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ABSTRACT 
 

Many studies have assessed forest canopy density which is a major factor in evaluating forest status and is 
an important indicator of possible management interventions. Using satellite remote sensing has proved cost 
effective means of mapping and monitoring environment in terms of vegetation and other ecological issues. 
In this study, we demonstrated a new method based on the spatial integration which was operated by 
combining a spectral mixture analysis (SMA) into multispectral bands to create the green vegetation canopy 
density (GVCD). The GVCD approach was used to classify the forest canopy density in the Phu Phan 
National Park, Sakon Nakhon province where it is located in the Northeast of Thailand; it covers an area of 
approximately 470,66   hectares. THAICHOTE multispectral image with 15-m resolution acquired in 2015 
was used in the analyzing process. A spatial integration of green vegetation fraction (GV) and soil fraction 
derived from SMA technique and scaled shadow index (SSI) was digitally performed and analyzed to classify 
GVCD. In addition, ground truth investigation of 48 exemplars was conducted to establish the reliability of 
model used for GVCD. The agreement between the results and the ground observation was reliably obtained 
with Kappa coefficient of 0.68 and overall accuracy of 79.17%. The results showed the ability of GVCD 
approach measured by using the analyzed results of VD and SSI to calculate and detect the forest canopy 
density. This study also revealed the potentiality of THAICHOTE data in monitoring and identifying 
vegetation conditions. 
 
Keywords: Spectral Mixture Analysis (SMA); Green Vegetation Canopy Density (GVCD); Green Vegetation 

fraction (GV); Soil fraction; THAICHOTE data 
 
1.  INTRODUCTION  
 
 Forest canopy density (FCD) is one of the most 
important parameters for evaluating forest cover 
status. It is an important parameter for possible 
planning, implementation of rehabilitation and 
overall management programs of forest cover [1]. 
Remote sensing has been widely used with varying 
degrees of success to quantify characteristics of 
spatial forest structure such as crown cover, tree 
density, tree diameter, basal area, biomass, and leaf 
area index. Green vegetation canopy density 
(GVCD) is also one of the tools to identify the forest 
canopy density with the integration of spectral 
mixture analysis (SMA). The study area was at the 
Phu Phan National Park where it is located in the 
north of Phu Phan Mountains in the north-eastern 
region of Thailand. Since in the past until now, this 
conservative forest has been continuously disturbed 

because its boundary connects to villages of which 
their transportation conditions have been well-
developed, so it has also provided the convenience 
in inter-villages transportation and in the access to 
the National Park. Moreover, the villages around the 
National Park have been highly expanded, so this 
affects the demands of land and forest uses in a larger 
number. The majority of the forests in this National 
Park characterize into deciduous forests; they are dry 
dipterocarp forest and mixed deciduous forest. In 
this case, they become great fuels, and they cause 
wildfire spreading all over area of the National Park. 
In some areas, there are wildfire occurred every year 
until they eventually become degraded forests. 
 The FCD is based on the data derived from an 
integration of Vegetation Index (VI), Bare Soil 
Index (BI), Shadow Index (SI), and Thermal Index 
(TI), and it has been successfully applied in a number 
of countries in tropical regions [2].  The mentioned 
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indices are normalized into the same range; and the 
canopy density has been computed in percentage for 
each pixel by using three techniques for FCD 
mapping with satellite data: visual interpretation 
(VI), object oriented image segmentation (OOIS) 
and FCD model [3]. In comparing the above 
techniques, the FCD model has been found to be the 
better density mapping technique than other two in 
terms of accuracy, efficiency and high correlation 
with ground estimation. The study was conducted in 
a comparison of three classification approaches to 
estimate FCD of tropical mixed deciduous 
vegetation [4]. The three classification approaches 
composed of maximum likelihood classification 
(MLC), multiple linear regressions (MLR) and FCD 
Mapper. The study attempted to monitor the forest 
deforestation or degradation in a natural forest by 
using FCD Model. This model involved bio-spectral 
phenomenon modeling and analysis utilizing data 
derived from the following three indices: vegetation, 
bare soil and shadow. The results proved to be 
effective means for measuring forest cover 
assessment and less information of ground 
validation [5]. An integrated remote sensing and 
geographic information system tools showed the 
density of forest cover. A combined FCD and Digital 
Elevation Model (DEM) of TERRA satellite ASTER 
(Advanced Space borne Thermal Emission and 
Reflection Radiometer) was adopted to study the 
variation of dense forest in a large scale. The FCD 
was calculated based on bare soil index, shadow 
index and vegetation index, yielding the overall 
accuracy of 86 to 90% [6]. The analysis method by 
weighted overlay was applied to survey the forest 
canopy density. Various indices such as normalized 
difference vegetation index (NDVI), bareness index, 
shadow index and perpendicular vegetation index 
(PVI) etc. were used. A greater weight was assigned 
for higher concentration of vegetation whereas a 
lesser weight was assigned for lower concentration 
of vegetation. [7]. 
 A spectral vegetation index (VI) is usually a 
single number derived from the spectral reflectance 
of two or more bands. Because a VI is proportional 
to the value of biophysical parameters such as the 
leaf area index (LAI), green vegetation fraction 
(GV), net primary productivity (NPP), and fraction 
of absorbed photosynthetically active radiation 
(APAR), it is commonly used to indicate vegetation 
vigor and amount. A large number of spectral VIs 
have been developed and used in remote sensing. 
Well-known VIs including normalized difference 
vegetation index (NDVI) [8], soil adjusted 
vegetation index (SAVI) [9], global environmental 
monitoring index (GEMI) [10], modified SAVI 

(MSAVI2) [11], and enhanced vegetation index 
(EVI) [12] have potential for extensive application. 
Each spectral VI has its own merits and limitations. 
For example, NDVI equation is a non-linear 
transformation of the simple ratio between near-
infrared and red band; it is the major cause for 
saturation in high biomass situations. Moreover, 
NDVI is very sensitive to canopy background 
variations with NDVI degradation particularly 
strong with higher canopy background brightness 
[9]. 
 VI is a traditional pixel-based classification 
method that assigns a pixel to a single class. Because 
of the real conditions, the surface of the land cover 
which consists of many objects is mixed together. 
When the sensor system detects surface conditions, 
it is found that in one pixel, the object is represented 
by more than one object. Therefore, this affects the 
efficiency in using remote sensing data for land use 
and land cover classification [13]. Spectral Mixture 
Analysis (SMA) is a sub-pixel classification 
technique based on the spectral responses of land 
cover components. It is used to detect spectral 
responses of materials that are smaller than an image 
pixel. It is also useful for detecting materials that 
cover larger areas but are mixed with other materials 
that complicate accurate classification. SMA 
assumes that each image spectrum is a linear 
combination of a few pure spectra, so-called 
endmembers [14]. SMA models of vegetation 
consist of four endmembers: green vegetation (GV), 
non-photosynthetic vegetation (NPV), soil, and 
shade fractions within each pixel. The analysis result 
is an estimate of the percentage cover of each 
endmember for every pixel. The GV fraction is 
correlated with NDVI, but has been demonstrated to 
be a slightly better predictor of photosynthetic 
vegetation quantity in semi-arid systems [15]. SMA, 
as a tool for vegetation cover analysis receives much 
attention in the last decades. Since SMA can be used 
to provide a full spectrum measurement of 
vegetation response, SMA fractions are more robust 
than traditional vegetation indices [15]–[17]. The 
study attempted to apply linear spectral mixture 
model (LSMM) approach to classify successional 
and mature forests by using Landsat Thematic 
Mapper (TM) imagery in Amazon. This indicated 
that LSMM approach provided a better separating 
ability between successional and mature forests 
[18]. The study also examined the value of SMA 
using Landsat (TM) data for improving LULC 
classification accuracy in a moist tropical area in 
Rondbnia, Brazil. A maximum likelihood classifier 
was also used to classify fraction images into seven 
LULC classes. The results of this study indicated 
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that reducing correlation between image bands and 
using four endmembers has improved classification 
accuracy [19]. Another study employed spectral 
unmixing for forest mapping approach by using 
multi-temporal Landsat imagery to quantify the 
percentage of basal area for ten common tree 
species/genera across northern New York and 
Vermont. These results showed that a combination 
of multi-temporal imagery, spectral unmixing, and 
rule-based classification techniques provided more 
detailed and accurate forest mapping [20]. 
Furthermore, the study attempted to monitor the 
deforestation or degradation in a natural forest by 
using SMA. The study demonstrated a method to 
classify forest cover changes associated with 
deforestation and degradation across the entire 
region for the years 2000-2010 using Landsat 
satellite imagery in the Brazilian Amazon. In 
combining SMA, normalized difference fraction 
index, and knowledge-based decision tree 
classification, they mapped and assessed the 
accuracy to quantify forest (0.97), deforestation 
(0.85) and forest degradation (0.82) with an overall 
accuracy of 0.92. [21] The study used three 
techniques – object-based oriented classification 
(OBIA), SMA and change vector analysis (CVA) – to 
study the desertification processes, and driving 
variables influencing land degradation and 
vegetation cover within White Nile State, Sudan 
during different years. The paper provided that SMA 
technique was powerful for characterization and 
mapping of land degradation in the study area by 
offering more detailed information at sub-pixel level 
[22]. Other studies applied SMA in combination 
with GIS techniques such as [23] propose a new 
method for monitoring areas affected by selective 
logging in one of the hotspots of Mato Grosso state 
in the Brazilian Amazon based on a combination of 
object-based and pixel-based classification 
approaches applied on remote sensing data. The use 
of fraction images derived from Landsat imagery 
was also an essential step to identify logging 
openings as it allows highlighting features at a sub-
pixel level. The result indicated that their method 
provided a feasible means of assessing forest 
disturbances consistently and allowed assessing 
deforestation and forest disturbances due to selective 
logging. 
 Based on previous work in forest canopy density, 
spectral mixture analysis and existing forest 
mapping strategies, the objective of this study was to 
demonstrate a new method based on the spatial 
integration operated by combining a spectral mixture 
analysis (SMA) into multispectral bands to create 
the green vegetation canopy density (GVCD) in 

order to classify the forest canopy density. 
Moreover, this study also conducted a statistical 
analysis to show a relationship between green 
vegetation fraction (GV) and soil fraction derived 
from SMA techniques, and different vegetation 
indices.  
  
2.  STUDY AREA 

The Phu Phan National Park is located in 
the north of Phu Phan Mountains in the north-eastern 
region of Thailand. It is located between latitude 16º 
44' N to 17º  16 ' N and longitude 103º  45 ' E to  104 º 
03' E; the area is approximately 66,470 hectares in 
total. The terrain of national park consists of a range 
of high mountains from the north to the south. The 
geological structure characterizes into sandstones, 
200 – 567 meters above sea level. The characteristics 
of topography inside the park are categorized into 2 
regions. The mountains in the north region feature 
into an inverted shape pan. General areas are average 
slopes at about 15 percent and there are some small 
mountains which characterize in high slopes in some 
patches. On the other hand, the mountains in the 
south region are average slopes at about 30 percent 
and they are one of the important water sources. 

The climate is sub-tropical with three 
seasons: rainy, winter, and summer. Rainy season 
starts from June to October. There is the highest 
average rainfall in August; 367.7 millimeters of 
average rainfall and 94% of average relative 
humidity. Winter season starts from November to 
February. The general weather in this season is 
pretty cool. There is a very little average rainfall, not 
over 20 millimeters per month. The lowest average 
temperature is at 22.6 °C. Hot season starts from 
March to May. The average temperature is at 30.1 
°C. The Phu Phan National Park has deciduous 
forests covering the major area of the park, 41.58 
percent of the overall area. This forest type is mostly 
found in the central of the park up to the north at the 
200-400 meters above sea level. The most secondly 
found forest type is the mixed deciduous forest, 
22.16 percent of the overall area. It is mostly found 
in the south of the park. The area consists of plains 
and plateaus. Another type of forest found in this 
park is the dry evergreen forest, 17.49 percent of the 
overall area. It is a large forest which covers the 
central area and a bit down to the south of the park 
at the above sea level of more than 400 meters high.     
 
3.  MATERIALS AND METHODS 
 

In this study, we used multispectral 
THAICHOTE data. It had been obtained from the 
Geo-Informatics and Space Technology 
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Development Agency (Public Organization) 
(GISTDA) acquired on the dry season. For image 
pre-processing, the data was transformed to top-of-
atmosphere (TOA) radiance, and the geometric 
correction was performed. The analysis composed of 
5 steps. The first step generated forest mask which 
aimed at excluding non-forest areas by using the 
maximum likelihood classification. The second step 
calculated vegetation indices including EVI, NDVI, 
SAVI, GEMI, and MSAVI2. The third step 
generated endmembers by using the spectral 
unmixing method. There were four endmembers 
including soil, shade, Green Vegetation (GV), and 
Non-photosynthetic vegetation (NPV). After that, we 
randomly sampled points for all indices to assess the 
relationship based on Pearson's correlation. The 
forth step integrated 2 fractions (GV fraction and 
Soil fraction) from SMA technique and Scale 
Shadow Index (SSI) to generate the Green 
Vegetation Canopy Density (GVCD). Finally, 
ground truth was employed for validating GVCD 
approach. Figure 2 shows the flowchart of the study. 

 
3.1 Dataset 

In this study, THAICHOTE satellite data 
obtained on March 6, 2015 and containing the 15 
meters spatial resolution in multispectral band 
including Blue (0.45-0.52 µm.) Green (0.53-0.60 
µm.) Red (0.62-0.69 µm.) and Near-infrared (0.77-
0.90 µm.) was used.   
 
3.2 Image pre-processing  
3.2.1 The atmospheric correction  

The atmospheric correction consisted of 
two steps. First, the atmospheric correction 
converted the digital numbers (DN) into a spectral 
radiance at a sensor’s aperture ( ) by using the 
sensor’s gains. The gains of THAICHOTE were 
given on their image header files, and the at-sensor 
spectral radiances of THAICHOTE for each band 
were calculated by using the following equation. 

 

  (1) 
 
Where  is the at-sensor spectral  
      radiance of THAICHOTE for  
      band i (Wm-2 sr-1 µm-1) 
    is the digital number of band i; 
 is the THAICHOTE gain for band i  
 
 The second step involved the conversion of 
spectral radiance at the sensor’s aperture ( ) into 
the exo-atmospheric top-of-the-atmosphere (TOA) 

reflectance (ρTOA); it was computed based on the 
following equation [24]. The data from 
THAICHOTE is shown in Table 1.  
 

  (2) 
 
Where  ρ is planetary directional TOA reflectance  
    for lambertian surfaces [unitless] 

  is THAICHOTE at-sensor spectral  
      radiance for band i ; [Wm-2 sr-1 µm-1] 

  is THAICHOTE Mean exo- 
    atmospheric solar irradiance for  
    band i [Wm-2 sr-1 µm-1] 
 d is an Earth-Sun distance  
    [astronomical units] 

   is solar zenith angle or the value of  
  the sine function of the solar  
  elevation angle. 
 
Table 1: THAICHOTE spectral ranges and mean  
 exo-atmospheric solar irradiances  
 (            ) 
 

Spectral 
Range (nm) 

Band    
[Wm-2 sr-1 µm-1] 

450-520 Blue 1983 
530-600 Green 1813 
620-690 Red 1552 
770-900 Near-infared 962 

 
3.2.2 Geometric correction 

Information in this study was derived from 
the 2002 aerial orthophotography (scale 1:4000) and 
THAICHOTE multispectral scene (15m. resolution) 
acquired on March 6, 2015. Image to image 
registration had been performed between the 
datasets, which were co-registered in UTM (WGS-
84) coordinate system by using nearest-
neighborhood algorithm, with an RSME error of less 
than 0.5 pixels. 

 
3.3 Building forest masks 

Before the next stage of the study analysis 
was operated, building forest masks from 
THAICHOTE image by using the maximum 
likelihood classification approach was initially 
conducted for classifying the area types of the forests 
(dense forest, medium forest and open forest) and the 
area types of non-forests (agricultural areas and 
water body) including clouds and shadows. 
However, the area types of non-forests were not 
analyzed. 
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3.4 Vegetation Indices 
Vegetation Indices were used to calculate 

the difference between the two bands or more. The 
calculation was used to classify whether in which 
areas were covered by vegetation, and the bands 
correlated to the vegetation were RED band and 
Near-Infrared band.  

Enhanced Vegetation Index (EVI) was one 
of the fundamental products for MODIS Satellite 
which was developed to adjust the image 
enhancement and to monitor vegetation by 
classifying forest canopy. It was a modified NDVI 
with a soil adjustment factor L and two coefficients 
C1 and C2, which described the use of the blue band 
in the correction of the red band for atmospheric 
aerosol scattering. This VI had improved sensitivity 
to high biomass regions and reduced atmospheric 
influence. [12]  
             

  (3)
  

Where C1 = 6, C2= 7.5, L = 0.5 
 
Normalized Difference Vegetation Index 

(NDVI) was proposed by [8]. It was applied to 
search and investigate about vegetation by 
classifying types of vegetation. It was calculated 
from the ratio of difference between near infrared 
and red bands normalized by the sum of those bands. 
The measurement scale has the desirable property of 
ranging from -1 to 1. The scale of NDVI close to -1 
means that area was covered by vegetation less than 
soil while the scale of NDVI close to +1 means that 
area was dense vegetation canopy or forest.  

 

 (4) 
    
Soil-Adjusted Vegetation Index (SAVI) 

was proposed by [9]. It was intended to minimize the 
effects of soil background on the vegetation signal 
by incorporating a constant soil adjustment factor L 
into the denominator of the NDVI equation. L varied 
with the reflectance characteristics of the soil (e.g., 
color and brightness). The L factor was chosen based 
on the density of the vegetation. In cases of very low 
vegetation, the use of an L factor of 1.0 was 
suggested, for intermediate at 0.5, and for high 
density at 0.25. 

 

 (5) 
 
 SAVI was between -1 to  +1 . The area 
which was covered by vegetation less than soil 
showed the scale nearly at -1 while the area of dense 
vegetation canopy showed the scale nearly at +1. 

Global Environmental Monitoring Index 
(GEMI) was developed by [10], and it was a 
distance-based approach and non-linear vegetation 
index developed to be less sensitive to atmospheric 
effects. Although GEMI was initially intended to 
minimize atmospheric effects, it was also a more 
sensitive index to soil background [11]. GEMI 
performed best when vegetation cover was sparse, 
where a decrease in the value of GEMI corresponded 
to an increase in crown cover [25]. 

 

 (6) 
 

 (7) 
 

Modified Soil-Adjusted Vegetation Indices 
(MSAVI-2) suggested by [11] were based on a 
modification of the L factor of the SAVI. It was 
intended to better correct the soil background 
brightness in different vegetation cover conditions. 
MSAVI-2, used an inductive L factor to: (i) remove 
the soil “noise” that was not cancelled out by the 
product of NDVI by WDVI, and (ii) correct values 
greater than 1. Thus, its use was limited for high 
vegetation density areas. 
 

     (8) 
 
3.5 Spectral mixture analysis 

SMA assumed that the image spectra were 
formed by a linear combination of N pure spectra, 
such that 

   (9) 
Where 𝑅 = reflectance of bandpass ‘b’, 𝑅 = 
reflectance value of endmember ‘i’ in bandpass ‘b’ 
(if an image is calibrated to reflectance, 𝑅 must be 
used instead), N=number of endmembers, 𝐹  = 
fractional abundance of endmember ‘i’ and 𝜀  = 
error of the fit for bandpass ‘b’ 
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A second equation may be used to constrain 
the sum of fractions to 1: 

 

       (10) 
 

Since spectral endmembers may be the 
result of mixing with different materials, fractional 
abundance of endmember ‘i’ may be less than 0 and 
greater than 1 although the overall fraction will be 1. 
It indicated that two materials may be combined, 
which would result in a negative or greater than 1 
fraction. It did not necessarily mean that there were 
method errors [26]. 

The accuracy of the model was assessed 
either as an error in fraction residuals or as the root 
mean square error (RMSE) across the bands. To 
estimate the accuracy of the computed endmember 
fraction, an error image was computed by using the 
formula for the RMSE for an n-band image: 

 

 (11) 
 

The overall of the model was judged to be 
accurate if band residuals or RMS errors had low 
value and if the fraction was not lower than 0 or 
larger than 1.    

Endmember selection was the most 
important step in SMA analysis because endmember 
was a spectral value representing the material in the 
earth’s surface. In this study, the image-based 
selection of endmembers was used because they 
were easily obtained, and they represented spectra 
measured at the same scale as the image data [27]. 
The Pixel Purity Index (PPI) was presented as an 
alternative approach to select endmembers. This 
technique was based upon the principle that the 
spectral signature of a specific material was ‘pure’ 
(not compounded) [28].  Therefore, PPI was 
designed to identify the most spectrally extreme, 
different, or ‘pure’ pixels, which commonly 
corresponded to mixed endmembers [28], [29]. 
Spectral unmixing method was applied to determine 
the relative abundance of materials depicted in 
multispectral imagery based on the spectral 
characteristics of materials. The reflectance of each 
pixel in the image was assumed to be a linear 
combination of the reflectance of each material 
presented within the pixel. In this study, we 
generated the endmembers from THAICHOTE 
imagery in four bands (1 – 4). There were four 

endmembers including soil, shade, Green Vegetation 
(GV), and Non-photosynthetic vegetation (NPV).  

In this analysis, we randomly sampled 
points representing multiple values for each 
vegetation index and GV, soil fraction of SMA 
techniques in the study site. We used those sampled 
index values to assess the relationship of all indices 
based on Pearson's correlation. The results of 
Pearson's correlation (Pearson's r) indicated that GV, 
soil fraction and vegetation indices were related.  

  
3.6 Green vegetation canopy density model 

GVCD approach is measured by using the 
analyzed results of VD and SSI to calculate for the 
forest canopy density with an integration of 
vegetation density (VD) and Scaled Shadow Index 
(SSI), based on the concept studied by [2]. In this 
study, some indices implemented differently from 
those of Rikimura model. Details of the adopted 
model are explained as the following steps. 
   
3.6.1 Vegetation Density (VD)  

Previous studies had applied NDVI and 
bare soil index (BI) to generate FCD model. 

In this study, the results derived from two 
fractions of spectral mixture analysis, green 
vegetation fraction (GV) and soil fraction were 
employed to evaluate VI and BI respectively to 
detect VD.    

Processing method was operated by using 
principal component analysis (PCA). The first 
principal component analysis (PCA1) between GV 
fraction (VI) and soil fraction (BI) was used because 
those two parameters carried high negative 
correlation. After that, the scales of zero percent 
point and a hundred percent point were set.  

3.6.2 Scaled Shadow Index (SSI)  
The Shadow Index (SI) was generated and 

used for identifying SSI [30] as shown in the 
following equation:  
 
SI = ((256-B1) x (256-B2) x (256-B3)) 1/3      (12) 
 
Where  B1 = Blue band, B2 = Green band,  

and B3 = Red band 
 

The SSI can be produced by rescaling the 
SSI in the range between 0 and 100. 100% of SSI 
represents the highest possible shadow whereas the 
0% one represents the opposite result. 
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3.6.3 Green Vegetation Canopy Density (GVCD) 
GVCD approach is measured by using the 

analyzed results of VD and SSI to calculate for the 
forest canopy density [2] as shown in the following 
equation:  
 
  GVCD = VD (SSI +1)1/2 -1 (13) 
 

The forest cover was interpreted into three 
classes based on GVCD: dense forest (>60%), 
medium forest (30-60%), and open forest (0-30%).  
 
3.7 Validation 

Forty eight plots of ground truth through 
field survey were employed for identifying GVCD. 
The distribution of the exemplars is depicted in 
Figure 3.  The obtained result was used to establish 
a cross-tabulation in comparing the field-based 
classes and image-based classes for validation by 
which the kappa statistic was applied. 

 

 
 
Figure 3: Ground Truth Exemplars 

 
4. RESULT AND DISCUSSION 
 
4.1 Endmember selection 

The results from Spectral unmixing method 
consisted of image sets of four endmembers: GV, 
NPV, Soil and Shade images, and RMS error image. 
In this model, the RMSE was at 0.028. The SMA 
process showed land cover in percentages ranged 
from 1 to 100 percent.  

Figure 4 representing GV fraction shows 
the lowest reflectance in red band and higher spectral 
reflectance in near-infrared band. Both NPV fraction 

and Soil fraction had reflectance increased 
continuously from blue band until near-infrared 
band, but NPV fraction had a lower reflectance. 
Shade fraction reflectance decreased continuously in 
blue band until red band and slightly increased in red 
band and near-infrared band.  

 

 
 
 
 
 
 
 
 
Figure 4: Reflectance characteristics of image  

endmembers: GV = green vegetation;  
NPV = non-photosynthetic vegetation. 

 
4.2 Relationships among various vegetation  
 indices 

In this analysis, the relationships among 
EVI, SAVI, NDVI, MSAVI2, GEMI and GV, soil 
fraction derived from SMA technique in which they 
were retrieved from a THAICHOTE image acquired 
on March 6, 2015 were tested. Table 2 illustrates the 
relationships of various vegetation indices in the 
study site. 

This correlation matrix (Table 2) 
demonstrates high correlation (r≥0.92) among all 
vegetation indices except for MSAVI2 which was a 
lowest correlation between all vegetation indices. 
The highest correlations were observed between 
EVI-SAVI, NDVI-EVI, NDVI-SAVI, and SAVI-
GEMI (r=0.99). High correlation (r≥0.96) was also 
observed between GV-NDVI, GV-EVI, and GV-
SAVI. The results were correspondent with the study 
of [31] in which the abilities of various vegetation 
indices were tested together with GV fraction.  The 
study found that GV fraction had pretty high 
relationship with all vegetation indices (r≥0.95). On 
the other hand, the relationship between soil fraction 
and other vegetation indices was in high negative 
value (r≥0.71).  

GV  
NPV 
Soil 
Shade 
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4.3 Vegetation Density  
The linear transformation performed the 

results in eigenvectors to generate the PC1 for 
THAICHOTE data with eigenvalues of 99.81%. The 
calculation is: 
 
VD (PC1) = - 0.90542 (GV) - 0.42451 (SOIL)     (14) 
 

The obtained VD provided for input in 
creating the GVCD calculation. 
    
4.4 Accuracy assessment of GVCD approach for  
 forest classification  

As for the validation of the result, a 
confusion matrix between ground truths of 48 
locations and the classified GVCD based on the 
2015 THAICHOTE imagery in Table 3 shows the 
agreement between the classes. The confusion 
matrix revealed that canopy classes were mapped 
with overall accuracy of 79.17% with 0.68 of kappa 
coefficient. The dense forest class was classified 
more accurately with a producer’s accuracy of 100% 
than other canopy classes. Open forest and medium 
forest density classes showed fair accuracy levels at 
76.19 % and 68.75%, respectively. The results 
gained from this study were in the same line with 
those studies using four indices (AVI, BI, SSI, and 
TI) to generate FCD model from Landsat TM and 
ETM+ images [32] [33]. The overall accuracy and 
Kappa coefficient were at 71-83% and 0.61-0.78 
respectively. Those study corresponded to author 
who tested the FCD model by using three indices 
(AVI, BI, and SSI) from Indian remote sensing 
satellite (IRS) imagery 2007 of an old growth forest 
of the north forest division in Iran. The overall 
accuracy of the IRS images was at 84.4% and the 
Kappa coefficient reported at 0.78. [34].  

The classified GVCD map in Figure 5 
displays the area of medium forest class in 
approximately 40% of the overall forest area of Phu 
Phan National Park in 2015. The forest areas 
surrounded this National Park are the open forest 
class. The majority of those areas connect to 
agricultural fields: crop fields, rubber tree fields, and 
paddy fields. This area has been disturbed 
continuously because their boundaries connect to 
villages, so it is convenient to access into the 
National Park and easy in finding natural products 
and hunting wild animals. These activities cause 
wildfire every year. Therefore, those forest areas are 
considered risky to be the most degraded forests. 
 
 
 
 

5. CONCLUSIONS 
 

Spectral mixture analysis (SMA) is a sub-
pixel classification technique based on the spectral 
responses of land cover components. SMA assumes 
that each image spectrum is a linear combination of 
a few pure spectra, so-called endmembers. In this 
study, the pixel purity index was used to select 
endmembers for finding the most “spectrally pure” 
(extreme) pixels in multispectral images. We 
constructed four endmembers to generate fraction 
images of soil, shade, green vegetation and non-
photosynthetic vegetation from THAICHOTE 
imagery on four bands (1–4) by using spectral 
unmixing method. For this model, the RMSE was at 
0.028. 

The statistical relationship analysis between 
widely used vegetation indices (EVI, SAVI, NDVI, 
MSAVI2 and GEMI) and GV, soil fractions derived 
from SMA model by Pearson correlation revealed 
that the high correlation (r≥0.96) was also observed 
between GV-NDVI, GV-EVI, and GV-SAVI, 
except for MSAVI2 which reported as the lowest 
correlation between all vegetation indices. On the 
other hand, the relationship between soil fraction and 
other vegetation indices indicated that their 
relationship was pretty oppositely high (r≥0.71). 

In this study, we demonstrated a new 
method based on the spatial integration which was 
operated by combining green vegetation fraction 
(GV) and soil fraction derived from SMA techniques 
and scaled shadow index (SSI) to create the green 
vegetation canopy density (GVCD) in order to 
classify the forest canopy density. The field survey 
of 48 points was used to evaluate the reliability of 
GVCD approach. The confusion matrix revealed that 
canopy classes were mapped with overall accuracy 
of 79.17% and with 0.68 of kappa coefficient. The 
dense forest class was classified more accurately 
with a producer’s accuracy of 100% than other 
canopy classes. 

GVCD approach is considered to be a 
method that could be applied to identify the green 
vegetation canopy density and its spatial 
distribution. The result of forest type classification 
was highly accurate. However, this method could 
provide the best result only in summer because the 
plants are in the process of shedding their leaves. 
Dense forest and open forest had distinct spectral 
signatures in remotely sensed data. GVCD approach 
is a quantitative measure of forest distribution 
provided the results with details that could be 
employed in the further similar studies. It is possible 
to apply in the detection and analysis land cover/land 
use changes, deforestation and forest degradation. 
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Figure  1 : Study site 
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Figure 2: The flowchart of this study. 
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Table 2: Correlation matrix 
 

Vegetation index EVI SAVI NDVI MSAVI2 GEMI GV SOIL 
EVI 1       
SAVI 0.99 1      
NDVI 0.99 0.99 1     
MSAVI2 0.06 0.06 0.03 1    
GEMI 0.98 0.99 0.97 0.11 1   
GV 0.97 0.96 0.98 -0.05 0.92 1  
SOIL -0.71 -0.74 -0.76 -0.08 -0.71 -0.73 1 

   Correlation is significant at the 0.01 level (2-tailed).  
 
 
 
 
 

Table 3: Accuracy assessment results for forest classification techniques. 
 

Classified data 
Ground truth Producer’s  

Accuracy 
User’s  

Accuracy Open Forest Medium Forest Dense Forest Total 
Open Forest 16 2 0 18 76.19% 88.88% 

Medium Forest 4 11 0 15 68.75% 73.33% 
Dense Forest 1 3 11 15 100.0% 73.33% 

Total 21 16 11 48 - - 
Error of omission 23.81% 31.25% 0.00% - - - 

Error of 
commission 

7.41% 12.50% 10.81% - - - 

Overall classification accuracy = 79.17%. 
Kappa statistics = 0.68. 
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Figure 5: Green vegetation canopy density in 2015. 


