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ABSTRACT 

This paper deals with the derivation of a modified approach for solving initial value problems of the 
n-th order random ordinary differential equations by means of using the variational iteration method and 
numerical integration methods. In addition, the convergence of the obtained sequence of approximate 
solutions to the exact solution has been proved. Also, some illustrative examples are presented as a 
numerical simulation in order to illustrate the accuracy and applicability of the proposed approach. 
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1. INTRODUCTION  

Random ordinary differential equations 
(RODEs) are considered to be an ordinary 
differential equation (ODE) that includes a 
stochastic process in their vector field. They seem 
to have a shadow existence as a shadow of 
stochastic ordinary differential equations (SODEs) 
with Itô process, which have so many well-known 
real life applications. In particular, RODEs play a 
fundamental role in the theory of random 
dynamical systems and/or modern control theory, 
[1,2].  

Random ordinary differential equations, unlike 
SODEs, can be analyzed path wise with 
deterministic calculus, which require further 
analytical treatments beyond that of classical theory 
of ODEs, [3]. Specifically, since the deriving 
process in a RODE has at most Hölder continuous 
sample path, then the solution as a sample path is 
continuously differentiable, but the sample path of 
the derivative is no more than Hölder continuous in 
time, [4]. The obtained vector field resulting after 
introducing the deriving stochastic process is at 
most of Hölder continuous in time, and no matter 
how smooth the vector field is in its original 
variables. Therefore, the RODE solutions do not 
have sufficient smoothness and after that to have in 
the usual sense Taylor expansions.  

In older mathematical physics and engineering 
literatures, simple kinds of RODEs are investigated 
with the vector field being chosen depending on 
random variables rather than depending on 
stochastic processes. Such RODEs are still of great 
importance in the uncertainty qualification 
community, which are a special case of stochastic 
models and considered by Xiaoying Han and Peter 
E. Kloden, and will not be treated separately, [4]. 
So many applications of real life problems in 
biology, physics and engineering involving rate of 
change that depends on the interaction of the basic 
particles, changes, populations, etc. in addition to 
the stochastic or random effects, which will 
produce models that formulated as RODEs, such 
that the solution of the differential equation which 
are measured experimentally are in fact not 
predicted, [3]. 

Also, we may note that, there is a great amount 
of articles concerned with SDEs that appeared in 
recent years, such as [5-9]. Furthermore, since 
many SDEs have no explicit known analytical 
solution, so it is necessary to derive numerical 
methods to numerical approximations of the exact 
solutions. Cortés J. C. et al. in 2007 [10] proposed a 
numerical solution approach based on the 
difference scheme Euler’s method problems and 
then they propose in 2011 [11] an improved Euler’s 
method to solve such type of equations. Khudair A. 
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R. et al. in 2011 [12, 13] used the Adomian 
decomposition method and variational iteration 
method (VIM) to solve certain types of second 
order RODEs. In 2013, Farnaoosh R. et al. [14] 
present the numerical solution of ODEs with 
Gaussian random coefficients and time-varying 
using Euler-Maruyama and Milston methods. 
Runge-Kutta method had been used by Nouri K. 
and Ranjbar H. in 2015 [15] to find the numerical 
solution of initial value problems of RODEs. The 
mean and variance of the approximate solutions of 
the second-order RODEs using homotopy analysis 
method have been proposed by Khudair A. R. et al. 
in 2016 [16]. Tchier F. et al. in 2017 [17] study a 
family of RDEs with boundary conditions using 
random fixed point theorem. 

Consequently to the above discussion, closed 
form solution of RODEs seems to be very difficult 
to evaluate and hence an accurate and reliable 
numerical and/or approximate methods are 
necessary to solve such type of problems. Thus, in 
this paper, one of the well-known approximate-
numerical methods will be used to solve RODEs by 
introducing a modified approach which consists of 
combining the VIM and numerical integration 
methods to approximate the integral of the 
correction functional. This approach will treat the 
difficulties that arise upon using the Wiener process 
related to the integral operator appeared in the 
VIM. 

2. PRELIMINARIES 

In this section and for completeness purpose, 
some fundamental and basic concepts related to the 
present work of this paper are presented, where 
more elementary concepts will not be given. As a 
notation, we will consider (,F,P) as the 
probability space, which comprises the sample 
space , a -algebra F of subsets of  (called 
events) and a probability measure P on F.  

We start with the following basic definitions: 
 

Definition 1 [1, 8]: 

“A random variable is a real valued function 
X(),   , which is measurable with respect to 
the probability measure P”. 

 

Definition 2 [2]: 

“A stochastic process is a family of random 
variables Xt() (or briefly Xt) of two variables. Let 
t  [t0, T]  [0,),    on a common probability 

space (,F,P), which assumes real values and is P 
measurable as a function of ω for each fixed t. The 
parameter t is interpreted as time. Xt(.) represents a 
random variable on the above probability space , 
while X.() is called a sample path or trajectory of 
the stochastic process”. 

 

Definition 3 [18]: 

“A stochastic process Wt, for all t  [0,), is 
said to be a Wiener process or Brownian motion, 
if”: 

1. P({ω  Ω | W0(ω)  0})  1. 

2. For 0 < t0 < t1 < … < tn, the increments 

1 0t tW W , 
2 1t tW W …, 

1n nt tW W


  are 

independent. 

3. For an arbitrary t and h > 0, Wt+h  Wt has a 
Normal distribution with mean 0 and variance h. 

 

For the probability space (,F,P) suppose that 

 : [0,T]  m�  be an m� -valued stochastic 
process with continuous sample paths. Also, let  

f : d�  m�   d�  be a continuous function, 
then a random ordinary differential equation 

(RODE) in d�  may be defined as [4]: 

dx

dt
  f(x,Wt()), x  d�  

which may be written as a non-autonomous 
ordinary differential equation (ODE): 

dx

dt
  F(t,x) 

for almost every realization random event   . 

For convenience, it will be assumed that the 
above RODE holds for all   , by restricting  
to a subset of full probability if necessary and that f 
is often infinitely continuously differentiable 
function with respect to its variables, although m-
times continuously differentiable with m 
sufficiently large would suffice. In particular, f is 
then locally Lipschitz in x, so the initial value 
problem: 

dx

dt
  g(x(t,),Wt()), x(0,)  x0() 

where the initial value x0 is an d� -valued random 
variable that has a unique pathwise solution x(t,) 
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for every   , which will be assumed to exist on 
the finite time interval [0,T] under consideration. 

Now, the more general form of the RODE that 
will be considered and solved in this work will be 
taken to be of the form: 

x(n)(t;)  f(t,x(t;),x(t;),…,x(n1)(t;)) …(1) 

with initial conditions: 

x(t0;)x0, x(t0;) 0x , …, x(n1)(t0;) 1
0
nx 

 …(2) 

where t  [t0,T], t0, T  �  and x(t;) is a random 
process. 

“Sufficient conditions that guarantee the 
existence and uniqueness of such solution are 
similar to those for ODEs. The situation is more 
complicated when the sample paths of the deriving 
noise Wt are only measurable in t, because the 
function F(t,x) is only measurable in t and the 
existence and uniqueness of solutions must now be 
understood in the sense of Carathéodory. The 
solution of the RODE (1) is a stochastic process xt 
on the interval [0,T] and its sample paths t   
xt() are continuously differentiable, but need not 
to be further differentiable of higher order, since the 
vector field F(t,x) of the non-autonomous RODE 
is usually only at most continuous, but not 
differentiable in t, no matter how smooth the 
function f is in its variables”. 

 

Definition 4 [8]: 

“A sequence of random variables {xn(ω)}, n  
�  is said to be converges with probability one 
(denoted by P-w.p.1 or w.p.1) to x(ω) if”: 

p({ω   : lim
n

xn(ω)  x(ω)})  1  

which is also called almost sure convergence (for 
short a.s.). 

Definition (1.8), [8]: 

“A sequence of random variables {xn(ω)}, n  
� , converges in probability to x(ω), if”: 

lim
n

p({ω : |xn(ω)  x(ω)|  })  0,   > 0 

 

As it is mentioned above, the approximated 
iterative method that will be used to solve problem 
(1)-(2) is the VIM, which has the basic idea of 
considering the following general non-linear 
equation given in operator form [19], [20-25]: 

L(x(t)) + N(x(t))  g(t), t  [t0, T] …(3) 

where L is a linear operator, N is a nonlinear 
operator and g is any given function which is called 
the non-homogeneous term. Now, rewrite equation 
(3) as follows: 

L(x(t)) + N(x(t))  g(t)  0 …(4) 

and let xm be the m-th approximate solution of 
equation (4), then it follows that: 

L(xm(t)) + N(xm(t))  g(t)  0 …(5) 

The correction functional for (3) is then given by: 

xm+1(t)  xm(t) + 
0

( , ) ( ( ))t
mt

s t L x s   

( ( )) ( )mN x s g s ds  …(6) 

where  is called the general Lagrange multiplier, 
which can be identified optimally through 
variational theory, the subscript m denoted the m-th 
approximation of the solution x and mx  is 

considered as a restricted variation, i.e., 0mx  , 

where  refers to the variation, [21-24, 26]. 

Now, in order to solve equation (6) by means 
of the VIM, the Lagrange multiplier  must first be 
determined, which may be identified via integration 
by parts. Then the successive approximations xm, 
for all m  0, 1, …, of the exact solution x will be 
obtained readily upon applying equation (6) with 
the a pre-evaluated Lagrange multiplier and starting 
with any selected function x0 as the initial guess 
solution that satisfies the initial and/or boundary 
conditions. Then several approximations xm, for all 
m  0, 1, … will follows immediately and 
consequently the exact solution may be arrived 
since for the VIM we can prove that: 

( ) lim ( )m
m

x t x t


  …(7) 

3. VARIATIONAL ITERATION METHOD 
FOR SOLVING RODEs 

The VIM may be modified and improved to 
solve the RODE (1) with initial conditions (2). For 
this purpose, rewrite the RODE (1) in an operator 
form as: 

L(x(t;)) + N(x(t;))  g(t;), t  [t0, T] …(8) 

where L is a linear operator, N is a nonlinear 
operator, g is a known analytic function and x is the 
unknown function to be determined and hence the 
sequence of approximate solutions using the VIM 
will take the form: 
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xm+1(t;)  xm(t;) + 
0

( , ) ( ( ; ))t
mt

s t L x s  
 

( ( ; )) ( ; )mN x s g s ds    …(9) 

It is notable that the Wiener appeared in (9) 
implies that the integral operator will be difficult to 
evaluate, and therefore integration formulas may be 
used as it is seen in the next section. Application of 
the VIM for the RODE (1) may be achieved and 
then the general Lagrange multiplier is derived as 
in the next theorem: 

 

Theorem 1: 

If the RODE (1) has a unique solution and 
xm(t;)  Cn[t0,T]. Then the sequence of 
approximate solutions using the VIM is given by: 

xm+1(t;)  xm(t;) + 


0

1 ( )( 1)
( ) ( ; )

( 1)!

n
t n n

mt
s t x s

n


  
 

 
( , ( ; ), ( ; ),...,m mf s x s x s   

( 1) ( ; )) dn
mx s s   …(10) 

where xm(t;) is the mth approximate solution. 

Proof: 

The proof will be achieved by using 
mathematical induction. 

Since from (1), we have: 

x(n)(t;)  f(t, x(t;), x(t;), …, x(n1)(t;)) 

which may be rewritten as: 

x(n)(t;)  f(t, x(t;), x(t;),…, x(n1)(t;))  0
 …(11) 

Multiply eq.(11) be the general Lagrange multiplier 
(s,t), yields to: 

(s,t){x(n)(t;)  f(t, x(t;), x(t;), …, 
x(n1)(t;))}  0 …(12) 

Now, integrating both sides of eq.(12) will give: 

0

t
t (s,t){x(n)(s;)  f(s, x(s;), x(s;), …, 

x(n1)(s;))} ds  0 …(13) 

then, the correction functional for eq.(1) will reads 
as follows: 

xm+1(t;)  xm(t;) + 
0

( )( , ) ( ; )t n
mt

s t x s  
 

( , ( ; ), ( ; ),...,m mf s x s x s   

( 1) ( ; )) dn
mx s s   …(14) 

In this case, the value of  cannot be evaluated 
easily from eq.(14), which will give a nonlinear 
functional. Therefore, the approximation of the 
correction function can be expressed in terms of the 
restricted variation ( ; )mx t   as follows: 

xm+1(t;)  xm(t;) + 
0

( )( , ) ( ; )
t n

mt
s t x s  

 
( , ( ; ), ( ; ),...,m mf s x s x s    

( 1) ( ; )) dn
mx s s   …(15) 

Thus, by taking the first variation of eq.(15) with 
respect to the independent variable xm(t;) and 
noticing that xm(t0;)  0, yields to: 

xm+1(t;)  xm(t;) +  
0

( )( , ) ( ; )t n
mt

s t x s  
 

( , ( ; ), ( ; ),...,m mf s x s x s    

( 1) ( ; )) dn
mx s s   …(16) 

where ( ; )mx t   is considered as a restricted 

variation, which means that ( ; ) 0mx t    and 

consequently eq.(16) with n  1 will be reduced to: 

xm+1(t;)  xm(t;) + 
0

( , ) ( ; ) dt
mt

s t x s s 
 …(17) 

Hence, using the method of integration by parts on 
eq.(17) will give the following formula: 

xm+1(t;)  xm(t;) + ( , ) ( ; )m s t
s t x s      

0
( , ) ( ; ) d

t
mt

s t x s s    

and then: 

xm+1(t;)  (1 ( , )) ( ; )m s t
s t x s       

0
( , ) ( ; ) d

t
mt

s t x s s     0 

As a result, the following necessary and stationary 
conditions are obtained: 

(s, t)  0, (1 ( , ))
s t

s t     0 

which may be solved to give the Lagrange 
multiplier: 

( , ) 1
s t

s t     
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Similarly, when n  2 

xm+1(t;)  xm(t;) + 
0

( , ) ( ; ) dt
mt

s t x s s   

and also integrating by part twice, will give: 

xm+1(t;)  xm(t;) + ( , ) ( ; )m s t
s t x s 

     

( , ) ( ; )m s t
s t x s 

    + 

0
( , ) ( ; ) dt

mt
s t x s s    

  (1 ( , )) ( ; )m s t
s t x s 

    + 

( , ) ( ; )m s t
s t x s 

    + 

0
( , ) ( ; ) dt

mt
s t x s s    

and so using the ideas of the variational theory, the 
following necessary condition is obtained 

(s,t)  0 …(18) 

with natural boundary conditions: 

( , ) 0
s t

s t   , (1 ( , )) 0
s t

s t 
   …(19) 

and solving eqs.(18) and (19) will yields the 
solution as the Lagrange multiplier: 

(s, t)  s  t 

Also, if n  3, then eq.(16) will take the form: 

xm+1(t;)  xm(t;) + 
0

( , ) ( ; ) dt
mt

s t x s s   

and so integration by parts three times will implies 
to the following initial value problem: 

(s, t)  0, ( , ) 0
s t

s t   , ( , ) 0
s t

s t 
  , 

(1 ( , )) 0
s t

s t 
    

which may be solved to give the Lagrange 
multiplier: 

(s, t)  
2( )

2

s t 
 

Now, if n  4, then: 

xm+1(t;)  xm(t;) + 
0

(4)( , ) ( ; ) d
t

mt
s t x s s   

and hence upon carrying integration by parts four 
times will yields to the following initial value 
problem: 

(4)(s, t)  0, ( , ) 0
s t

s t   , ( , ) 0
s t

s t 
  , 

( , ) 0
s t

s t 
  , (1 ( , )) 0

s t
s t 

   

which may be solved also to give the Lagrange 
multiplier: 

(s, t)  
3( )

6

s t
 

By mathematical induction, the general form of 
the Lagrange multiplier related to the first variation 
given by eq.(16) will take the form: 

(s, t)  1( 1)
( ) ,

( 1)!

n
ns t n

n


 


�  …(20) 

and substituting the value of  from eq.(20) into the 
correction functional (14) will results the following 
iteration formula: 

xm+1(t;)  xm(t;) + 


0

1 ( )( 1)
( ) ( ; )

( 1)!

n
t n n

mt
s t x s

n


  
 

 
( , ( ; ), ( ; ),...,m mf s x s x s   

( 1) ( ; ) dn
mx s s       

 

The convergence of the obtained sequence of 
the obtained sequence of approximate solution may 
be proved as in the next section. 

 

4. CONVERGENCE ANALYSIS 

The VIM which provides an analytical 
approximate solution is applied to various nonlinear 
problems [21-24, 26]. In this section, we shall study 
the convergence of the approximate solutions using 
the VIM (10) to the exact solution of the RODE (1) 
using an alternative approach which is presented in 
[27], applied to the VIM (10).  

This approach is based upon rewriting the VIM 
(10) in operator form given by eq.(9) as: 

xm+1(t;)  xm(t;) + 


0

1( 1)
( ) ( ( ; ))

( 1)!

n
t n

mt
s t L x s

n


  
 

 
( ( ; )) ( ; )mN x s g s ds    …(21) 

Hence, the convergence analysis will be proceeds 
depending on Banach fixed point theorem and for 
this purpose, define the following operator: 


0

1( 1)
( ( ; ) ( ) ( ( ; ))

( 1)!

n
t n

mt
A x t s t L x s

n


    
 

 
( ( ; )) ( ; )mN x s g s ds    …(22) 
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Also, define the following new components vk(t;), 
for all k  0, 1, … 

0 0 0

1 0 0

2 0 1

1 0 1

( ; ) ( ; )

( ; ) ( ( ; )) ( ( ; ))

( ; ) ( ( ; ) ( ; ))

( ; ) ( ( ; ) ( ; ) ... ( ; ))k k

v t x t x

v t A x t A v t

v t A v t v t

v t A v t v t v t

    
          


        



 …(23) 

Hence, for the convergence of the VIM, one must 
have: 

x(t;)  lim ( ; )k
k

x t


   

 
0

( ; )k
k

v t



  

Therefore, as a result, the solution of problem (8) 
can be obtained using the following series: 

x(t;)  
0

( ; )k
k

v t



  …(24) 

The zeroth (initial) approximation v0(t;) can 
be freely chosen if it satisfies the initial and 
boundary condition of the considered problem. The 
success of the method depends on the proper 
selection of the initial approximation v0(t;). 
However, using the initial values x(k)(t;)  ck, k  0 
1, …, n  1are preferably used for the selective 
zeroth approximation v0(t;) as will be seen later, 
and for simplicity select the initial approximation 
as: 

v0(t;)  
0

( ; )
!

kk

k

c
t

k




  …(25) 

Thus, the exact solution may be approximated by 
the truncated series up to the m terms as: 

x(t;)  
0

( ; )
m

k
k

v t


  

The convergence of the VIM, according to the 
above alternative approach, when applied to 
problem (8) in which the sufficient condition of the 
method and the error estimate are presented. The 
convergence of the obtained analytical approximate 
solution of the RODE (1) given by the correction 
functional (14) may be obtained depending on the 
following theorems which are proposed in [27], but 
applied for eq.(8). 

 

Theorem 2:  

“Let A, defined in (22), be an operator from a 
Hilbert space H to H. The series solution x(t;)  

0
( ; )k

k
v t




 , defined in eq.(24) converges if there 

exists 0 <  < 1, such that:” 

“||A(v0(t;) + v1(t;) + … + vk+1(t;))||  
||A(v0(t;) + v1(t;) + … + vk(t;))||” 

that is, ||vk+1(t;)||  ||vk(t;)||, for all k  0, 1, … 
 

Theorem 3:  

“If the series solution 
0

( ; )k
k

v t



  defined by 

eq.(24) converges, then it is an exact solution of the 
nonlinear problem (8)”. 
 

Theorem 4:  

“Assume that the series solution 
0

( ; )k
k

v t



  

defined in (24) is convergent to the solution x(t;). 

If the truncated series 
0

( ; )
j

k
k

v t


  is used as an 

approximation to the solution x(t;) of problem (8), 
then the maximum error Ej(t;) is estimated as:” 

Ej(t;)  1
0

1
|| ( ; ) ||

1
j v t 

 
 

 

5. THE MODIFIED APPROACH 

As it is expected, the Wiener process appeared 
in the RODE (1) will add more difficulties to the 
simulation of the approximate solution using the 
VIM (10). To avoid this difficulty, numerical 
integration methods will be used, say trapezoidal 
rule, which is not used previously to approximate 
the integral operator appeared in the VIM (10), 
which seems to be new, up to our knowledge. This 
will yields to: 

xm+1(t;)  xm(t;) + 


0

1 ( )( 1)
( ) ( ; )

( 1)!

n
t n n

mt
s t x s

n


  
 

 
( , ( ; ), ( ; ),...,m mf s x s x s   

( 1) ( ; )) dn
mx s s   

and for simplicity of calculations, let: 
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G(s,t,xm(s;))  (s  t)n1  ( ) ( ; )n
mx s  

 
( , ( ; ), ( ; ),...,m mf s x s x s   

( 1) ( ; )n
mx s   

We get: 

xm+1(t;)  xm(t;) + 

0

( 1)
( , , ( ; ))d

( 1)!

n
t

mt
G s t x s s

n




   

and upon applying the trapezoidal rule for all ti  
(t0,T], i  1, 2, …, k, then: 

xm+1(ti;)  xm(ti;) + 
( 1)

( 1)! 2

n h

n




 

 0 0 1 1( , , ( ; )) 2 ( , , ( ; ))i m i mG t t x t G t t x t   
  

1 1... 2 ( , , ( ; ))k i m kG t t x t   
 

( , , ( ; ))k i m kG t t x t   …(26) 

where h  0T t

k


, ti  (t0,T] is the discretization 

step size and k  �  is the number of discretization 
points of the time interval [t0,T].  

The sequence of approximate-numerical 
solution (26) will justify the proposed approach 
followed in this work for solving RODEs (1). 

 

6. NUMERICAL SIMULATION 

In this section, some numerical examples will 
be simulated and solved using the above proposed 
approach, in which two examples will be 
considered, the first one for linear RODE while the 
second example for nonlinear RODE. 
 

Example 1:  

To solve the linear RODE: 

d
sin( ( ))

d t
x

x W
t
    , x(t0,)  1, t  [0,1] 

in which the exact solution for comparison purpose 
is given by [4]: 

0

0

( )( ; ) sin( ( )) d
t

t t t s
s

t

x t e e e W s       

Figure 1, presents the signal simulation of the 
discretized Brownian motion of the interval [0, 1] 

with number of discritizations k  100, so that h  
1/100. 

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
t

-0.03

-0.02

-0.01

0.00

0.01

0.02

0.03

0.04

W

 
Figure 1. The discretized Brownian bath for 100 

generation. 
 

Therefore, using the approximate numerical 
solution using the VIM given by eq.(10), one may 
get: 

xm+1(t;)  xm(t;)  0
( ; ) ( ; )t

m mx s x s    
 

sin( ( )) dsW s , t  [0,1] 

which may be simplified in connection with the 
trapezoidal rule to give for all m  0, 1, …: 

xm+1(t;)  xm(t;)  
0

( ; )dt
mx s s    

0
( ; )dt

mx s s  + 
0

sin( ( ))dt
sW s  

  xm(0;)  
0

( ; )dt
mx s s  + 

 0 1
sin ( ) 2sin ( )

2 t t
h

W W      

1
... 2sin ( ) sin ( )

k kt tW W


     

where h is the step size which is taken in this 
example with k  �  (say k  100)and hence h  
T

k
, ti  (0,1]. The simulation process with Winner 

process will yields the results presented in Table 1, 
which are given for t  0, 0.1, …, 1. In addition, 
Figure 2 provides graphical illustration for the exact 
and the first five approximate solutions. 

 

Table 1. The exact and the first five approximate solutions of example 1 using the modified VIM. 
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t 
Exact 

Solution x 
Approximate 
solution x1 

Approximate 
solution x2 

Approximate 
solution x3 

Approximate 
solution x4 

Approximate 
solution x5 

0.0 1 1 1 1 1 1 
0.1 0.90474 0.89988 0.90478 0.90451 0.90441 0.90431 
0.2 0.81885 0.80011 0.82021 0.81897 0.81913 0.81922 
0.3 0.74103 0.70021 0.74536 0.74101 0.74151 0.74164 
0.4 0.67001 0.59967 0.67947 0.66858 0.66942 0.66912 
0.5 0.60638 0.49979 0.62468 0.60372 0.60619 0.60581 
0.6 0.54861 0.39974 0.57963 0.54348 0.54873 0.54794 
0.7 0.4964 0.29973 0.54465 0.48734 0.49722 0.49569 
0.8 0.44868 0.19923 0.51908 0.43334 0.45008 0.447 
0.9 0.40537 0.0986 0.50346 0.38126 0.40806 0.40256 
1.0 0.36667 1.20215103 0.49848 0.33241 0.37312 0.36432 
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Figure 2. Comparison between the exact and the first five 

approximate solutions of example 1. 

 

Example 2:  

To solve the RODE: 

2d
sinh( ( ))

d t
x

x W
t
    , x(t0,)  1, t  [0,1] 

Therefore, using the approximate numerical 
solution using the VIM given by eq.(10), one may 
get: 

xm+1(t;)  xm(t;)  0
( ; )t

mx s  
 

2 ( ; ) sinh( ( )) dm sx s W s   , t  [0,1] 

which may be simplified in connection with the 
trapezoidal rule to give: 

xm+1(t;)  xm(t;)  
0

( ; )dt
mx s s    

2
0

( ; )dt
mx s s  + 

0
sinh( ( ))dt

sW s  

  xm(0;)  2
0

( ; )dt
mx s s  + 

 0 1
sinh ( ) 2sinh ( )

2 t t
h

W W     

1
... 2sinh ( ) sinh ( )

k kt tW W


    , 

m  0, 1, … 

where h is the step size which is taken in this 

example with k  100 and hence h  
T

k
, ti  (0,1]. 

The simulation process with Winner process will 
yields the results presented in Table 2, which are 
given for t  0, 0.1, …, 1. It may be seen that, the 
results of the approximate numerical solutions 
given in Table 2 are converge to certain solution, 
which is the exact solution, as it is seen also from 
Table 3, which give the absolute error between the 
successive approximate solutions up to the 6th 
iterative solution. Moreover, Figure 3 provides 
graphical illustration for the exact and the first four 
approximate solutions. 
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Table 2. The first six approximate solutions of example 2 using the modified VIM. 

t 
Approximate 
solution x1 

Approximate 
solution x2 

Approximate 
solution x3 

Approximate 
solution x4 

Approximate 
solution x5 

Approximate 
solution x6 

0.0 1 1 1 1 1 1 
0.1 0.89988 0.90969 0.90895 0.90888 0.90879 0.90869 
0.2 0.80011 0.83752 0.83324 0.83371 0.83376 0.83384 
0.3 0.70021 0.78131 0.76811 0.76996 0.7699 0.77004 
0.4 0.59967 0.73822 0.70946 0.71406 0.71326 0.71316 
0.5 0.49979 0.70807 0.65751 0.66764 0.66593 0.66605 
0.6 0.39974 0.68769 0.60882 0.62746 0.62392 0.62434 
0.7 0.29973 0.67538 0.56245 0.59316 0.58671 0.58773 
0.8 0.19923 0.66853 0.5167 0.56318 0.55232 0.55415 
0.9 0.0986 0.66559 0.47152 0.53775 0.52092 0.52403 
1.0 0.00152 0.66514 0.42713 0.51736 0.49291 0.4981 

 

 

Table 3. The absolute error between the successive approximate solutions of example 2. 

t |x2  x1| |x3  x2| |x4  x3| |x5  x4| |x6  x5| 
0.0 0 0 0 0 0 
0.1 0.00981 0.00074 0.00007 0.00009 0.00001 
0.2 0.03741 0.00428 0.00047 0.00005 0.00008 
0.3 0.0811 0.0132 0.00185 0.00006 0.00014 
0.4 0.13855 0.02876 0.0046 0.0008 0.0003 
0.5 0.20828 0.05056 0.01013 0.00171 0.00012 
0.6 0.28795 0.07887 0.01864 0.00354 0.00042 
0.7 0.37565 0.11293 0.03071 0.00645 0.00102 
0.8 0.4693 0.15183 0.04648 0.01086 0.00183 
0.9 0.56699 0.19407 0.06623 0.01683 0.00311 
1.0 0.66666 0.23801 0.09023 0.02445 0.00519 

 

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
t

-0.1

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

So
lu

ti
on

Approximate solution x1

Approximate solution x2

Approximate solution x3

Approximate solution x4

Approximate solution x5

Approximate solution x6

 
Figure 3. Comparison between first six approximate 

solutions of example 2. 

 

7. CONCLUSIONS AND FUTURE WORK 

The proposed approach followed in this paper 
is very efficient for solving stochastic and RODEs, 
which give reliable results for such type of 
problems consisting of Wiener process in 
comparison with the exact solution of example 1 
(test example) or the absolute error between the 
successive approximate solutions of example 2. 
This approach may be used effectively to solve 
other type of problems which are given in operator 
form, which are so difficult to handle and then 
integrated. 

In addition for future work, other numerical 
integration methods may be used instead of the 
trapezoidal rule, such as, Simpsons rule or Gauss 
quadrature integration methods. 
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