detection; ME-Measurement-based, MO-Model-based;
SReju-Software Rejuvenation, MA-Maintenance Activities, SLE-Software Life Extension, SRS-Software
Regeneration Strategies, PCO-Partial Computation Offloading, RA-Recovery Actions;
T-Technical Risk, B-Business Risk, O-Organizational Risk

