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ABSTRACT

Rényi entropy is the important concept developed by Rényi in the context of entropy theory. We study in
detail this measure of information in case of multivariate skew normal Cauchy distributions. Mixture
model of these distributions is proposed. In addition, upper and lower bounds of entropy both types
Shannon and Rényi are found on this model. Also, an asymptotic expression for Rényi entropy for a
mixture of skew distributions is given in approximation by using some inequalities, multinomial theorem
and properties of LP -spaces. Finally, we give a real data examples to illustrate the behavior of Rényi
entropy of the proposed mixture model.

Keywords: Rényi Entropy, Mixture Model, Multivariate Skew Normal Cauchy Distribution, Multinomial

Theorem, Approximate Entropy.

1. INTRODUCTION

In multivariate analysis, Azzalini A., & Dalla
Valle A. (1996) introduced the multivariate skew
normal distribution as an alternative to multivariate
normal distribution to deal with skew in the data.

Genton M., & Loperfido N. (2005) derived the
generalization of multivariate skew normal
distribution whose the probability density function
is as follows

k(y; i, 8) = 2g(y; i, - Wy — p)
where the function s satisfies 0 < Y(y) < 1 and
Y(=y) =1 —y(y), forany y € R9.

Obviously, if Y(y) = % then Y has a multivariate

y € R4

normal distribution. As a special case if we take Y
is a distribution function such as normal , Logistic,
Laplace or other distributions such that {(y) =
G(8'y) then we get on the generalized skew normal
distribution. Huang W., Su N., & Gupta A. (2013)
derived the explicit forms of moment generated
function of these multivariate skew distributions.
More recently, Kahrari et al., (2016) studied some
the main probabilistic properties of multivariate
skew normal Cauchy distribution.

Huang W., Su N., & Gupta A. (2013) derived the
explicit forms of moment generated function of
these multivariate skew distributions. More
recently, Kahrari et al., (2016) studied some the
main probabilistic properties of multivariate skew
normal Cauchy distribution. They derived simple
expression of the moments, covariance matrix and
moment generated function of this distribution. Lin
T., Lee J, & Wan H. (2007) proposed the
development of mixture of skew normal and skew
t-models. Mixture models of multivariate skew
normal and skew t-distributions were studied by
Pyne S., et al., (2009). Lee S., & McLachlan G.
(2014) provided an overview of developments of a
mixture of skew t- distributions.

On the other hand, Shanon C. E. (1948)
presented measure to quantify the uncertainty of an
event. Rényi A. (1961) generalized this measure
for probability distribution which means the
sensitive to the fine details of a density function.
Javier E., & Contreras-Reyes J. (2016) discussed
the Rényi entropy of flexible class of skew normal
distributions. Wood R., Blythe R. & Evans M.
(2017) introduced some results for the Rényi
entropy of the totally asymmetric exclusion
process. Also, they calculated explicitly Rényi
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entropy whereby the squares of configuration
probabilities are

summed. It is important to refer that the authors
Contreras-Reyes J., & Cortés D. (2016) showed the
bounds and approximation of Rényi entropy of a
class of mixture models of multivariate skew
Gaussian by using the multinomial theorem and
generalized HOlder’s inequality. In fact, there are
no analytical expressions for the Rényi entropy of
the mixture model, therefor we consider its bounds
exist. Similarity in the case of fractional relative
entropy an analytic evolution of Rényi entropy is
also impossible.

In this paper, we propose a model of mixture of
multivariate skew normal Cauchy distributions.
The explicit expression of Rényi entropy of
multivariate skew normal Cauchy distribution is
derived. By using generalized HOlder’s inequality
and some properties of multinomial theorem, we
have derived the upper and lower bounds for Rényi
entropy of mixture model. An approximate value of
these entropies can be calculated. In addition, an
asymptotic expression for Rényi entropy is given
by the approximation and by using some
inequalities and properties of LP -spaces. Finally,
we give a real data examples to illustrate the
behavior of Rényi entropy with the parameters o , €
and skewness parameter & of the proposed mixture
model.

The remainder of this paper is organized as
follows: In section 2. we begin with a preliminary
material of mixture models and the measure of
information (Rényi entropy). Section 3. provides a
description of  asymptotic expression for Rényi
entropy of multivariate skew normal Cauchy
distributions by using some methods of numerical
integration such as Monte Carlo and importance
sampling methods. By using some theorems which
related to multinomial theorem and generalized
HOlder’s inequality, in section 4. we find upper
and lower bounds and also we study an
approximate Rényi entropy for a mixture of
multivariate skew normal Cauchy distributions.
The conclusion of this paper is shown in Section 5.

2. PRELIMINARY MATERIAL

In this section, we introduce some Dbasic
definitions, notations and lemmas related to
entropy theory and mixture models of skew
distributions. ~ Multivariate  skew  normal
distribution has been proposed by Azzalini and

Capitaino (2003). We say that a random variable
Y €R has the skew generalized normal
distribution denoted by Y ~SGN(,S, 6;,8,) if
its density function is in the following the form:

8
K(y: 1S, 81, 8,) = 28(5; 1 S). G <_y>
(1+8, y2)2
()

where, §; ER, 6, =0, g and G are univariate
normal density function with mean p, variance
S and the distribution function of univariate
standard normal respectively. Also, a d-
dimensional random vector X € RY has a
multivariate skew normal-Cauchy distribution
denoted by (X ~MSNCy(wS,8)) if its
probability density function is given by
1

fa0 1,8, 8) = L2
(2m)2

(-ie-wsex-w)

exp )
z IS—1(y

.(1 + —arctan (8 S7(x u)) )

2

where, i € R4 is a location parameter , a scale

matrix S € R4 is a positive definite , a

skewness vector is &€ RY and S

1

diag(s11, S22, -+ Sad)? » S=(sij) » 1,) =1,2,....d.

The stochastic representation of
X~MSNCq(l, S, 8) can be obtained as a mixture
of multivariate skew normal
X|Y~MSN4(1, S, 8y) and half standard normal
distributions Y~HN(0,1). (see, e.g., Kahrari et
al., (2016)). The mean vector and covariance
matrix of X are derived by Kahrari et al., (2016)
and other authors in the following form:

E(X) = |J.+C838

3

Var(X) =S —c§ S 88'S

“

where, c5 = —— m(;) m(x) = G(=x0,1)
» 8T L feiss Welss 2(x0,1)

is the Mill’s ratio, g and G defined in (1). The
moment generated function of a random vector
X~MSNCq4(1, S, 8) is given by

Mx(r) = 2exp (%) (1-
K(0;0,1,8'St,8'S 8))

where, K is the distribution function
SGN(0,1, 84, §,) distribution.

of the

Definitionl. Let X be a d-dimensional random
vector which comes from an m-component
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mixtures of multivariate skew normal-Cauchy R,(X;0) =
distributions. Then the probability density Lln(E(f(X' 0))%1) ,0 < a<oo,a1
function of X~MMSNCy(l,S,§,¢€) is given by 1-«
the following form: —E (ln(f(x; 6))) a=1

©)

f(X; W, S! 8' S) = ?;1 & f(X; Hi, Sir 81)
(%)

where, € denotes the mixing probability with
g§ =0, =1 , f(xuS,6) and
f(x;11,S,6,€)  represent  respectively  the
probability density functions of an i-th
component and mixture model with parameter
vectors set (1, S, 8,€); 1w = {iy, Uy, .o\ iy} @ set
of vectors represent location parameters, S =
{S1,S2, .., S} a set of dispersion matrices and
the shape vector parameter is 6=

{81,85,...,8m}.

If x=(xq,Ky,...,Ky ) represent a set of m
latent allocations for densities of observations x
then f(x; 11, S, 8, €) = [[}Z4 f(x; WS,$s, Kj), where
PI‘(K]- = i|£) = g; then for any j-th component
density in (4) is obtained as

N d ,
Xi|(kj=1) = m+7Z]Y; ,j=12..,m,
where Z;|Y;~MSN4(0,S;,§;Y;) , Y;~HN(0,1)

2 1
. m(—),
T[Jﬁj Sjaj \ISj Sjﬁj
Equations (3-4) gives the first and second
moments for each i-th component of X
respectively.  Therefore, the mean and
covariance of X can be obtained as follow

and Cs; = i=12,..,m.

EX) =22 & (i + ¢5,5: ;)

©)

Var(X) =2Xil,&§;
- (2{21 & ((c5,5: 6; )) (2{21 & ((c5,5: 6; ))
(7

Definition 2. The Shannon entropy of a
continuous random vector X € RY  with
probability density function f(x; 8) is given by

H(X; 8) = —E(In(f(x; 8)))
(®)

Definition3. An ath-order Rényi entropy of a
continuous random vector X € RY  with
probability density function f(x; 8) is defined as

The relationship between Shannon and Rényi
entropies is obtained by the limit H(X;0) =
lirr} R(X; 0). Translation does not change the
a—

entropy H(X+ C) =H(X) + C where, C is
constant.

Proposition 1. Ifa; < a,, then Ry (X;6) =
Rq,(X;8) with equality if and only if the
distribution of X is uniformly.

Proof: Assume that o # 1, then the partial

derivative of R, (X;0) with respect to a is

given as
4 _ E((f(x;e))“'lln(f(x;e))
aa Ra(X:0) = (1-)E(f(x:6))%~1
In(E(f(x;6)*"")

(1-w)?

The second part in the right side can be written
as

In(ECE0)%1) _ B((Fx:6)% 1 In(E(£(x;6))%1))
(1-0)2 N (1-0)2E(f(x;6))%2

Therefore,

a
2 RaiO) =G | T Byt

E((F(x0)) % 1n(E(f(x;e))°‘—1))}

1 {E((f(x;e))“_lln(f(x;e))“_l)

E(f(x;6))*"1

)@ (01
-1 E<(f(x.9))°‘ ‘“(E(f<x:9>)“‘1>>

E(f(x;6)) 1

CEE

Define the probability density function g as

Loy (fesen«
g(x;0) = B0y then

P . -1 g(x;0)
- R.(X;0) = (-2 {Eg (m (f(X:G))>}

8(x;6) .
But Eg (ln (—f - e))) not negative value therefor,

. g(x;0) .
either Eg (ln (_f(x;e))>>0 then R, is a

decreasing  with

(x;8) o
Eg <ln (i;e)» =0 this implies that f=g

respect to o  or
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almost everywhere, hence by assumption o # 1
then f is only uniformly distributed.

Conversely, if f is uniform distribution then it
1
. —— ,X€EB
can be written as f(x;0) = {Vol(B) ,for
0 ,X¢&B
some measurable subset B in R" . then

R (X;0) = ﬁln(Vol(B)“‘l) = In(Vol(B)) is
not depend on the value of a.

The following proposition shows that for any
location, scale model the Rényi entropy does not
depend upon location parameter.

Proposition 2. Let f,(x; 1, S) be a location
scale probability density function with location
vector p € R4, S € R4 is dispersion matrix

1
and let X, =S 2(X—p) be a standardized
version of X. Then the Rényi entropy does not
depend on .

Proof: The probability density function f can be
written as

-1 1
£Go 1, S) = (det($)) 2 £y, (S7X — ), 0.1)
Therefore, the Rényi entropy of X appears as
Ro(X; 1, S) = In(det(S))? +
a—1
L 1n(E (f(xo; 0, 1))
= In(det(S))? + Ry (X0; 0,1)
Lemma 3. [Cover T. M. (2006)] If a random
vector X € RY (not necessary normal) has zero

mean and covariance matrix R = E(XX'), then
the following inequality is accomplished

H(X; 8) <~ In(det(2mexp(1)R))
(10)

with equality if and only if X~MN (0, S).

Proposition 4. [Kahrari et al., (2016)] If the

random vectors X ~MSNC4(0,S,8) and
Xo~N4(0,S), then
i. For every even function 9 , we

have 9(x) = 9(x,).
ii. 8X ~MSNC,(0,58'S8,V8'S ).

Lemma 5. [Bennett G. (1986)] Letay, a,, ..., a,
and Xq,X,,...,X, be two arbitrary sets of real

numbers. If @ is a positive integer then the
following equality

(2?=1 a;x;)“

= (IR a8 + I (The g an) (¢ — x& )
+Eeapg (Mhaa(ed™) (T x() =
x;*‘ki](l 1

is accomplished. The set A is defined as A =
{ki EN; O <k <o XL ki = o, Kepg = Ky =
=k, =0}

Lemma 6. [Bennett G. (1986)] Let
€1,€, ., &y =0 and ry, 15, ..., 1, = 0 be given.
Then for any real numbers p=>0and 0 < a <
p, the following inequality is holds:

L &) rllp™
1175 (i «rp_p
23D P (Thera) (F — i)
o

+n1_3(2ﬂ=1 g)%r?
(12)
1

where, [|rll, = ChoyrP)P
Proposition 7. Let X;~MN4(1,S). Then the

Rényi entropy of X, can be written in the
following form

RO((XO; W, S) =
{lln(det(Zﬂ exp(1) S)) , a=1
2 (1
1 d
Eln(det(ZT[S)) ~ 20w In(a@) 0 <a<oo,a#l
3)

Proof : firstly, assume that a = 1, then we use

1
the change of variables Z = S™2(X, — p) to have
directly that H(X,; 0) =

—E (—%ln(det(ZnS)) — %Z'Z) but z'z~N(0,1).
Therefore, H(Xy;0) = G ln(det(ZnS)) - %)

If a # 1 then the Renyi entropy can be written
as

Ra(Xo; 1,S) = 5 In(det(2nS))
+ ﬁln (E ( exp(—(xo — WS (xo —
a—1
u))) )

1
By using the transform Z = vaS™2(X, — W), we
get on the result of this proposition.
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3. RENYI ENTROPY OF MULTIVARIATE
SKEW NORMAL-CAUCHY
DISTRIBUTIONS

In this section we derive simple expressions
for Rényi entropy of multivariate skew normal-
Cauchy distributions by using some properties
of transformation and integration. Also, we give
an illustrative example explains the relationship
between the parameters o and 6 with the values
of Rényi entropy by using some methods of
numerical integrations such as Monte Carlo and
importance sampling methods.

The following lemma and proposition present
the simple expression of Rényi entropy when
a=1.

Lemma 8. If X ~MSNC4(W,S,8), then the
expected information in X of the random

In (1 + %arctan (8’§‘1(x - u)))

appears in the following form:

function

E <ln (1 + %arctan (8’§_1(X - u))))
{ln (1 + %arctan ( 58 y))}
—E

: (1 + %arctan(S’ Sy))
(14)
1
where, Y~N(0,1) and 6 = Sz 571§

1 -
Proof : Replacing Sz 5716 by the vector & and
1
transforming Z=S"2 (X —p) then we have
Z~MSNC4(0,1,8). From proposition 2., W =
S’Z~MSNC1(0, 8 8,4/8 S). Therefore,

E (ln (1 + %arctan (6'5_1(X - u)) ))
{ln (1 + %arctan(w) ) g(w; 0,8 S)}
= Jx dw

. (1 + %arctan(w))

1
The transform Y = (S’ S) 2W finishes the
proof.

Proposition 9. Let Xo~MN4(w, S) and
X~MSNCq4(1, S,8). Then the Shannon entropy
can be written as follows:

H(X; 1, S,8) = HXo; 1, S) — C3

(15)

where,

i (1+ 2arcan (V575
. <(1 + %arctan(s' SY))>
(16)

< 1.
,Y~N(0,1) and 6 = Sz S™1§

Cz=E

Proof: By taking the natural logarithm and
expectation for both sides of equation (2), we
get

E (ln(fd(x; WS, 6)))
_1
ICLIO) ((; ('S m))
(2m)2
+E (ln (1 + %arctan (8’§_1(x - u)) ))

Using proposition 2., we obtain

H(X; 1, S, 8)
=HXp;wS) —E (ln (1 + %arctan (8’§‘1(x -

u)) ))

Lemma 8. gives us the required result of this
Proposition.

Next,, we drive the expression of Rényi entropy
of X~MSNCq4(W, S, 6)) when a # 1.

Lemma 10. Suppose that X~MSNC4(W, S, 98) .
Then forany a > 0,a # 1 we have

fRd(fd (X; W, S, 8))adx
_ (det(ZnS))%(l_a) 2 R @
= —ag E (1 + arctan (\/ ) Sy) )
(17)
- 1 L
where, 6 = =528 18 and Y~N(0,1)
1. -
S25716 by & and
1
transforming the variable Z=S"72 X-—w)

proof: Replacing

1
associated with Jacobian matrix Sz of equation
(2), we get
Jra(faGx 1S, 8))"dx _

1
(det(ZnS))i(l_m —az'z (
(2ny? Jya exp ( z ) b

2 =\
;arctan(éi Z)) dz

Again replacing \/—IES by 8, and we change the
variable va Z by U, to get
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1
d 2(1-0)
~2 (det(S)
fra(faCi 0,8, 8) “dx = £2ES)
(2m)z

Spaexp (5 )(1 +

;arctan(S’u)) du

Proof: The proof is immediate from lemma 10.
and proposition 9.

Example 1.

As a simple illustrative example, explains the
relationship between the parameters o and &
with Rényi entropy in one, two, three and four

From proposition 4., we obtain W= dimensions spaces. Assume that 18] =
8'U~MSNC, (0, 58,V S’S). Consequently, trace(86").
Consider X~MSNCy(l, S, 8) with the following
o parameters:
Jra(fax;11,8,8)) dx Case (1):
4 3= a1 d=1,p=03, S=15, §=1,6=2,6=3
= %E (1 + %arctan(W)) and§ =5
(2m)z
18
But (18) Case (2)
’ o 3\e . (07 03\ «_ (0
( , )a_l =2 u (21)’3 B (0.32 3) 8= (1)
E( 1 +—arctan(w) ) § = ( § = and & = (4)
V3)’ V5 3
_@ 5) f xp( ) (1 += arctan(w))a
@m: R 28'8 Case (3)

w .
If we change N by the variable Y then the

proof is completed. 1 2 0
6=|1[6=(2)andb6 =4
Corollary 11. V2 1 3

Let X~MSNCq4(, S, 8), then Case (4)

Ra(X; 1S, 8) = 0 0
%ln(det(Zn exp(1) S)) - Cg , a=1 d=4, u= 8 ,S=eye(4),8 = 8 R
iln(det(ZnS)) - 2(1d_a) In(a) + G5, ,a#1 0 1

(19) where,

%)
Il
~
amww

=

!{ln <( 1+ 2arctan (V8 )1
L ((1 +2arctan(§' § y)))
(1 ln( (1 +Earctan (\/%y) )a>,

§ = TESZ $-18 and Y~N(0,1)

C'S=E

Cou =

TABLEI1. Rényi entropy of MSNCq (1, S, 8) is computed for o = 2,3,4,5,6,8,10 and o converges to infinite, ||§|[=1,2,3 and 5
in one , two, three and four dimensions.

Shannon entropy R,(x; 1,5, 8)

ase d”é‘ H(x;1,S,6 a=2 a=3 a=4 a=5 a=26 a=28 a=10 a - ©
1 1 1.5256 1.3576 1.2793 1.2305 1.1948 1.1716 1.1398 1.1179 1.0538
1 1 2 1.4280 1.2358 1.1474 1.0939 1.0640 1.0378 1.0049 0.9775 09117
1 3 1.3610 1.1739 1.0656 1.0124 0.9764 0.9554 09171 0.8944 0.8277
1 5 1.2727 1.0657 09718 0.9190 0.8817 0.8580 0.8258 0.8036 0.7374
2 1 3.0864 2.7662 2.6151 2.5265 2.4627 24174 2.3522 2.3097 2.1859
2 2 2 2.9772 2.6361 2.4723 2.3751 2.3141 2.2659 2.1991 2.1547 2.0250
2 3 2.9151 2.5541 2.3891 2.2948 2.2245 2.1803 2.1119 2.0697 1.9397
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2| 5 2.8261 2.4679 2.2966 2.2028 2.1364 2.0916 2.0273 1.9829 1.8556
3 1 4.1626 3.6896 3.4613 3.3267 3.2349 3.1680 3.0691 3.0069 2.8234
3 3 2 4.0682 3.5648 3.3296 3.1979 3.0982 3.0278 2.9356 2.8691 2.6777
3 3 3.9939 3.4911 3.2510 3.1101 3.0141 2.9454 2.8487 2.7874 2.5998
3 5 3.9103 3.3838 3.1558 3.0206 2.9217 2.8522 2.7598 2.6956 2.5068
4 4 1 5.5763 4.9496 4.6550 4.4745 43516 4.2633 4.1399 4.0577 3.8088
4 2 5.4821 4.8296 4.5255 4.3411 42216 4.1294 4.0045 3.9153 3.6670
4 3 54151 47677 4.4437 4.2596 4.1340 4.0470 3.9168 3.8322 3.5830
4 5 5.3309 4.6613 4.3560 4.1684 4.0405 3.9499 3.8251 3.7400 3.4930

For each case in example 1., table 1. Summarizes the values of Rényi entropy for
16l = 1,2,3,5 and a = 1,2,3,4,5,6,8,10, o converges to infinite value . we note that there is
relationship between the values of Rényi entropy and the values of the parameters «, § and d.

FIGURE 1. The horizontal line represents the values of parameter a and the vertical line is the Rényi entropy
of X~MSNCq4(, S, §) with parameters in example 1.

Case (1), d=1 , Renyil Entropy vs. Alpha Case (2), d=2 ., Renyi Entropy vs. Alpha
1.6
delta=1 3 Norm delta=1
1.4 delta=2 Mom delta=2
o delta=3 =y 2.8 Morm defta=3
= delta=4 = Nom defta=4
B2 £ 28
= =
=8| =8}
o o 2.4
= 1 =)
3] 3] S
=1 e 2.2 ~—
0.8
2 |
0.6
0 5 10 15 20 25 o 5 10 15 20 25
Alpha Alpha
Case (3), d=3 , Renyi Entropy vs. Alpha Case (4), d=3 . Renyi Entropy vs. Alpha
4.5 5]
Mom delta=1 Mom detta=1
MNomn delta=2 5.5 MNom defta=2
(S| Mom delta=3 Mo delta=3
2 Nom delta=4 Z 5 Norm deita=4
A =
- =
=] [
K 35 w45
=] i
o 4
o
ST
3.5
2.5 3
0 5 10 15 20 25 o 5 10 15 20 25
Alpha Alpha

The results in this section are shown in Figure 1. For dimensional parameter d=1,2,3,4, dispersion
matrix S, skewness parameter & with ||6]| = 1,2,3,5 and a = 1,2,3,4,5,6,8,10,25. We can see that
Rényi entropy is minimized and decreasing to increasing the values of norm of §. Also, we observe
that the Rényi entropy converges to a finite value for the values of a. It can be seen that the Rényi
entropy is increasing with increasing dimensional parameter d.

The determine of dispersion matrices play important role in determining the value of Rényi entropy
where it increases with its increasing. Also, we note that the effectiveness of a on Rényi entropy is

3532



Journal of Theoretical and Applied Information Technology
© 2005 — ongoing JATIT & LLS

Sd

Cialll

ISSN:

www.jatit.org

E-ISSN:

slow whenever the value of «a is large and vice versa when it is small, Rényi entropy tends to a
constant value when o — oo, this is obvious when o > 25 .

4. UPPER, LOWER BOUNDS AND
APPROXIMATION OF RENYI
ENTROPY OF MIXTURE MODELS

In this section, we study the entropy of a
proposal mixture model of skew Cauchy
normal distributions. In other word, we find
the upper and lower bounds of Rényi entropy
by using the multinomial theorem , Holder
inequality and some properties of LP —spaces
for this model. Also, an asymptotic
expression for the Rényi entropy of mixture
model is obtained.

Lemma 12. Let X ~MMSNC4(W,S,9,¢€) .
Then the upper and lower bounds for
Shannon entropy

(a = 1) of X are obtained in the following
forms:

Cupper = 5 In(det(2mexp(1)R))
(20)

Clower =

{‘;l%ln(det(ZHexp(l)Si)) -xn, sif}gi (21
)

where,

2 [~
In <1+Earctan< 6; & y>>

t' (1 + %arctan (Si’ S, y)) )
R=%12,8S -

(i (csi81)) (Tt (c5,5: 8 ))I
Y~N(0,1)

Proof: The upper bound is obtained
directly from lemma 1. and equation (7). The
Shannon entropy of mixture model in
equation (4) can be written as

HOG 1S, 8,2) = —E (In(Zi2, & fx; 1, 5;,6)))

But the function —In(x) is a concave, then by
applying Jensen’s inequality, we get
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HX; 1S, 8,€) = XL, & HX w3, S5, 85)

the Shannon entropy of each component is
obtained by proposition 7. This complete the
proof.

Lemma 13. If X~MMSNC4(L,S, 9, €), then
for any positive integer a the following
inequality is hold

Roe(X;1,S,8,€) < Cypper
(22)

where,

1
= mln{exp((l
- O()Ra(X; Wm» Smr Sm))
exp((1 — R, (X; 13, S, 8;)) )}
—exp((l — )R (X; i1, Siz1, 8i+1))

Proof: The mixture probability density
function in (5) implies that

(f(X; W, S' 8' s))a = (Z?;l > f(X; Wi, Si' Si))a

Applying the result in lemma 4. when p = «,
we get

(Zm, & £ s, S 51))a =

+ Z{‘iil(ZL:l Sk)a {

0:Upper

+2E%mﬂ%f<

0 1, S5, 8¢ }
—f(%; Mit1, Siv1, 8ir)*
If we take the integral for both sides of above
inequality over RY , then

fRd(f(x; I,S,8, s))a dx > fRd £(X; tmy Sy Oy ) dx

f(x; py, Si, 8;)*

dx
—f(% Wis1, Siv1s 8i41)*

+ X (e 80 fra

Again, taking natural logarithm and
multiplying by ﬁ for both sides of the last

inequality , we have
1
Ra(X;11,5,8,8) < ——In{ frq S iy, Spn, S dx

(f(X; Hi, Si' 61))a ] dX}
—f(%; Rit1, Siv1s 8i41)®

Let X ~MMSNCq4(1, S, 8, €) .

+ 20 Tk 2) e

Lemma 14.

Then for any positive integers kq,k,, ...,k
such that Y2, k;j=a the following
approximation
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k.)

! ki
oI { () TR e s 5,89 ) =

Yi
- ZP;l Yi In (sif(x;ui,si,Si))
(23)

) ) ki
is satisfied as a » o , where vy; = g: =
1,2,..,m

Proof: we start the proof from the left side

! k;
an{ () T2 G 5, 89)

)

= %ln(a!) - éZ{L In(k;!)
+ §2{21 ki In(&if(x 13, S5, 61))

Approximating factorial in above equality
implies that

bl M 5,00
= In(a) -1+ —ln(2mx) — =2, kyIn(ky)
+a21=1 ; i=1ln(21tkl)
+2iE1Yi ln(sif(X; Wi, S, 8;))
Assume that vy; = %, i=12,..,
izvi=1

Consequently,

! ki
iln {(k1! k:.:‘...km!) 1 (&£ s, 3, 69) } =
1 2mo)t—n
2« ln( I, vi )] B
Yi
IR ()

; m ., Yi —
But oltl—p;lo Zi:l Yi In (Sif(X;ui,Si.Si))

m , then

This gives the right side.
Lemma 15. The approximation

R, X 1S, 6,¢)
= _ln(Zk EB(H 1()’:)_ )

T2, &exp ((1 = Ry, (X 1,55, 57) ) )
(24)

is accomplished as o — co.

where, ZkiEBHmL!kl =m*,B = {k; € N k; >

i=1 "
0,2 ki=ai=1,2..,m}

Proof: Applying the multinomial theorem in
the equality

Jra(fx 18,8, 8, £))“dx =
Joa(Z12 1 & %5 13, S5 80)"

To obtain
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fRd(f(x- S,85, s))a dx =

ki
fRd Zk €B l—lm ! n[;1(gif(xi Wi, S, 51)) dx

where, YkieB H"‘ ok =m* , B =
{kieNKk;>0,YX2, kj=0i=1,2,..,m}
By replacing the right side of equation (38) in
equation (36), we get
fRd(f(x; S,85, s))a dx =

Jpa Z;en exp {—0( 21 viIn (m)} dx
The last approximation can be written as
Jra(fG 1,8, 8, s))a =
Zk EB[H] 1(Y1 ki ] [H =1 chl(8 f(X Hi, Slr §; )) dX]

If we take the natural logarithm  and
ﬁ for both sides of last
approximation, then the proof is completed.

multiplying by

Lemma 16. For any positive integer o > 0,
a #1 the lower bound of Rényi entropy of
X~MMSNCy4(W, S, 6, €) appears as follow

Ra(X; WS, S, 8) 2 @Lower
(25)

where,
ﬁln (ZkieBnin;iji!H{rél(si)ki
exp{S2 T, kiR (% 14,51, 8}
Proof By assumption a # 1, then
RoX 1S, 8,¢€)
=L In(E(fs 1.5,8,6)" )
= —ln (fRd(Zl 1 & f(x; 13, Si, 8 )) dx)

By using the multmormal theorem, we have

Crower =

fRd(f(x; S,85, s))a dx =

! , ki
ZkieBﬁ 121 (e)™ foa T2 (FO6 13, S5, 87)) ' dx

Applying generalized HOlder’s inequality,
we get

Joa £ 18,5, 8, €)% dx <

al k:
Yien e, k! [1i2, (e

where, py,p2, -, Pm >0 and Y2 i =1.

Therefore, the last equation can be wrltten as

1

in1 (chl £ i, Sy, Si)p‘kidx)pi
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o ! :
Jra (£ 15,8, ) dx < B i 124 ()

1- iki
-exp { (% Ry (X 1, S, 51))}

If we choose i=1,2,..,m such

that zi";li =y
1
then

m
i=1

| =

pi =
ki

04

L0
1

=1 ad 1<S<a,

1

~

m
i=1

Jra(fx; 11,8, 5, £)) dx <

! - (1-a)
Zkiesﬁﬂﬁl(si)k'em{ -

— Zi21 KiRa (X 13, Sy, 5i:)}
We complete the proof by taking the natural
logarithm and multiplying by ﬁ for both

sides of last inequality.

Theorem 17. Let X~MMSNC4(W,S,9,¢€) .
Then the approximation of Renyi entropy of
X can be written as

RoX; 1S, 8,€) =
1 | -
(1 (Breo s s e
exp {(1;00 M kiR(X5 1y, Si, 51)}
+ (1 - a)Ro(X; ) Sy 6m)
i «
+n (Z27" (Zher 1)
(exp((l - (X)Ra(X; Wi, Sir 81))

—exp((l - a)Ra(X; Hi+1, Si+1l 6i+1)))}
(26)

Proof: The proof is directed from lemmas 13.
and 16., by taking the mean of upper and
lower bounds.

Example 2. To study the behavior of approximate Rényi entropy in theorem 17. and its bounds in
lemma 12., equations (22) and (25), some cases in this example are simulated for one, two and three
dimension spaces. Consider X~MMSNC4(0, S, 8, €) with the following parameters:

Case (1) : d=1

m=2, ¢ = (0.2,0.8),
m=3,¢e=(0.2,0.3,0.5),
m=4, £ = (0.1,0.2,0.2,0.5,

S=(155) ,
S=(15,53),

§=(03,4)
§=(03,422)
S=(15,532), §=(03,4221)

m=5, &= (0.2,0.2,0.2,0.2,0.2), S = (1.5,5,3,2,5), § = (0.3 ,4,2.2,1,2.1)

Case (2): d=2

0.7 0.3y (0.12 0.13
0.:7% 3)'(0.13 3

I _ (707 0.3y (0.12 0.1
m=3, &= (0.2,0.3,0.5),, S = ((0.3 3),(0.13

5=(019).23.29)

m=4,&=(0.1,02,0205), S= ((

8= (020G (

m=2, = (0.2,0.8), S = ((

0.16
0.59

2.3
3.1

2.6
1

0.7 0.3
03 3

0i6))

)(

2.3
3.1

))-s

)(

3
3

0.12 0.13
0.13

0.12 0.13

m=5, & = (0.2,0.2,0.2,0.2,0.2), S = ((g'; 0'5)'(0_13
8= (03 GD-2..()

Case (3): d=3

0.7 03 05
03 3 03
05 03 1

m=2, £ = (0.2,0.8),

S

2 2 M
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5

0.3

2

0.16

(2o

0.18 0.6
0.6 4

2.3

)G

)

0.18 0.6
0.6 4

)

1
0

) (s 4

3

0.18 0.6
0.6 4

1
0

)-(os 4

3

03 2 0.16\ /2.3
5 1) ,0= (0.59>, (3.1)
1 3 0.1 1.5
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0 7 0 3 05 5 03 2 1 0 O
m=3, & = (0.2,0.3,0.5), 0 3 03 5 1),10 1 0
0 5 0 3 2 1 3 0 0 1
0.16 2
,6=11{0.59 1
0.1 2

070305 5 03 2\ /1 0 0\ /100
m=4,¢=(0.1,0.2,0.2,05), S= ) 03 5 1>, 0 1 0>,<0 1 0)
0 03 2 1 3/\ 0 1/ \0 01

(EE0 5

m=5, & = (0.2,0.2,0.2,0.2,0.2),

0.7 03 05 5 03 2 1 0 0 1 0 0 1 0 0
,$={{03 3 o03},{03 5 1),/0 1 0),/0 1 0),[0O 1 O
05 03 1 2 1 3 0 0 1 0 0 1 0 0 1

GGG

For each cases in example 2., table 2. summarize the values of approximate Reényi (Shannon)
entropy and its bounds of X~MMSNC4(0,S, 5, &) with above parameters for a = 1. We see that the
values of approximation localized between the lower and upper bounds. Also, we observe that the
Rényi entropy converges to finite value for each vector €. it can be seen that the value of m changes
the values of entropy.

TABLE 2. Shannon entropy of X~MMSNC4(0, S, 8, €) is computed for m = 2,3,4 and 5 in one , two and three dimensions.

Approximate Shannon entropy

Case | d| m Cgwer | Cyupper H Error
1 2 1.8558 @ 1.8671 1.8614 0.0057
1 1 3 1.7741 1.7826 1.7783 0.0042
1 4 1.7290 1.7374 1.7332 0.0042
1 5 1.7972  1.8136 1.8054 0.0082
2 2 22154 23827  2.2990 0.0836
2 2 3 22427 24911 2.3669 0.1242
2 4 24786  2.8261 2.6523 0.1738
2 5 25190 28414 @ 2.6802 0.1612
3 2 55641 5.6966 | 5.6304 0.0663
3 3 3 4.6287 5.0595 @ 4.8441 0.2154
3 4 44237 48133 @ 4.6185 0.1948
3 5 44452 48519 @ 4.6486 0.2033
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Figure 3. The Horizontal Line Represents The Values Of Parameter @ And The Vertical Line Is A Renyi
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FIGURE 2. The horizontal line represents the values of parameter m and the vertical line is a Shannon entropy
of X~MMSNC,4(0, S, §, €) with parameters in example 2.
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Entropy Of X~MmsCnp (0, S, 4, E) With Parameters In Example 2.
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The results in this section are shown in Figures
2. and 3. For dimensional parameter d=1,2,3,
dispersion matrix S, skewness parameter &
and o = 1,2,3,4,5,10, 15, 20,30. We can see
that Rényi entropy is minimized and
decreasing for increasing the values of a and
tends to a constant value when o — oo, this is
obviously when a > 30. Also, we note that the
Rényi entropy converges to finite value for
each cases. it can be seen that the Rényi
entropy 1is increasing with increasing
dimensional parameter d.

5. CONCLUSION

We have derived the upper and lower bounds
on the Rényi entropy of X~MMSCN(0,S, 6, €).
Using the mean of these bounds, the
approximate values of entropy can be
calculated. These values are localized between
bounds of Reényi entropy. The entropy both
types (Shannon and Rényi) converges to a finite
value for any values of ¢, m and d. It has been
established that the Reényi entropy of
X~MMSCNy(0,S, 8,€) depends proportionally
upon the parameters o, S and d but there is not
clear relation between this entropy and the
parameter m. In fact, there is not an analytical
method to find the exact value of the Rényi
entropy of mixture model of distributions
therefore, our approximation is effective and
more accurate. We have seen through the
examples given in this article that the error in
the values of Rényi entropy by approximation
was almost acceptable.
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