
Journal of Theoretical and Applied Information Technology
30th June 2019. Vol.97. No 12

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

3317

STUDYING OPEN BANKING PLATFORMS WITH OPEN
SOURCE CODE

ANDREY KOLYCHEV, KONSTANTIN ZAYTSEV

National Research Nuclear University MEPhI (Moscow Engineering Physics Institute), Kashirskoe Avenue
31, Moscow, 115409, Russia

ABSTRACT

Intensive growth of public web interfaces started early in 2010; and if initially API was a procedure of
interaction of various software tools, then at present web interfaces are genuine digital products on the basis
of which companies, especially major companies, can derive profits while providing their internal services
to third parties via open API. Banks are not an exception. They also can derive profits by providing access
to their internal services for third-party developers. The advantage of banking enterprises is that they
possess unique data and services, which can hardly be competed. As a consequence, there appeared the
software market for the development of open source API and provision of access to them with monetization
capabilities. API management platform is comprised generally of three components: developer site, API
development tools, and API gateway. API gateway is the most important component since it is responsible
for interface operation; hence, this work is aimed at the determination of the most efficient API gateways.
Three software variants have been considered: Gravitee API Platform, APIMan, and WSO2 API Manager,
which meet two preset criteria: Java product implementation, open source code of the product. The study
has been performed in comparison environment with three coordinates: intensity of performed functions for
API development, labor intensity of API implementation, the performance of API gateway. During the
experiments, Gravitee.io API Platform was the best software with regard to each coordinate.
Keywords: API Management, API Management System, API Platform, API Manager, API Gateway, Open

API, Software Functionality, Performance
.

1. INTRODUCTION

At early stages of software development, it
was necessary to solve the problem of interaction
among applications in order to provide possibility
of data exchange overriding physical and logical
boundaries. Integration of various software
products is peculiar for numerous business
scenarios. The number of integrating interactions
continuously increases, this is stipulated by
sophisticated ecosystems and business processes

which are supported by complex interactions with
several endpoints in user software, internal software
of various companies and various public services.
One of the variants of software interaction,
especially in the case of various logics and
architecture, is API.

According to data by ProgrammableWeb
service, the number of open web interfaces from the
early 2010 increased by about 20 times [1] (Fig. 1).

Journal of Theoretical and Applied Information Technology
30th June 2019. Vol.97. No 12

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

3318

Figure 1: Quantitative variations of open interfaces

It should be mentioned that in addition to

hi-tech industries, open interfaces are also applied
in such fields as telecommunications, mass media,
travelling, tourism, and real estate. Major financial
market players analyze open banking platforms in
order to compete with IT giants, which already
provide their financial services such as PayPal,
Billtrust, Amazon. In addition, if initially API was a
method of interaction of various softwares, then at
present web interfaces are genuine digital products,
on the basis of which companies, especially major
companies, can derive profits [2]. Banking
enterprises are not exceptions. In European banking
sector, development of open API is a requirement
stipulated in PSD2 directive. Therefore, banks are
stimulated to develop open API by two forces:
market and law. Hence, each modern bank aiming
at competitive business should develop open API.
The concept of open interfaces is not new,
therefore, numerous software solutions are
available in the market for development of open
interface infrastructure [3], which leads to selection
of efficient system of API management. This work
is devoted mainly to API gateways with open
source code.

This problem is considered by several

researchers. They apply various approaches to
comparison of software products. Some works are
based on customer opinions [4-6], such criteria are
highlighted as functional capabilities of various
components of API platform, estimations of support
services, usability, software cost. Other studies
combine estimations by users and experts [3, 7],
various criteria are also highlighted. Nearly all
researches [3, 6, 7] include such criterion as
presence of software platform in the market
(amount of clients and geographical distribution of

software). All studies consider mainly paid
solutions; this work analyzes platform with open
source code and compares the main component of
API platform: API gateway.

2. MATERIALS AND METHODS
2.1. Selection of software products for
comparison

API management systems are comprised
conventionally of three components: API gateway,
API manager, developer site.

API gateway is a network gateway (or web
server, if it is not required to combine network
segments, for instance, Internet and intrabank
network) where source code of developed API is
physically located. Requests to API are addressed
exactly to API gateway, where authentication and
authorization are carried out, validity of the request
in accordance with tariff plan is verified, the
request is handled according to policies described
in API, transformations are carried out, then the
request is directed to bank internal systems, where
the handling is performed according to these
systems, and API gateway receives response from
bank internal systems, this response can also be
handled and transformed, then the response is
returned to the application which requested API.
API gateway is the most important component of
API management system since it provides
availability of API.

API gateways are subdivided into test and
production ones (it can be one and the same
physical gateway), test gateway contains the same
API but without request to bank internal system, the
requests are responded by stubs simulating
operation of bank internal systems, this is required

0
2000
4000
6000
8000

10000
12000
14000
16000
18000
20000

2004 2006 2008 2010 2012 2014 2016 2018 2020

N
um

be
r o

f
AP

I

Year

Journal of Theoretical and Applied Information Technology
30th June 2019. Vol.97. No 12

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

3319

in order to facilitate API user to adjust application
using test data prior to paying for actual data.

API manager provide possibility to
determine API using any notation, for instance,
OpenAPI or RAML, as well as policies applied
during request or response to API and arbitrary
handlers. As a rule, API gateway can be configured
using the same tool.

Tools of API publication are required for
development of tariff plans and API binding, this
tool also controls access to API.

Developer site is an Internet portal where
third party developer can evaluate API and relevant
specifications, to register application, to subscribe
for API according to certain tariff plan, in addition
it would be possible to make test request directly
from the portal page [8].

Software products were selected for
analysis on the basis of the following criteria
important for subsequent use:

- the product should be implemented in
Java;

- the product should have open source
code.

Initial selection of software products in
this field was based on analysis of publications
about API management systems. Numerous API
management systems were detected during the
study, such as: CA API Management, Apigee, IBM
API Connect, Mulesoft Anypoint API Manager,
Microsoft Azure API Management, Akana API
Management, 3scale API Management,
OpenLegacy, Apiary. Then, using the
aforementioned criteria, the software products were
selected which satisfied these criteria. These are
three variants with open source code for API
management: Gravitee.io API Platform [9];
APIMan [10], and WSO2 API Manager [11].

2.2. Selection of coordinates of comparison
environment

The most important properties of each
software product are intensity of performed
functions and performance, that is, the ratio of
performed work to the time of its execution. Since
the given software products are used also for API
development, then it is required to define the list of
possibilities provided for such development. In
addition, it is required to understand how readily
and rapid such interfaces can be developed.

Here and below the software functions are
interface policies. Policy is a unit work executed
during request to API. When during execution an
API call is carried out, a chain of policies is created
and applied to incoming request (or outgoing
response) prior to transfer of this request to
implementation by internal API.

Considering this, the following coordinates
of comparison environment were selected:

1) intensity of functions of API
management systems for development of interface;

2) performance of software product;
3) labor intensity of API

development.

The software products were compared
with regard to the following properties:

- possibility of request transformation
(modification of its body, access to request
parameters);

- possibility of transformation of request
body format;

- possibility to execute additional network
call within API;

- possibility to develop proper arbitrary
handlers;

- modification of HTTP method (API call
is made using one method and system call behind
API using another method);

- possibility of error handling.

These criteria were selected on the
following basis. Possibility to transform request
body or its format often occurs when bank internal
systems intend to work using request formats
differing from those proposed by API. Possibility to
make additional call within API is necessary for
implementation of complex scenarios of interface
operation where one interface includes interaction
with several bank internal systems. Possibility to
develop proper arbitrary handlers is important
because despite numerous possibilities of initial
function library there comes a point of time when it
is required to determine proper policy with unique
behavior. Replacement of HTTP method is
necessary when bank internal system by any
reasons should receive requests using a method
differing from that proposed by API. Possibility to
handle errors is important because interfaces
contain software code where exception cases are
inevitable and should be handled in a particular
manner.

Journal of Theoretical and Applied Information Technology
30th June 2019. Vol.97. No 12

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

3320

Cumulative estimation of each product
was calculated as follows:

1

1 00
n

i i
i

S V Z


  (1)

where S was the estimation of tool; n was the
number of comparison criteria; Zi was the value
criterion execution; Vi was the criterion weight
(from 0 to 1).

The following scale was proposed to
estimate criterion values: 0 - if a criterion was not
fulfilled or fulfilled by the third party software; 1 -
if a criterion was fulfilled completely or with minor
restrictions; 0.5 - of a criterion was fulfilled with
significant restrictions.

2.3. Comparison of performances
Software products were verified according

to the following scenario. API was developed
which during incoming request performed several
outgoing HTTP calls, thus emulating complex
scenario of API operation where API not only
redirected external call into internal system but also
performed additional request to internal system as
well as enhanced data or performed any other
verification or calculations. In addition, long
operation of this internal call was simulated: five
second delay was programmed. Simple service
written in Java was developed as internal system,
which responded with five second delay. Prior to
performance testing, this service was tested with
respect of its operability under selected load. In

order to perform comparison, the considered
systems were deployed, similar API in terms of
functionality were developed, then requests were
sent in several threads and the response time was
measured. All systems were deployed using Docker
virtualization program on the basis of official
images. APIMan software was considered in
gateway implementation using Vert.x platform
since it was used for implementation of Gravitee
management system.

The performance of Gravitee API gateway
was tested using “Groovy” policy where HTTP call
was implemented by Groovy HTTP client
embedded into programming language which was
not absolutely correct but nevertheless did not
result in performance loss by this gateway.

In order to test performance of of APIMan
gateway written in Java, the policy was developed
and added to the gateway where Java HTTP client
was used, since the HTTP client embedded into
APIMan supported only asynchronous operation,
i.e. upon HTTP call, execution of subsequent
policies was not blocked, which was not supported
by the test scenario.

In WSO2 management system, the API
handlers are implemented by other WSO2 software:
ESB (service bus) with specific xml notation. The
code used in WSO2 management system is
exemplified below:

<?xml version="1.0" encoding="UTF-8"?>
<!-- Declaring handler sequence -->
<sequence xmlns="http://ws.apache.org/ns/synapse" name="performance_test" trace="disable">
 <!-- Module of http call, duplicated for 5 times -->
 <call blocking="true">
 <!-- Determining http method and url -->
 <endpoint>
 <http method="get" uri-
template="http://192.168.99.100:8888/stubFORAPIMan/ServletWithTimeout" />
 </endpoint>
 </call>
 <call blocking="true">
 <endpoint>
 <http method="get" uri-
template="http://192.168.99.100:8888/stubFORAPIMan/ServletWithTimeout" />
 </endpoint>
 </call>
 <call blocking="true">
 <endpoint>
 <http method="get" uri-
template="http://192.168.99.100:8888/stubFORAPIMan/ServletWithTimeout" />

Journal of Theoretical and Applied Information Technology
30th June 2019. Vol.97. No 12

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

3321

 </endpoint>
 </call>
 <call blocking="true">
 <endpoint>
 <http method="get" uri-
template="http://192.168.99.100:8888/stubFORAPIMan/ServletWithTimeout" />
 </endpoint>
 </call>
 <call blocking="true">
 <endpoint>
 <http method="get" uri-
template="http://192.168.99.100:8888/stubFORAPIMan/ServletWithTimeout" />
 </endpoint>
 </call>
 <!-- Handler of response from previous module -->
 <payloadFactory media-type="json">
 <!-- Presetting pattern for message, in this case it is JSON -->
 <format>
 {
 "Data":{
 "PaymentSubmissionId":"$1",
 "PaymentId":"$1",
 "Status":"$1",
 "CreationDateTime":"$1"
 }
 }
 </format>
<!-- Variables are determined for input into the above pattern;
the $body variable contains only response body from service requested in
the block <call>...</call>, since the response format of xml service, then
the required poll is requested by XPath query language
 -->
 <args>
 <arg evaluator="xml" expression="$body//some" />
 </args>
 </payloadFactory>
 <!-- Forming header Content-Type -->
 <property name="messageType" value="application/json" scope="axis2" type="STRING" />
</sequence>

As can be observed, overall code is an xml
configuration, which is not very convenient.

2.4. Comparison Of Labor Intensity Of API

Development
In order to compare with respect to this

coordinate, it was decided to implement test
interface using each software product which would
contain the following blocks: request
transformation with possibility to modify request
body and headers; error handling with possibility to
generate message with preset error text in the case
of error within interface, and in the case of error in
bank internal system, to catch error with possibility

to correct error message; additional HTTP call
within API with possibility of its handling.

Implementation of each block was
estimated using the following scale:

- 0, if implementation was
impossible;

- 0.5, if implementation was labor
intensive or had restrictions;

- 1, implementation was completely
possible.

Cumulative estimation was calculated by
Eq. (1), where S was the cumulative estimation of
API management system; n was the number of

Journal of Theoretical and Applied Information Technology
30th June 2019. Vol.97. No 12

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

3322

blocks; Zi was the estimation of labor intensity of
block implementation; Vi was the weight of
criterion (from 0 to 1).

The logics and order of handler execution
in test API in more details was as follows: new
header was added, some initial header was
removed, request parameters were transferred to
message body, HTTP call was performed by GET
method and its result was added to current message
body, possible code errors were handled, then the
request was performed to assumed bank internal
system, and then the error handler was executed
comprised of replacement of message body if
internal system returned HTTP codes 400 and 500.

test interface of gravitee system

Policy management in Gravitee system
assumes addition of policies, which are applied

upon interface call in the order of their addition, to
API definition.

Addition and removal of headers can be
carried out using the embedded policy “Transforms
Headers”, where the phase of policy application
should be mentioned: request or response, header
names should be mentioned which should be
removed, name and value of headers to be added
should be mentioned. In addition, access to headers
can be obtained in “Groovy” policy, where Groovy
programming language can be used to write
arbitrary script, access to headers and message
body is provided by means of context variables
“request” and “response”. Request parameters can
be transferred to message body using “Groovy”
policy and the following script:

//request parameters are obtained from context
def params = request.parameters();
//generating new body
def newBody = '<person>' + request.content +
 '<age>' + params.getFirst('age') + '</age>' +
 '<name>' + params.getFirst('name') + '</name></person>';
//returning result
return newBody;

Network call can be made by means of
special policy “Callout HTTP”, its response can be
placed into context variable with subsequent access
to it. (At the stage of performance test this policy
was not developed, and HTTP requests were
performed by “Groovy" policy.)

No special handlers or policies were
stipulated in Gravitee for handling of errors
occurring upon API operation, thus, in the case of
error, the interface would return response with
HTTP code 500. Error handling in policies
implemented by Groovy can be performed by “try-
catch” structure wrapping overall code with it, such
as:

try {
//some code
}
 catch(Exception ex){
 //setting error state for policy
 result.state = State.FAILURE;
 //setting HTTP code
 result.code = 500
 //setting error text
 result.error = 'Interval Server Error'
 //returning empty string
 return ''
 }
 }

A peculiar feature is that the “Groovy”
policy has four possible applications with respect to

interface: request and response phase, each of them
has two more variants: with and without access to

Journal of Theoretical and Applied Information Technology
30th June 2019. Vol.97. No 12

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

3323

request data; if the variant with access is selected,
then the script should return any string result by
means of key word “return”, hence, in the above
example it is required to return at least empty
string.

Handler of errors of internal system was

implemented by “Groovy” policy as follows:

//Gravitee library for operation with interface state
import io.gravitee.policy.groovy.PolicyResult.State

String errorMessage = '';
int statusCode = 0;

if (response.status == 500) {
 statusCode = 500
 errorMessage = 'Interval Server Error'
}

if (response.status == 400) {
 statusCode = 400
 errorMessage = "Bad Request";
}
if (statusCode != 0) {
 //array with errors and their description
 def handlers = [400 : "Bad Request", 500 : "Internal server error"]
 result.state = State.FAILURE;
 result.code = statusCode
 result.error = '{"httpCode":' + '\"' + statusCode + '\"' +
 ', "httpMessage":' + '\"' + handlers[statusCode] + '\"' +
 ', "moreInformation":' + '\"' + errorMessage + '\"' + '}'
 result.contentType = 'application/json'
}

test interface in apiman system

APIMan software, similar to Gravitee, has
embedded policy for addition or removal of
headers. In order to implement other modules of
test interface, the policy was developed written in
Java and added to API gateway. The policy is a
Java applet, which should contain the class
implementing IPolicy interface which contains two

apply methods: request data are transferred to one
of them, and response data – to another, the
methods are executed at the stages of request and
response, respectively. The class object method
ApiRequest getQueryParams() was applied for
access to request parameters which returned key
value structure.

String name = request.getQueryParams().get("name");
String age = request.getQueryParams().get("age");

In order to add request parameters to
request body, it is necessary that the policy could
implement IDataPolicy interface; this is required
for operation with request or response body.

Error handling can be implemented similar
to the test interface for Gravitee system, that is, to

use try-catch structure; execution of policies can be
interrupted with returning error message to client
by doFailure method to which the object should be
transferred capable to describe all attributes of
response message: HTTP code, message body,
headers, for instance:

doFailure(new PolicyFailure(PolicyFailureType.Other,400,"BAD REQUEST"));

test interface in wso2 system

Journal of Theoretical and Applied Information Technology
30th June 2019. Vol.97. No 12

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

3324

Handlers in WSO2 management system
can be applied in incoming flow, prior to message
sending, after receiving response; in addition, the
flow is stipulated to which control is transferred in
the case of errors during execution of API code.

HTTP call module code in WSO2 is
similar to that described in Section 2.3, the module
of response transformation is also implemented by
the handler
<payloadFactory>...</payloadFactory>. The
modules of header transformation and transfer of
request parameters to message body are as follows:

 <!-- Adding header customHeader1 with the value -->
 <header name="customHeader1" scope="transport" value="value"/>
 <!-- Removing header customHeader2 -->
 <header name="customHeader2" scope="transport" action="remove"/>
 <!-- Request parameters are as follows: ?name=Jonn&age=40.
 Generating variable name, its value is the parameter name -->
 <property expression="$url:name" name="req.var.name"/>
 <!-- Generating variable age, its value is the parameter name -->
 <property expression="$url:age" name="req.var.age"/>
 <!-- Using this handler we modify the message body and
 add request parameters to the body -->
 <payloadFactory media-type="xml">
 <format>
 <person>
 $1
 <name>$2</name>
 <age>$3</age>
 </person>
 </format>
 <args>
 <arg expression="//contacts" evaluator="xml"/>
 <arg evaluator="xml" expression="get-roperty('req.var.name')"/>
 <arg evaluator="xml" expression="get- property('req.var.age')"/>
 </args>
 </payloadFactory>

Errors during API execution can be
handled by special Fault Flow. Two embedded
handlers are provided: json_fault and debug_
json_fault, the latter one logs more detailed
information about error and will be useful at the

stage of interface development. The errors in
response can be handled by < filter>…</filter>,
which is the if-else operator. For instance, in this
way:

 <filter source="get-property('axis2', 'HTTP_SC')" regex="400|500">
 <then>
 <payloadFactory>
 <format>
 <!— Required format of error message -->
 </format>
 </payloadFactory>
 </then>
 </filter>

2.5. Generalization of results
After each comparison, ranks were

assigned to the software products. The best product
obtained rank 1, then followed rank 2, and etc.; if
several tools obtained one and the same rank, then

the rank was calculated using averaging equation
(2)

1 '

0
()

n

i
r i

r
n






 (2)

Journal of Theoretical and Applied Information Technology
30th June 2019. Vol.97. No 12

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

3325

where r was the total rank; n was the number of
tools which obtained one and the same rank; r’ was
the rank which corresponded to all tools.

The comparison results were generalized
by summation of ranks assigned to the tools in all
comparisons, and then by ranking of the obtained
summed ranks.

3. RESULTS
3.1. Comparison Of Software Products In Terms

Of Intensity Of Performed Functions

The comparison results of software
products with respect to this coordinate are
summarized in Table 1. This information was
obtained while studying functionality of the
considered software products after their installation
with consideration for their official specifications
[12-14]. It is assumed that the functions
summarized in the table already exist in software
product; it is not said about their possible
implementation and addition to the software. It is
obvious that each software product provides
possibility to develop proper handler and to
implement it.

Table 1: Comparison of software products in terms of intensity of performed functions

Function Weight APIMan
Gravitee.io API
Platform

WSO2
APIManager

Request
transformation

Transformation of
headers

1/18 1 1 0

Transformation of
message body

1/18 0 1 0

Transformation of
request parameters

1/18 0 1 0

Transformation of
request formats

XML into JSON 1/12 1 1 1
JSON into XML 1/12 1 0 1

Possibility of additional request inside API 1/6 0 0.5 0.5
Development of proper arbitrary handlers 1/6 0.5 1 0.5
Error handling 1/6 0 0 1
Replacement of HTTP method 1/6 0 1 0
Sum of estimations, % 31 67 50

The sum of errors is calculated by Eq. (1).

Therefore, rank 1 can be assigned to
Gravitee management system, rank 2 – to WSO2

API Manager, and rank 3 – to APIMan. The results
are illustrated in Figs. 2 and 3.

Figure 2: Intensity of functions performed by software products.

31

67

50

APIMan

Gravitee.io API Platform

WSO2 APIManager

0 20 40 60 80

Coverage percentage

Journal of Theoretical and Applied Information Technology
30th June 2019. Vol.97. No 12

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

3326

Figure 3: Ranks of software products according to comparison of intensity of performed functions (the less

– the better)

3.2. Comparison Of Tools In Terms Of

Performance
The main concept of comparison in terms

of performance was determination of possibility to
process operation scenario by the system where

internal calls were executed within API. Initial
testing was performed with default adjustment of
API network gateway. The test results of Gravitee
software are summarized in Table 2.

Table 2: Test results of Gravitee API gateways

Test scenario
Average time of response to
request, ms

Median,
ms

Percentille
90,
ms

Min,
ms

Max,
ms

Errors,
%

5 flows of 50
requests,
5 internal requests

25,140 25,040 25,050 25,027 37,517 0

10 flows of 50
requests,
5 internal requests

31,126 26,152 48,390 25,031 49,852 0

The obtained test results were expectable,

since in average the requests were executed in
slight excess of 25 seconds, and within API, five
internal calls were executed, each in five seconds.

The test results of APIMan software are

summarized in Tables 3 and 4.

Table 3: Tests results of APIMan API gateways

Test scenario
Average time of response to
request, ms

Median,
ms

Percentille
90,
ms

Min,
ms

Max,
ms

Errors,
%

5 flows of 50
requests,
5 internal
requests

125,309 125,317 125,386 124,723 125,727 19

It can be seen in the table that significant

portion of requests was terminated unsuccessfully
(API gateway released connection), and successful
requests were executed for longer time than
expected (it was assumed that a request should be
executed in slight excess of 25 sec because within
API five internal calls were executed, each in five

seconds). Then, in API gateway configuration file,
the number of handlers was increased (by default, it
was in “auto” state; and judging by log, only one
handler was activated). The test results after
increase of handler number are summarized in
Table 4.

3

1

2

0

0.5

1

1.5

2

2.5

3

3.5

APIMan Gravitee.io API
Platform

WSO2 APIManager

SO
FT

W
AR

E
RA

N
K

Journal of Theoretical and Applied Information Technology
30th June 2019. Vol.97. No 12

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

3327

Table 4: Tests results of APIMan API gateways after increase of handlers

Test scenario
Average time of response to
request, ms

Median,
ms

Percentille
90,
ms

Min,
ms

Max,
ms

Errors,
%

5 flows of 50
requests,
5 internal
requests

60,591 50,259 74,909 25,035 99,556 0

It can be seen in Table 4 that there are no

error requests, however, the time of request
execution exceeds the expected one due to
unknown reasons. Variations in the number of
handlers did not result in any qualitative changes.
No other configuration tools were identified, thus,
the analysis of this problem was terminated. In
addition, it should be mentioned that this software
product supports handlers with HTTP calls using
components described by developers, however,

such call can be only asynchronous, thus, JAVA
HTTP client was used because synchronous call
was required. At the same time, in Gravitee, HTTP
call was executed by Groovy script embedded in
Groovy HTTP client, which did not lead to
problems with performance.

The test results of WSO2 APIManager
software are summarized in Table 5.

Table 5: Test results of WSO2 APIManager API gateways

Test scenario
Average time of response to
request, ms

Median,
ms

Percentille
90,
ms

Min,
ms

Max,
ms

Errors,
%

5 flows of 50
requests,
5 internal requests

25,098 25,089 25,164 25,035 25,305 0

10 flows of 50
requests,
5 internal requests

25,095 25,078 25,151 25,027 25,577 0

The obtained results are similar to those of

Gravitee software testing: no unexplained delays,
the results are expectable.

Based on the obtained results, it possible
to conclude that Gravitee and WSO2 APIManager

software products are the best in this comparison,
rank 1.5 could be assigned to them, and rank 3
could be assigned to APIMan management system.
The results are illustrated in Fig. 4.

Figure 4: Ranks of software products according to comparison of performance (the less – the better)

3

1.5 1.5

0

0.5

1

1.5

2

2.5

3

3.5

APIMan Gravitee.io API
Platform

WSO2 APIManager

SO
FT

W
AR

E
RA

N
K

Journal of Theoretical and Applied Information Technology
30th June 2019. Vol.97. No 12

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

3328

3.3. Comparison in terms of labor intensity of
API implementation

The respective comparison results are
summarized in Table 6.

Table 6: Comparison of systems in terms of API implementation

Block Weight
Gravitee.io
API Platform

APIMan
WSO2
APIManager

Block of request
transformation

Transformation of
headers

1/9 1 1 1

Handling of request
parameters

1/9 1 1 1

Transformation of body 1/9 1 1 1
Block of error
handling

Handling of API errors 1/6 0.5 0.5 1
Handling of customer
(4**) and server (5**)
errors

1/6 1 1 1

Block of HTTP
request

Direct HTTP request 1/6 1 0.5 0.5
Handling of response 1/6 1 1 1

Sum of estimations, % 92 83 92

Based on the obtained results, it is possible

to conclude that the best software products in this
comparison are Gravitee and WSO2 APIManager,

thus, according to Eq. (2), rank 1.5 is assigned to
them, and rank 3 is assigned to APIMan. The
results are illustrated in Fig. 5.

Figure 5: Ranks of software products according to comparison of labor consumption pf API

implementation (the less – the better)

Gravite management system received only
0.5 due to complicated handling of API errors. It
can be implemented only in “Groovy” policy, and it
cannot be performed in other policies upon errors
during their execution.

APIMan management system also lost one
half due to implementation of API error handling
similar to that described for Gravitee. Another one
half was deducted for implementation of HTTP
request, it was required to use Java client, and
embedded code supported only asynchronous
operation.

WSO2 management system lost one half
for implementation of HTTP request, because if a
request was made at the stage of response in
interface, then it was impossible to access to
message body received after the request.
Information about this event was unavailable in
specifications.

From subjective point of view, Gravitee
management system is characterized by lower labor
intensity of implementation of the considered
interfaces, all difficulties are related mainly with
poor specifications. APIMan requires for self-
development of policies with subsequent setting in
API gateway, which is time consuming and also

3

1.5 1.5

0

0.5

1

1.5

2

2.5

3

3.5

APIMan Gravitee.io API
Platform

WSO2 APIManager

SO
FT

W
AR

E
RA

N
K

Journal of Theoretical and Applied Information Technology
30th June 2019. Vol.97. No 12

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

3329

requires for developer competences in Java
development. WSO2 software for implementation
of policies uses specific and unobvious xml
notation, which requires for knowledge of WSO2
ESB.

3.4. Generalization of comparison results

The comparison results of API
management systems in terms of all coordinates are
summarized in Table 7.

Table 7: Comparison of API management systems

Comparison coordinate Gravitee.io API Platform APIMan WSO2 API Management
Intensity of performed functions 1 3 2
Possibility of interface implementation 1.5 3 1.5
Performance 1,5 3 1,5
Cumulative rank 4 9 5
Final rank 1 3 2

The results are also illustrated in Fig. 6.

Figure 6: Final ranks of software products according to comparison (the less – the better)

Therefore, the Gravitee software is the

most efficient product in the environment of preset
criteria.

4. DISCUSSION

In this work, we analyzed API
management systems with open source code
implemented in Java. Some studies [3-7] consider
mainly paid solutions, which are not suitable for
everybody. Part of studies is based on user reviews
[4-6], the following criteria are highlighted in these
reviews: functional possibilities of various
components of API platform, estimation of
supporting services, usability, software cost, etc.
Other studies combine estimations by users and
experts [3, 7] also highlighting various criteria.
Nearly all studies [3, 6, 7] include such criteria as
presence of software platform in the market
(amount of clients and geographical distribution of
software). In total, the mentioned studies are of
general character, which makes it possible to form
comprehensive idea of each software product,
though, not very detailed in order to understand
whether it is efficient for application in certain field

or upon solution of a given problem. This work
attempted to perform more detailed analysis of
platform solutions, however only for API gateway.

In addition, it should be mentioned that in
all mentioned publications, the considered API
management systems are oriented at conventional
approach to development of interfaces. However,
recently new procedure of API representation has
been introduced: GraphQL, which modifies
estimations of previously analyzed platforms, since
it is both the data manipulation logic with open
source code for API, and the environment of
requests to stored data [15]. Contrary to
conventional interfaces with data fixed in
predefined format, while using GraphQL it is
possible to obtain only required data and not all
data as in SQL for databases. Using this
technology, a client is able not to request data from
several API but to operate with data flowchart
without consideration for certain flowchart
fragments with regard to certain API.

1

3

2

0

0.5

1

1.5

2

2.5

3

3.5

Gravitee.io API
Platform

APIMan WSO2 API
Management

SO
FT

W
AR

E
RA

N
K

Journal of Theoretical and Applied Information Technology
30th June 2019. Vol.97. No 12

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

3330

Another important issue upon
development of open API is computer security.
Since API is a certain access point to company
software system, then this entry should be secured
[16]. Not only access to API should be secure, that
is, authentication and authorization systems, but the
whole mechanism of API functioning, that is, API
gateway [17].

This work considered web interfaces
operating according to HTTP protocol, however, a
new protocol appeared recently, WebSocket, which
is, contrary to HTTP, is asynchronous and
symmetrical, which facilitates communication in
real time, decreasing latency of network interaction
and traffic amount [18]. Taking into account these
advantages, it is obvious that the WebSocket
protocol will be used in open interfaces, hence,
while selecting API management system, it would
be required to consider for support of this protocol.
Though, some software products already support
this protocol, for instance, considered here WSO2
API Management [19] or Tyk API Gateway [20].

5. CONCLUSION

The most efficient API gateways were
studied in this work. Three software products were
considered: Gravitee, APIMan, and WSO2 API
Management, which met two preset criteria: Java
product implementation, open source code of the
product.

The API gateways were compared using
three-dimensional environment with the following
coordinates: intensity of performed functions for
API development, labor intensity of API
implementation, performance of API gateway.

The intensity of API management
functions performed by the systems was compared
with regard to preset criteria on the basis of analysis
of specifications of software tools and subsequent
verification of the mentioned functions during
operation with software. The comparison revealed
that Gravitee was the best software product.

The labor intensity of API implementation
was compared using each product for development
of test interface comprised of three blocks: block of
request transformation, block of error handling,
block of HTTP request. In terms of this
comparison, the best software products were
Gravitee and WSO2 API Management.

The performance of the software products
was compared using the developed test interface,
which, upon access to it, generated several HTTP
requests, the respective response was obtained with
five second delay, thus simulating complex
scenario of API operation. Then the interface was
requested several times. In terms of this
comparison, the best software products were
Gravitee and WSO2 API Management.

Therefore, in terms of all coordinates the
best software product was Gravitee.

ACKNOWLEDGMENTS

This work was supported by the
Competitiveness Program of National Research
Nuclear University MEPhI (Moscow Engineering
Physics Institute), contract with the Ministry of
Education and Science of the Russian Federation
No. 02.А03.21.0005, 27.08.2013.

REFERENCES:

[1] ProgrammableWeb. Research Shows Interest

in Providing APIs Still High; 2018. Available
from:
https://www.programmableweb.com/news/res
earch-shows-interest-providing-apis-still-
high/research/2018/02/23.

[2] Collins G, Sisk D. API economy. Delloite
Insights; 2015. Available from:
https://www2.deloitte.com/insights/us/en/focu
s/tech-trends/2015/tech-trends-2015-what-is-
api-economy.html.

[3] Heffner R. The Forrester Wave™: API
Management Solutions, Q4 2018. Leveraging;
2018. Available from:
https://b.content.wso2.com/sites/all/forrester-
q4-2018/The-Forrester-Wave-API-
Management-Solutions-Q4-2018.pdf.

[4] IT Central Station. Best API Management
Tools: Comparison of API Gateway
Solutions; 2019. Available from:
https://www.itcentralstation.com/categories/a
pi-management.

[5] Capterra. API Management Software.
Available from:
https://www.capterra.com/api-management-
software/.

[6] G2 Crowd. Best API Management Software;
2019. Available from:
https://www.g2crowd.com/categories/api-
management.

[7] Predictive Analytics Today. Top 9 API
Management Platforms; 2018. Available

Journal of Theoretical and Applied Information Technology
30th June 2019. Vol.97. No 12

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

3331

from:
https://www.predictiveanalyticstoday.com/top
-api-management-platforms/.

[8] Wikipedia. API management; 2018. Available
from:
https://en.wikipedia.org/wiki/API_manageme
nt.

[9] Gravitee.io. 2018. Available from:
https://gravitee.io/.

[10] APIMan. Open Source API Management;
2017. Available from:
http://www.apiman.io/latest/index.html.

[11] WSO2. WSO2 API Management; 2018.
Available from: https://wso2.com/api-
management/.

[12] APIMan GitBooks. APIMAN USER GUIDE;
2018. Available from:
https://apiman.gitbooks.io/apiman-user-
guide/.

[13] Gravitee.io. API Management; 2018.
Available from:
https://docs.gravitee.io/apim_publisherguide_
manage_apis.html.

[14] WSO2. WSO2 API Manager Documentation;
2018. Available from:
https://docs.wso2.com/display/AM260/.

[15] Wikipedia. GraphQL; 2018. Available from:
https://en.wikipedia.org/wiki/GraphQL.

[16] Macy J. API security: Whose job is it
anyway?. Network Security 2018; 9: 6-9.

[17] Macy J. How to build a secure API gateway.
Network Security 2018; 6: 12-14.

[18] IETF Tools. The WebSocket Protocol; 2011.
Available from:
https://tools.ietf.org/html/rfc6455.

[19] WSO2. Create a WebSocket API; 2019.
Available from:
https://docs.wso2.com/display/AM210/Create
+a+WebSocket+API.

[20] Tyk Open Source API Gateway. Websockets;
2018. Available from:
https://www.tyk.io/docs/other-
protocols/websockets/.

